1
|
Hao S, Shi L, Li J, Shi J, Kuang G, Liang G, Gao S. Biomacromolecular hydrogel scaffolds from microfluidics for cancer therapy: A review. Int J Biol Macromol 2024; 282:136738. [PMID: 39437954 DOI: 10.1016/j.ijbiomac.2024.136738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Traditional cancer treatment is confronted with the problem of limited therapeutic effect, tissue defects, and lack of drug screening. Hydrogel scaffolds from biological macromolecules based on microfluidic technology are a promising candidate, which can mimic tumor microenvironments to screen personalized drugs, promote the regeneration of healthy tissues, and deliver drugs for enhanced localized antitumor treatment. This review summarizes the latest research on the composition of biomacromolecular hydrogel scaffolds, the architecture of hydrogel scaffolds from microfluidic technology, and their application in cancer therapy, including anti-tumor drug screening, anti-tumor treatment, and anti-tumor treatment and tissue repair. In addition, the potential breakthroughs of this innovative platform in the clinical transformation of cancer therapy are further discussed. The insights revealed in this review are intended to guide the utilization of microfluidic technology-based biomacromolecular hydrogel scaffolds in cancer therapy.
Collapse
Affiliation(s)
- Siyu Hao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| | - Jiayi Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaming Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China
| | - Gaizhen Kuang
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Gaofeng Liang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, College of Basic Medicine and Forensic Medicine, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
2
|
Wang S, McCoy CP, Li P, Li Y, Zhao Y, Andrews GP, Wylie MP, Ge Y. Carbon Dots in Photodynamic/Photothermal Antimicrobial Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1250. [PMID: 39120355 PMCID: PMC11314369 DOI: 10.3390/nano14151250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Antimicrobial resistance (AMR) presents an escalating global challenge as conventional antibiotic treatments become less effective. In response, photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising alternatives. While rooted in ancient practices, these methods have evolved with modern innovations, particularly through the integration of lasers, refining their efficacy. PDT harnesses photosensitizers to generate reactive oxygen species (ROS), which are detrimental to microbial cells, whereas PTT relies on heat to induce cellular damage. The key to their effectiveness lies in the utilization of photosensitizers, especially when integrated into nano- or micron-scale supports, which amplify ROS production and enhance antimicrobial activity. Over the last decade, carbon dots (CDs) have emerged as a highly promising nanomaterial, attracting increasing attention owing to their distinctive properties and versatile applications, including PDT and PTT. They can not only function as photosensitizers, but also synergistically combine with other photosensitizers to enhance overall efficacy. This review explores the recent advancements in CDs, underscoring their significance and potential in reshaping advanced antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.W.)
| | | | | | | | | | | | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.W.)
| |
Collapse
|
3
|
Liu L, Zhao X. Preparation of environmentally responsive PDA&DOX@LAC live drug carrier for synergistic tumor therapy. Sci Rep 2024; 14:15927. [PMID: 38987493 PMCID: PMC11236969 DOI: 10.1038/s41598-024-66966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
The development of intelligent, environmentally responsive and biocompatible photothermal system holds significant importance for the photothermal combined therapy of tumors. In this study, inspired by Lactobacillus (LAC), we prepared a biomimetic nanoplatform PDA&DOX@LAC for tumor photothermal-chemotherapy by integrating the chemotherapeutic drug doxorubicin (DOX) with dopamine through oxidative polymerization to form polydopamine (PDA) on the surface of LAC. The PDA&DOX@LAC nanoplatform not only achieves precise and controlled release of DOX based on the slightly acidic microenvironment of tumor tissues, but also exhibits enzyme-like properties to alleviate tumor hypoxia. Under near-infrared light irradiation, it effectively induces photothermal ablation of tumor cells, enhances cellular uptake of DOX with increasing temperature, and thus efficiently inhibits tumor cell growth. Moreover, it is further confirmed in vivo experiments that photothermal therapy combined with PDA&DOX@LAC induces tumor cells apoptosis, releases tumor-associated antigens, which is engulfed by dendritic cells to activate cytotoxic T lymphocytes, thereby effectively suppressing tumor growth and prolonging the survival period of 4T1 tumor-bearing mice. Therefore, the PDA&DOX@LAC nanoplatform holds immense potential in precise tumor targeting as well as photothermal combined therapy and provides valuable insights and theoretical foundations for the development of novel tumor treatment strategies based on endogenous substances within the body.
Collapse
Affiliation(s)
- Lu Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, No. 62, Huaihai Road (S.), Huai'an, 223002, People's Republic of China
| | - Xuefen Zhao
- Northern Jiangsu People's Hospital, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
4
|
Fang Q, Tang M. Oxidative stress-induced neurotoxicity of quantum dots and influencing factors. Nanomedicine (Lond) 2024; 19:1013-1028. [PMID: 38606672 PMCID: PMC11225328 DOI: 10.2217/nnm-2023-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Quantum dots (QDs) have significant potential for treating and diagnosing CNS diseases. Meanwhile, the neurotoxicity of QDs has garnered attention. In this review, we focus on elucidating the mechanisms and consequences of CNS oxidative stress induced by QDs. First, we discussed the pathway of QDs transit into the brain. We then elucidate the relationship between QDs and oxidative stress from in vivo and in vitro studies. Furthermore, the main reasons and adverse outcomes of QDs leading to oxidative stress are discussed. In addition, the primary factors that may affect the neurotoxicity of QDs are analyzed. Finally, we propose potential strategies for mitigating QDs neurotoxicity and outline future perspectives for their development.
Collapse
Affiliation(s)
- Qing Fang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
5
|
Wang Q, Gan Z, Shi Q, Li Y, Qi L, Wu W, Hu F. A biodegradable semiconducting polymer phototherapeutic agent for safe cancer phototherapy. J Control Release 2024; 368:265-274. [PMID: 38423474 DOI: 10.1016/j.jconrel.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Combined photodynamic therapy (PDT) and photothermal therapy (PTT) not only effectively reduce the hypoxic resistance to PDT, but also overcome the heat shock effect to PTT. However, the residual phototherapeutic agents still produce reactive oxygen species (ROS) to damage normal tissue under sunlight after treatment, which induces undesirable side effects to limit their biomedical application. Herein, a facile strategy is proposed to construct a biodegradable semiconducting polymer p-DTT, which is constructed by thieno[3,2-b]thiophene modified diketopyrrolopyrrole and (E)-1,2-bis(5-(trimethylstannyl)thiophen-2-yl)ethene moieties, to avoid the post-treatment side effects of phototherapy. Additionally, p-DTT exhibits strong photoacoustic (PA) for imaging, as well as good ROS production capacity and high photothermal conversion efficiency for synergistic PDT and PTT, which has been confirmed by both in vitro and in vivo results. After phototherapy, p-DTT could be gradually oxidized and degraded by endogenous ClO-, and subsequently lose ROS production and photothermal conversion capacities, which can guarantee the post-treatment safety, and address above key limitation of traditional phototherapy.
Collapse
Affiliation(s)
- Qiang Wang
- School of Medical and Information Engineering, Gannan Medical University, Ganzhou 341000, China; School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Zhuoheng Gan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qiankun Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yonggang Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Fang Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Shen J, Xia H, Zhou X, Zhang L, Gao Q, He K, Liu D, Huang B. Selenium enhances photodynamic therapy of C-phycocyanin against lung cancer via dual regulation of cytotoxicity and antioxidant activity. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1925-1937. [PMID: 37994159 PMCID: PMC10753371 DOI: 10.3724/abbs.2023159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/07/2023] [Indexed: 11/24/2023] Open
Abstract
As a natural photosensitizer, phycocyanin (PC) has high efficiency and uses low-intensity irradiation. To enhance the photodynamic therapy (PDT) of PC, we extract selenium-enriched phycocyanin (Se-PC) from Se-enriched Spirulina platensis and examine the synergistic effect of PC combined with selenium against lung tumors. In vitro experiments reveal that Se-PC PDT more efficiently reduce the survival rate of mouse lung cancer cells (LLC cell line) than PC PDT treatment by increasing the level of ROS and decreasing the level of GPx4, which is confirmed by the Chou-Talalay assay. In vivo imaging system analysis reveal that tumor volume is more markedly decreased in both the Se-PC PDT and PC PDT plus Na 2SeO 3 groups than in the PC PDT group, with inhibition rates reaching 90.4%, 68.3% and 53.1%, respectively, after irradiation with 100 J/cm 2 laser light at 630 nm. In normal tissues, Se-PC promotes the synthesis of antioxidant enzymes and the immune response by the IL-6/TNF-α pathway against tumor proliferation and metastasis. Using Se-PC as a photosensitizer in tumors, apoptosis and pyroptosis are the primary types of cell death switched by Caspases-1/3/9, which is confirmed by TEM. Based on the transcriptome analysis, Se-PC PDT treatment inhibits angiogenesis, regulates inflammation by the HIF-1, NF-κB and TGF-β signaling pathways and dilutes tumor metabolism by reducing the synthesis of glucose transporters and transferrin. Compared to PC PDT, Se-PC increases the expression levels of some chemokines in the tumor niche, which recruits inflammatory cells to enhance the immune response. Our study may provide evidence for Se-PC as an effective photosensitizer to treat lung cancer.
Collapse
Affiliation(s)
- Jie Shen
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| | - Haidong Xia
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| | - Xiaojing Zhou
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| | - Lei Zhang
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| | - Qian Gao
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| | - Kan He
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| | - Dahai Liu
- School of MedicineFoshan UniversityFoshan528000China
| | - Bei Huang
- School of Life SciencesAnhui UniversityHefei230601China
- Center for Stem Cell and Translational MedicineAnhui UniversityHefei230601China
| |
Collapse
|
7
|
Moradian S, Badiei A, Mohammadi Ziarani G, Mohajer F, Varma RS, Iravani S. Black Phosphorus-based Photocatalysts: Synthesis, Properties, and Applications. ENVIRONMENTAL RESEARCH 2023; 237:116910. [PMID: 37597834 DOI: 10.1016/j.envres.2023.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Photocatalysis is considered as an eco-friendly and sustainable strategy, since it uses abundant light for the advancement of the reaction, which is freely accessible and is devoid of environmental pollution. During the last decades, (nano)photocatalysts have gained broad industrial applications in terms of purification and detoxification of water as well as production of green fuels and hydrogen gas due to their special attributes. The degradation or remediation of toxic and hazardous compounds from the environment or changing them into non-toxic entities is a significant endeavor and necessary for the safety of humans, animals, and the environment. Black phosphorus (BP), a two-dimensional single-element material, has a marvelous structure, tunable bandgap, changeable morphology from bulk to nanosheet/quantum dot, and unique physicochemical properties, which makes it attractive material for photocatalytic applications, especially for sustainable development purposes. Since it can serve as a photocatalyst with or without coupling with other semiconductors, various aspects for multidimensional exploitation of BP are deliberated including their preparation via solvothermal, ball milling, calcination, and sonication methods to obtain BP from red phosphorus. The techniques for improving the photocatalytic and stability of BP-based composites are discussed along with their multifaceted applications for environmental remediation, pollution degradation, water splitting, N2 fixation, CO2 reduction, bacterial disinfection, H2 generation, and photodynamic therapy. Herein, most recent advancements pertaining to the photocatalytic applications of BP-based photocatalyst are cogitated, with a focus on their synthesis and properties as well as crucial challenges and future perspectives.
Collapse
Affiliation(s)
- Sahar Moradian
- School of Chemistry, College of Science, University of Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Iran.
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
8
|
Song X, Wang M, Liu S, Liu H, Jiang A, Zou Y, Deng Y, Qin Q, Song Y, Zheng Y. A sequential scheme including PTT and 2'3'-cGAMP/CQ-LP reveals the antitumor immune function of PTT through the type I interferon pathway. Pharmacol Res 2023; 196:106939. [PMID: 37758101 DOI: 10.1016/j.phrs.2023.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
Photothermal therapy (PTT) is a promising antitumor treatment that is easy to implement, minimally invasive, and precisely controllable, and evokes strong antitumor immunity. We believe that a thorough elucidation of its underlying antitumor immune mechanisms would contribute to the rational design of combination treatments with other antitumor strategies and consequently potentiate clinical use. In this study, PTT using indocyanine green (ICG) induced STING-dependent type I interferon (IFN) production in macrophages (RAW264.7 and bone marrow-derived macrophages (BMDMs)), as proven by the use of a STING inhibitor (C178), and triggered STING-independent type I IFN generation in tumor cells (CT26 and 4T1), which was inhibited by DNase pretreatment. A novel liposome coloaded with the STING agonist 2'3'-cGAMP (cGAMP) and chloroquine (CQ) was constructed to achieve synergistic effect with PTT, in which CQ increased cGAMP entrapment efficiency and prevented STING degradation after IFN signaling activation. The sequential combination treatment caused a significant increase in tumor cell apoptosis, probably due to interferon stimulating gene products 15 and 54 (ISG15 and ISG 54), and achieved a more striking antitumor inhibition effect in the CT26 tumor model than the 4T1 model, likely due to higher STAT1 expression and consequently more intense IFN signal transduction. In the tumor microenvironment, the combination treatment increased infiltrating CD8+T cells (4-fold) and M1-like TAMs (10-fold), and decreased M-MDSCs (over 2-fold) and M2-like TAMs (over 4-fold). Above all, in-depth exploration of the antitumor mechanism of PTT provides guidance for selecting sensitive tumor models and designing reasonable clinical schemes.
Collapse
Affiliation(s)
- Xiaoshuang Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Wang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Simeng Liu
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huimin Liu
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ailing Jiang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zou
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchuan Deng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Qin
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiran Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zheng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Olszowy M, Nowak-Perlak M, Woźniak M. Current Strategies in Photodynamic Therapy (PDT) and Photodynamic Diagnostics (PDD) and the Future Potential of Nanotechnology in Cancer Treatment. Pharmaceutics 2023; 15:1712. [PMID: 37376160 DOI: 10.3390/pharmaceutics15061712] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic diagnostics (PDD) and photodynamic therapy (PDT) are well-established medical technologies used for the diagnosis and treatment of malignant neoplasms. They rely on the use of photosensitizers, light and oxygen to visualize or eliminate cancer cells. This review demonstrates the recent advancements in these modalities with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors, liposomes and micelles. Additionally, this literature review explores the combination of PDT with radiotherapy, chemotherapy, immunotherapy, and surgery for treating various neoplasms. The article also focuses on the latest achievements in PDD and PDT enhancements, which seem to be very promising in the field of oncology.
Collapse
Affiliation(s)
- Marta Olszowy
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Martyna Nowak-Perlak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
10
|
Wang D, Peng Y, Li Y, Kpegah JKSK, Chen S. Multifunctional inorganic biomaterials: New weapons targeting osteosarcoma. Front Mol Biosci 2023; 9:1105540. [PMID: 36660426 PMCID: PMC9846365 DOI: 10.3389/fmolb.2022.1105540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Osteosarcoma is the malignant tumor with the highest incidence rate among primary bone tumors and with a high mortality rate. The anti-osteosarcoma materials are the cross field between material science and medicine, having a wide range of application prospects. Among them, biological materials, such as compounds from black phosphorous, magnesium, zinc, copper, silver, etc., becoming highly valued in the biological materials field as well as in orthopedics due to their good biocompatibility, similar mechanical properties with biological bones, good biodegradation effect, and active antibacterial and anti-tumor effects. This article gives a comprehensive review of the research progress of anti-osteosarcoma biomaterials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Shijie Chen,
| | - Yuezhan Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland,*Correspondence: Shijie Chen,
| | | | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China,*Correspondence: Shijie Chen,
| |
Collapse
|
11
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Liang H, Sun Y, Li C, Lin H, Huang Q, Li C. Facile synthesis of phycocyanin/polydopamine hierarchical nanocomposites for synergizing PTT/PDT against cancer. RSC Adv 2022; 12:34815-34821. [PMID: 36540209 PMCID: PMC9724212 DOI: 10.1039/d2ra05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/12/2022] [Indexed: 01/15/2024] Open
Abstract
The exceptional biocompatibility and biosafety of natural proteins have made them a popular choice for tumor therapy in recent years, but their therapeutic effectiveness is severely constrained by factors including physiological instability, insufficient delivery, limited accumulation in tumor cells, etc. Here, a novel Mn-doped phycocyanin (Pc)/polydopamine (PDA) hierarchical nanostructure (MnPc@P) with excellent optical absorption, photothermal conversion, and photodynamic performances, is first designed and fabricated by a simply one-pot reaction, which not only successfully encapsulates natural protein Pc with intact activity in the nanostructure of MnPc@P but also gives them better biocompatibility. Upon laser irradiation, PDA-mediated hyperthermia and Pc-induced ROS elevation in tumor cells have been demonstrated, leading to drastic tumor cell death via combined PTT/PDT effect, greater than single PTT or PDT. In general, the expert fusion of Pc and PDA into a single nanomedicine opens fascinating perspectives in the delivery of natural proteins and tumor therapy.
Collapse
Affiliation(s)
- Huazhen Liang
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Yaling Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University Guangzhou 510630 Guangdong China
| | - Chaoming Li
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Huaming Lin
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Qiwen Huang
- Department of Pathology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Changguo Li
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| |
Collapse
|
13
|
Soman S, Kulkarni S, Pandey A, Dhas N, Subramanian S, Mukherjee A, Mutalik S. 2D Hetero-Nanoconstructs of Black Phosphorus for Breast Cancer Theragnosis: Technological Advancements. BIOSENSORS 2022; 12:1009. [PMID: 36421127 PMCID: PMC9688887 DOI: 10.3390/bios12111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As per global cancer statistics of 2020, female breast cancer is the most commonly diagnosed cancer and also the foremost cause of cancer death in women. Traditional treatments include a number of negative effects, making it necessary to investigate novel smart drug delivery methods and identify new therapeutic approaches. Efforts for developing novel strategies for breast cancer therapy are being devised worldwide by various research groups. Currently, two-dimensional black phosphorus nanosheets (BPNSs) have attracted considerable attention and are best suited for theranostic nanomedicine. Particularly, their characteristics, including drug loading efficacy, biocompatibility, optical, thermal, electrical, and phototherapeutic characteristics, support their growing demand as a potential substitute for graphene-based nanomaterials in biomedical applications. In this review, we have explained different platforms of BP nanomaterials for breast cancer management, their structures, functionalization approaches, and general methods of synthesis. Various characteristics of BP nanomaterials that make them suitable for cancer therapy and diagnosis, such as large surface area, nontoxicity, solubility, biodegradability, and excellent near-infrared (NIR) absorption capability, are discussed in the later sections. Next, we summarize targeting approaches using various strategies for effective therapy with BP nanoplatforms. Then, we describe applications of BP nanomaterials for breast cancer treatment, which include drug delivery, codelivery of drugs, photodynamic therapy, photothermal therapy, combined therapy, gene therapy, immunotherapy, and multidrug resistance reversal strategy. Finally, the present challenges and future aspects of BP nanomaterials are discussed.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
14
|
Sekar R, Basavegowda N, Jena S, Jayakodi S, Elumalai P, Chaitanyakumar A, Somu P, Baek KH. Recent Developments in Heteroatom/Metal-Doped Carbon Dot-Based Image-Guided Photodynamic Therapy for Cancer. Pharmaceutics 2022; 14:1869. [PMID: 36145617 PMCID: PMC9504834 DOI: 10.3390/pharmaceutics14091869] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Carbon nanodots (CNDs) are advanced nanomaterials with a size of 2-10 nm and are considered zero-dimensional carbonaceous materials. CNDs have received great attention in the area of cancer theranostics. The majority of review articles have shown the improvement of CNDs for use in cancer therapy and bioimaging applications. However, there is a minimal number of consolidated studies on the currently developed doped CNDs that are used in various ways in cancer therapies. Hence, in this review, we discuss the current developments in different types of heteroatom elements/metal ion-doped CNDs along with their preparations, physicochemical and biological properties, multimodal-imaging, and emerging applications in image-guided photodynamic therapies for cancer.
Collapse
Affiliation(s)
- Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | | | - Saktishree Jena
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chengalpattu 603 308, Tamil Nadu, India
| | - Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Pandian Elumalai
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Amballa Chaitanyakumar
- Department of Biotechnology, University Institute of Engineering and Technology, Guru Nanak University, Hyderabad 500 085, Telangana, India
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602 105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
15
|
Feng X, Wu C, Yang W, Wu J, Wang P. Mechanism-Based Sonodynamic–Chemo Combinations against Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23147981. [PMID: 35887326 PMCID: PMC9315679 DOI: 10.3390/ijms23147981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Due to its noninvasive nature, site-confined irradiation, and high tissue penetrating capabilities, ultrasound (US)-driven sonodynamic treatment (SDT) has been proven to have broad application possibilities in neoplastic and non-neoplastic diseases. However, the inefficient buildup of sonosensitizers in the tumor site remarkably impairs SDT efficiency. The present work proposes a deep-penetrating sonochemistry nanoplatform (Pp18-lipos@SRA737&DOX, PSDL) comprising Pp18 liposomes (Pp18-lipos, Plipo), SRA737 (a CHK1 inhibitor), and doxorubicin (DOX) for the controlled formation of reactive oxygen species (ROS) and release of DOX and SRA737 upon US activation, therefore increasing chemotherapeutic effectiveness and boosting SDT efficacy. Therein, the antitumor activities of DOX have been attributed to its intercalation into the nucleus DNA and induction of cell apoptosis. CHK1 evolved to respond to DNA damage and repair the damage via cell cycle progression. SRA737 is a potent and orally bioavailable clinical drug candidate for inhibiting CHK1, demonstrating adjuvant anticancer effect in vitro and in vivo. It was interesting to find that SRA737 carried into Plipo@DOX could significantly alleviate G2/M cell cycle arrest and aggravate DNA double-strand injuries, resulting in significant cell death. The developed US-switchable nanosystem provides a promising strategy for augmenting sono-chemotherapy against breast cancer controllably and precisely.
Collapse
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Chen Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Wenhao Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Jiayi Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: ; Tel.: +86-029-85310275
| |
Collapse
|
16
|
Guan M, Chu G, Jin J, Liu C, Cheng L, Guo Y, Deng Z, Wang Y. A Combined Cyanine/Carbomer Gel Enhanced Photodynamic Antimicrobial Activity and Wound Healing. NANOMATERIALS 2022; 12:nano12132173. [PMID: 35808008 PMCID: PMC9268119 DOI: 10.3390/nano12132173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
As a non-invasive and non-specific therapeutic approach, photodynamic therapy (PDT) has been used to treat antibiotic-resistant bacteria with encouraging efficacy. Inspired by light, the photosensitizers can produce excessive reactive oxygen species (ROS) and, thus, effectively destroy or kill bacteria. Cyanine (Cy), a traditional photosensitizer for PDT, has the advantages of low cytotoxicity and high ROS yield. Yet, the water solubility and photostability for Cy are poor, which substantially limit its antibacterial efficiency and clinical translation. Herein, we combined Cy with carbomer gel (CBMG) to form a photodynamic Cy-CBMG hydrogel. In this system, Cy was evenly dispersed in CBMG, and CBMG significantly improved the water solubility and photostability of Cy via electrostatic interactions. The developed Cy-CBMG gel had less photodegradation under laser irradiation and thus can effectively elevate ROS accumulation in bacteria. The Cy-CBMG compound presented remarkable ROS-induced killing efficacy against methicillin-resistant Staphylococcus aureus (93.0%) and extended-spectrum β-lactamase-producing Escherichia coli (88.7%) in vitro. Moreover, as a potential wound dressing material, the Cy-CBMG hydrogel exhibited excellent biocompatibility and effective antimicrobial ability to promote wound healing in vivo. Overall, this work proposed a practical strategy to synthesize a photosensitizer–excipient compound to enhance the photophysical property and antibacterial efficacy for PDT.
Collapse
Affiliation(s)
- Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.G.); (G.C.); (J.J.); (C.L.); (L.C.)
| | - Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.G.); (G.C.); (J.J.); (C.L.); (L.C.)
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.G.); (G.C.); (J.J.); (C.L.); (L.C.)
| | - Can Liu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.G.); (G.C.); (J.J.); (C.L.); (L.C.)
| | - Linxiang Cheng
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.G.); (G.C.); (J.J.); (C.L.); (L.C.)
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Xi’an Medical University, Xi’an 710021, China;
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
- Correspondence: (Z.D.); (Y.W.); Tel.: +86-136-79187589 (Z.D.); +86-0571-87236128 (Y.W.)
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.G.); (G.C.); (J.J.); (C.L.); (L.C.)
- Correspondence: (Z.D.); (Y.W.); Tel.: +86-136-79187589 (Z.D.); +86-0571-87236128 (Y.W.)
| |
Collapse
|
17
|
Zhang S, Shang P, Gao K, Zhao G, Zhou J, Chen R, Ning X, Guo C. Dynamics of estrogen-induced ROS and DNA strand break generation in estrogen receptor α-positive breast cancer. Biochem Biophys Res Commun 2022; 602:170-178. [PMID: 35278890 DOI: 10.1016/j.bbrc.2022.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
DNA repair machinery is involved in estrogen-dependent transactivation. Mounting evidence suggests that mechanisms underlying estrogen-induced DNA damage are complicated. To date estrogen-induced DNA oxidation and its impact on ERα-mediated transaction remains ambiguous. Herein, we found that the process of 17β-estradiol (E2)-induced ROS production can be approximately divided into two phases according to responding time and generation mechanisms. The intracellular Ca2+ fluctuation and ERα-dependent transcription lead to temporospatially different oxidative DNA damage. Further, we demonstrate that DNA oxidation is dispensable for estrogen-responsive gene expression. Dynamics of estrogen-induced DNA strand break generation also show two-phase pattern and topoisomerase-mediated DNA stand breaks are essential in estrogen signaling. Collectively, our findings have provided new insights into oxidative DNA damage in estrogen signaling.
Collapse
Affiliation(s)
- Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Rong Chen
- School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Xiaoju Ning
- Ningxia Traditional Chinese Medicine hospital and Research Institute of Traditional Chinese Medicine, Yinchuan, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
18
|
Song H, Peng T, Wang X, Li B, Wang Y, Song D, Xu T, Liu X. Glutathione-Sensitive Mesoporous Organosilica-Coated Gold Nanorods as Drug Delivery System for Photothermal Therapy-Enhanced Precise Chemotherapy. Front Chem 2022; 10:842682. [PMID: 35281558 PMCID: PMC8914165 DOI: 10.3389/fchem.2022.842682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
The combination of photothermal therapy (PTT) and chemotherapy can remarkably improve the permeability of the cell membrane and reduce the concentration of chemotherapy agents that not only kill the tumor cells effectively but also have adverse effects on normal tissues. It is of great meaning to construct nanomaterials that could be simultaneously applied for tumor eradication with PTT and chemotherapy. In this work, we developed a novel gold nanorod coated with mesoporous organosilica nanoparticles (oMSN-GNR), which presented as an optimal photothermal contrast agent. Moreover, after doxorubicin loading (oMSN-GNR–DOX), the organosilica shell exhibited biodegradable properties under high glutathione in the tumor microenvironment, resulting in massively releasing doxorubicin to kill tumor cells. More importantly, the hyperthermia effect of GNR cores under near-infrared light provided promising opportunities for localized photothermal ablation in vivo. Therefore, the combination of precise chemotherapy and highly effective PTT successfully inhibited tumor growth in liver tumor-bearing mice. This versatile synergistic therapy with local heating and chemotherapeutics precise release opens up the potential clinical application of PTT and chemotherapy therapeutics for malignant tumor eradication.
Collapse
Affiliation(s)
- Hui Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Tingwei Peng
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Pudong New Area, Shanghai, China
| | - Xue Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Beibei Li
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Yufang Wang
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Dianhai Song
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
| | - Tianzhao Xu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
- *Correspondence: Tianzhao Xu, ; Xinghui Liu,
| | - Xinghui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Pudong New Area, Shanghai, China
- *Correspondence: Tianzhao Xu, ; Xinghui Liu,
| |
Collapse
|
19
|
Wang W, Li Z, Nie X, Zeng W, Zhang Y, Deng Y, Chen H, Zeng X, Ma H, Zheng Y, Gao N. pH-Sensitive and Charge-Reversal Polymeric Nanoplatform Enhanced Photothermal/Photodynamic Synergistic Therapy for Breast Cancer. Front Bioeng Biotechnol 2022; 10:836468. [PMID: 35252143 PMCID: PMC8895045 DOI: 10.3389/fbioe.2022.836468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
As reported, breast cancer is one of the most common malignancies in women and has overtaken lung cancer as the most commonly diagnosed cancer worldwide by 2020. Currently, phototherapy is a promising anti-tumor therapy due to its fewer side effects, less invasiveness, and lower cost. However, its application in cancer therapeutics is limited by the incomplete therapeutic effect caused by low drug penetration and monotherapy. Herein, we built a charge-reversal nanoplatform (Ce6-PLGA@PDA-PAH-DMMA NPs), including polydopamine (PDA) and chlorin e6 (Ce6) for enhancing photothermal/photodynamic synergistic therapy. The PAH-DMMA charge-reversal layer enabled Ce6-PLGA@PDA-PAH-DMMA NPs to have long blood circulation at the normal physiological environment and to successfully realize charge reversal under the weakly acidic tumor microenvironment, improving cellular uptake. Besides, in vitro tests demonstrated that Ce6-PLGA@PDA-PAH-DMMA NPs had high photothermal conversion and greater anti-tumor activity than no charge-reversal nanoparticles, which overcame the limited tumor therapeutic efficacy of PTT or photodynamic therapy alone. Overall, the design of pH-responsive and charge-reversal nanoparticles (Ce6-PLGA@PDA-PAH-DMMA NPs) provided a promising approach for synergistic PTT/PDT therapy against breast cancer.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaozhong Nie
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yi Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yimin Deng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hualin Ma
- Shenzhen Key Laboratory of Kindey Diseases, Department of Nephrology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- *Correspondence: Hualin Ma, ; Yi Zheng, ; Nansha Gao,
| |
Collapse
|
20
|
Liu H, Mei Y, Zhao Q, Zhang A, Tang L, Gao H, Wang W. Black Phosphorus, an Emerging Versatile Nanoplatform for Cancer Immunotherapy. Pharmaceutics 2021; 13:1344. [PMID: 34575419 PMCID: PMC8466662 DOI: 10.3390/pharmaceutics13091344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Black phosphorus (BP) is one of the emerging versatile nanomaterials with outstanding biocompatibility and biodegradability, exhibiting great potential as a promising inorganic nanomaterial in the biomedical field. BP nanomaterials possess excellent ability for valid bio-conjugation and molecular loading in anticancer therapy. Generally, BP nanomaterials can be classified into BP nanosheets (BPNSs) and BP quantum dots (BPQDs), both of which can be synthesized through various preparation routes. In addition, BP nanomaterials can be applied as photothermal agents (PTA) for the photothermal therapy (PTT) due to their high photothermal conversion efficiency and larger extinction coefficients. The generated local hyperpyrexia leads to thermal elimination of tumor. Besides, BP nanomaterials are capable of producing singlet oxygen, which enable its application as a photosensitizer for photodynamic therapy (PDT). Moreover, BP nanomaterials can be oxidized and degraded to nontoxic phosphonates and phosphate under physiological conditions, improving their safety as a nano drug carrier in cancer therapy. Recently, it has been reported that BP-based PTT is capable of activating immune responses and alleviating the immunosuppressive tumor microenvironment by detection of T lymphocytes and various immunocytokines, indicating that BP-based nanocomposites not only serve as effective PTAs to ablate large solid tumors but also function as an immunomodulation agent to eliminate discrete tumorlets. Therefore, BP-mediated immunotherapy would provide more possibilities for synergistic cancer treatment.
Collapse
Affiliation(s)
- Hao Liu
- Department of Pharmacy, Guangdong Food and Drug Vocational College, Guangzhou 510520, China;
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hongbin Gao
- Department of Pharmacy, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.M.); (Q.Z.); (A.Z.); (L.T.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|