1
|
Dong Y, Wang H, Zhang Y, Wu Y, Lu L, Yu H, Zhou L, Zhao P, Ouyang S, Song Z, Hu Z, Lv D, Rong Y, Zhao Z, Tao J, Tang B, Luo S. NIR-II light based combinatorial management of hypertrophic scar by inducing autophagy in fibroblasts. J Nanobiotechnology 2024; 22:625. [PMID: 39407227 PMCID: PMC11481805 DOI: 10.1186/s12951-024-02876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
The hypertrophic scar (HS) is a prevalent cutaneous fibrotic disorder that impacts both the aesthetic and functional aspects of the skin, there is an urgent need for a highly safe and effective approach to address the challenge of HS with thick and deep types. Inspired by the superior deep tissue penetrative ability of near-infrared-II (NIR-II) light and potential mitochondria ROS inducing effect of Chinese medicine lycorine (LYC), we fabricated a Cu2Se@LYC (CL) composite by encapsulating LYC on polyvinyl pyrrolidone (PVP) modified Cu2Se nanoparticles. After NIR-II irradiation, CL could induce the generation of reactive oxygen species (ROS) and mitochondrial damage in hypertrophic scar fibroblasts (HSFs). The subsequent release of cytochrome C (cyt-c) from mitochondria into the cytoplasm and upregulation of beclin1 leads to the activation of endogenous apoptosis and autophagy-mediated cell death. The CL + NIR-II treatment exhibited a pronounced anti-scarring effect in both in vitro and in vivo rabbit ear scar models, leading to a significant reduction in the fibrotic markers including Collagen I/III and α-smooth muscle actin (α-SMA). This study comprehensively investigated the crucial role of HSFs' autophagy in scar management and proposed a safe and effective therapy based on NIR-II laser for clinical application.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China
| | - Youliang Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China
| | - Yanqun Wu
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Yu
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China
| | - Lingcong Zhou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, China
| | - Zibin Song
- Institute of Brain Diseases, Department of Neurosurgery, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Zirui Zhao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, China.
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, No.466 Middle Xin Gang Road, Guangzhou, 510317, China.
| |
Collapse
|
2
|
Chen Z, Gao J, Li L. New challenges in scar therapy: the novel scar therapy strategies based on nanotechnology. Nanomedicine (Lond) 2024; 19:2413-2432. [PMID: 39325688 PMCID: PMC11492664 DOI: 10.1080/17435889.2024.2401768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The pathological mechanism of pathological scar is highly complex, encompassing the abnormalities of diverse cytokines, signaling pathways and regulatory factors. To discover more preferable scar treatment options, a variety of distinct approaches have been utilized clinically. Nevertheless, these treatments possess certain side effects and are inclined to relapse. Presently, pathological scar treatment remains a clinical conundrum, and there is an urgent demand for treatment methods that are safe, less traumatic and have lower recurrence rates. New drug delivery systems, novel therapeutic drugs and therapy strategies can enable drugs to permeate the skin effectively, decrease side effects, enhance drug efficacy and even achieve pain-free self-administration. Currently, novel nanotechnologies such as nanomicroneedles, photodynamics mediated by novel photosensitizers, bioelectrical stimulation and 3D printed dressings have been developed for the effective treatment of pathological scars. Additionally, innovative nanoscale fillers, including nano-fat and engineered exosomes, can serve as novel therapeutic agents for the efficient treatment of pathological scars. The intervention of nanomaterials can enhance drug absorption, stabilize and safeguard the active ingredients of drugs, delay or control drug release and enhance bioavailability. This article reviews these new treatment strategies for scar to explore novel approaches for efficient and safe for keloid treatment.
Collapse
Affiliation(s)
- Zhuoyang Chen
- The second clinical college, China Medical University, Shenyang, PR China
| | - Jia Gao
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| |
Collapse
|
3
|
Liu Y, Wang S, Yang F, Wang X, Zhang J, Han X, Zhang X, Wang Z. Application and progress of new technologies and new materials in the treatment of pathological scar. Front Chem 2024; 12:1389399. [PMID: 38752199 PMCID: PMC11094272 DOI: 10.3389/fchem.2024.1389399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Pathological scars (PS), including hypertrophic scars (HTS) and keloids, are a common complication of poor wound healing that significantly affects patients' quality of life. Currently, there are several treatment options for PS, including surgery, drug therapy, radiation therapy, and biological therapy. However, these treatments still face major challenges such as low efficacy, high side effects, and a high risk of recurrence. Therefore, the search for safer and more effective treatments is particularly urgent. New materials often have less immune rejection, good histocompatibility, and can reduce secondary damage during treatment. New technology can also reduce the side effects of traditional treatments and the recurrence rate after treatment. Furthermore, derivative products of new materials and biomaterials can improve the therapeutic effect of new technologies on PS. Therefore, new technologies and innovative materials are considered better options for enhancing PS. This review concentrates on the use of two emerging technologies, microneedle (MN) and photodynamic therapy (PDT), and two novel materials, photosensitizers and exosomes (Exos), in the treatment of PS.
Collapse
Affiliation(s)
- Yining Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Sisi Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fan Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuepeng Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jierui Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xinkun Han
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xipeng Zhang
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Zhiguo Wang
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Shen S, Qiu J, Huo D, Xia Y. Nanomaterial-Enabled Photothermal Heating and Its Use for Cancer Therapy via Localized Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305426. [PMID: 37803412 PMCID: PMC10922052 DOI: 10.1002/smll.202305426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Photothermal therapy (PTT), which employs nanoscale transducers delivered into a tumor to locally generate heat upon irradiation with near-infrared light, shows great potential in killing cancer cells through hyperthermia. The efficacy of such a treatment is determined by a number of factors, including the amount, distribution, and dissipation of the generated heat, as well as the type of cancer cell involved. The amount of heat generated is largely controlled by the number of transducers accumulated inside the tumor, the absorption coefficient and photothermal conversion efficiency of the transducer, and the irradiance of the light. The efficacy of treatment depends on the distribution of the transducers in the tumor and the penetration depth of the light. The vascularity and tissue thermal conduction both affect the dissipation of heat and thereby the distribution of temperature. The successful implementation of PTT in the clinic setting critically depends on techniques for real-time monitoring and management of temperature.
Collapse
Affiliation(s)
- Song Shen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Da Huo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
5
|
Yu Z, Meng X, Zhang Y, Zhang Z. Improvement of surgical scars by early intervention with 5-aminolevulinic acid-mediated photodynamic therapy: A case report. Photodiagnosis Photodyn Ther 2023; 44:103811. [PMID: 37748700 DOI: 10.1016/j.pdpdt.2023.103811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Surgical scar formation afflicts patients and current treatments are limited by inconsistent efficacy, long-term and painful treatment processes. In this report, a patient received 5-aminolevulinic acid-mediated photodynamic therapy (5-ALA PDT) on the first postoperative day, once a week for 5 sessions. At two-year follow-up, the intervention of 5-ALA PDT at early stage decreased the vascular density and improved extracellular matrix (ECM) deposition. The early intervention of surgical scar by 5-ALA PDT overcomes the penetration limits of photosensitizer and red light, making it a potential strategy for surgical scar prevention.
Collapse
Affiliation(s)
- Zhixi Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, PR China
| | - Xinxian Meng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, PR China.
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Rd, Shanghai 200011, PR China.
| |
Collapse
|
6
|
Zhou W, Chen S, Ouyang Y, Huang B, Zhang H, Zhang W, Tian J. A supramolecular nanoplatform for imaging-guided phototherapies via hypoxia tumour microenvironment remodeling. Chem Sci 2023; 14:11481-11489. [PMID: 37886080 PMCID: PMC10599481 DOI: 10.1039/d3sc03797e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as an invasive and promising antitumour treatment, however, the hypoxia in deep tumour tissues and the poor water-solubility of photosensitizers as bottlenecks greatly hinder PDT efficiency. Herein, a tumour microenvironment (TME) activated supramolecular nanoplatform consisting of the pillar[5]arene-based amphiphilic polymer POPD, the phototherapeutic agent Cy7-CN, respiratory medication atovaquone (ATO) and chemotherapeutic drug pyridinyl camptothecin (CPT-Py) was constructed for imaging-guided hypoxia-ameliorated phototherapies. Owing to host-guest interaction, the photochemical and photophysical properties of cyanine were improved exceedingly due to the suppression of π-π stacking. Triggered by the acidic microenvironment in tumour sites, the supramolecular nanoplatform would dissociate and release CPT-Py and ATO which inhibits mitochondria-associated oxidative phosphorylation (OXPHOS) and encourages more oxygen to be used in enhanced PDT. In vitro and in vivo studies verified that the rational combination of ATO-enhanced PDT and PTT overcame the disadvantages of single phototherapy and formed mutual promotion, and simultaneously sensitized chemotherapeutic drugs, which resulted in high tumour inhibition. It is hoped that the supramolecular nanoplatform could shed light on the development of phototherapeutic agents.
Collapse
Affiliation(s)
- Weijie Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hongman Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
7
|
Ding JY, Sun L, Zhu ZH, Wu XC, Xu XL, Xiang YW. Nano drug delivery systems: a promising approach to scar prevention and treatment. J Nanobiotechnology 2023; 21:268. [PMID: 37568194 PMCID: PMC10416511 DOI: 10.1186/s12951-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation is a common physiological process that occurs after injury, but in some cases, pathological scars can develop, leading to serious physiological and psychological effects. Unfortunately, there are currently no effective means to intervene in scar formation, and the structural features of scars and their unclear mechanisms make prevention and treatment even more challenging. However, the emergence of nanotechnology in drug delivery systems offers a promising avenue for the prevention and treatment of scars. Nanomaterials possess unique properties that make them well suited for addressing issues related to transdermal drug delivery, drug solubility, and controlled release. Herein, we summarize the recent progress made in the use of nanotechnology for the prevention and treatment of scars. We examine the mechanisms involved and the advantages offered by various types of nanomaterials. We also highlight the outstanding challenges and questions that need to be addressed to maximize the potential of nanotechnology in scar intervention. Overall, with further development, nanotechnology could significantly improve the prevention and treatment of pathological scars, providing a brighter outlook for those affected by this condition.
Collapse
Affiliation(s)
- Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Sun
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Yan-Wei Xiang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Wang J, Zhao S, Chen J, Liu X, Chen H, Lu T, Xu M, Guo X, Shen X, Liu C, Li C. Phage-Ce6-Manganese Dioxide Nanocomposite-Mediated Photodynamic, Photothermal, and Chemodynamic Therapies to Eliminate Biofilms and Improve Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21904-21916. [PMID: 37115597 DOI: 10.1021/acsami.3c01762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biofilms have become one of the fundamental issues for chronic infections, while traditional therapies are often ineffective in removing quiescent (persister) cells from biofilms, resulting in a variety of implant-related or nosocomial infections. Recently, bacteriophage (phage) therapy has reflourished in research and clinical trials. However, phage therapy alone manifested many intrinsic defects, including poor biofilm penetration, incomplete clearance of quiescent cells, etc. In this study, a phage-Chlorin e6 (Ce6)-manganese dioxide nanocomposite (PCM) was constructed by mild biomineralization. The results demonstrated that PCM contained both the vigorous activities of host bacterial targeting and efficient delivery of Ce6 to penetrate the biofilm. Assisted with NIR irradiation, robust reactive oxygen species (ROS) was triggered within the biofilm. In the weak acidic and GSH-rich infection niche, PCM was degraded into ultra-small nanosheets, endowing PCM with moderate photothermal therapy (PTT) effects and considerable Mn2+ release, thus exerting strong chemodynamic therapy (CDT) effects in situ. In vivo application demonstrated that the combination of PCM application and NIR irradiation strikingly reduced the pathogen loading, activated innate and adaptive immunity, promoted neocollagen rearrangement, and attenuated cicatricial tissue formation. Our research may pave a new way for bacterial treatment, biofilm-related infections, and other diseases caused by bacteria.
Collapse
Affiliation(s)
- Jinfeng Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Shujing Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Jiamin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Xingxing Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Hongyican Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Tao Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Mingji Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Xiaoling Guo
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, PR China
| | - Caixia Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| | - Chao Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang Province 325027, PR China
| |
Collapse
|
9
|
Huang Y, Li J, Wang Y, Chen D, Huang J, Dai W, Peng P, Guo L, Lei Y. Intradermal delivery of an angiotensin II receptor blocker using a personalized microneedle patch for treatment of hypertrophic scars. Biomater Sci 2023; 11:583-595. [PMID: 36475528 DOI: 10.1039/d2bm01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-quality postoperative rehabilitation is the focus of most patients currently, and hypertrophic scar (HS) greatly reduces the patient's quality of life due to the symptom of severe itching. Traditional HS therapies are associated with limitations, such as poor drug delivery efficiency for topical administration and severe pain for intralesional injection. In this study, we developed a personalized microneedle patch system for minimally invasive and effective treatment of HSs. The microneedle patches were personalized designed and fabricated with 3D printing in order to adapt to individual HS. The optimized microneedle patches were composed of dissolving gelatin and starch and loaded with losartan. Losartan, as a drug class of angiotensin II receptor blockers (ARBs), can effectively inhibit the proliferation and migration of hypertrophic scar fibroblasts (HSFs) and downregulate the gene expression related to scar formation in HSFs. The dissolving microneedle patches exhibited strong mechanical strength, effectively penetrated the stratum corneum of HSs and increased the losartan delivery into HSs upon dissolution of gelatin and starch. Together, the losartan-loaded microneedle patches effectively inhibited the formation of HSs in rabbit ears with reduced scar elevation index (SEI), and decreased fibrosis and collagen deposition in HSs. This personalized microneedle patch system increases the drug delivery efficiency into HSs with minimal invasion, and opens a new window for personalized management and treatment of skin diseases.
Collapse
Affiliation(s)
- Yihui Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jingwen Li
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Yan Wang
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jianglong Huang
- Department of Dermatology and Cosmetic Medicine, Hubei Aerospace Hospital, Xiaogan 432000, China
| | - Wubin Dai
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Pan Peng
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yifeng Lei
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Chen D, Zhang Y, Long W, Chai L, Myint TP, Zhou W, Zhou L, Wang M, Guo L. Visible light-driven photodynamic therapy for hypertrophic scars with MOF armored microneedles patch. Front Chem 2023; 11:1128255. [PMID: 36874068 PMCID: PMC9978826 DOI: 10.3389/fchem.2023.1128255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Photodynamic therapy (PDT) is widely used for the treatment of hypertrophic scars in clinical practice. However, the low transdermal delivery of photosensitizers in scar tissue and protective autophagy induced by Photodynamic therapy greatly reduces the therapeutic efficiency. Therefore, it is necessary to deal with these difficulties for overcoming obstacles in Photodynamic therapy treatment. In this study, a photosensitizer with photocatalytic performance was designed and synthesized using innovative MOFs (metal-organic frameworks). Additionally, the MOFs, together with an autophagy inhibitor chloroquine (CQ), was loaded in a high mechanical strength microneedle patch (MNP) for transdermal delivery. With these functionalized MNP, photosensitizers and chloroquine were delivered deep inside hypertrophic scars. Inhibition of autophagy increases the levels of reactive oxygen species (ROS) under high-intensity visible-light irradiation. Multiprong approaches have been used to remove obstacles in Photodynamic therapy and successfully enhance its anti-scarring effect. In vitro experiments indicated that the combined treatment increased the toxicity of hypertrophic scar fibroblasts (HSFs), downregulated the level of collagen type I expression as well as transforming growth factor-β1 (TGF-β1)expression, decreased the autophagy marker protein LC3II/I ratio, increased the expression of P62. In vivo experiments showed that the MNP had good puncture performance, and significant therapeutic effects were observed in the rabbit ear scar model. These results indicate that functionalized MNP has high potential clinical value.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yixuan Zhang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Long
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Thazin Phoone Myint
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Yang L, Deng H, Chen Y, Chen Y, Guo L, Feng M. 5-Aminolevulinic Acid-Hyaluronic Acid Complexes Enhance Skin Retention of 5-Aminolevulinic Acid and Therapeutic Efficacy in the Treatment of Hypertrophic Scar. AAPS PharmSciTech 2022; 23:216. [PMID: 35927520 DOI: 10.1208/s12249-022-02370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Hypertrophic scar is a serious skin disorder, which reduces the patient's quality of life. 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy has been used to treat patients with hypertrophic scar. However, the poor skin retention of 5-ALA limited the therapeutic effect. In this study, we constructed the 5-ALA-hyaluronic acid (HA) complex to potentially prolong the skin retention of 5-ALA for improving the therapeutic efficacy. HA is a polysaccharide with viscoelasticity and the carboxyl groups could conjugate with amino groups of 5-ALA via electrostatic interaction. The protoporphyrin IX (PpIX) assay revealed that 5-ALA-HA complexes markedly enhanced the skin retention, resulting in increased generation and accumulation of endogenous photosensitizer PpIX. Furthermore, 5-ALA-HA complexes allowed PpIX to be maintained at a high level for 12 h, much longer than the 3 h of 5-ALA alone. And then, the accumulative PpIX induced by 5-ALA-HA in human hypertrophic scar fibroblasts (HSF) was triggered by laser irradiation to produce sufficient reactive oxygen species, leading to efficient necrosis and apoptosis of HSF. In vivo therapeutic efficacy study indicated that 5-ALA-HA effectively reduced the appearance and scar thickness, and the scar elevation index with 5-ALA-HA treatment was significantly lower than other groups, suggesting that the 5-ALA-HA-treated scar became flattened and was closely matched to the unwounded tissues. Moreover, 5-ALA-HA treatment markedly downregulated the gene expression levels of α-SMA and TGF-β1, demonstrating attenuated the scar formation and growth. Therefore, the 5-ALA-HA complex enhancing skin retention and PpIX accumulation at the lesion site provide a promising therapeutic strategy for hypertrophic scar.
Collapse
Affiliation(s)
- Liya Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China
| | - Huihui Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China
| | - Yiman Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China
| | - Yuling Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China
| | - Ling Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China.
| | - Min Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|