1
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024. [PMID: 39451037 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Koremura S, Sugawara A, Morishita Y, Ozaki T, Asai T. Semi-synthesis of a DNA-Tagged Polyketide-Peptide Hybrid Macrocycle Using a Biosynthetically Prepared Fungal Macrolide as a Synthetic Component. Org Lett 2024; 26:9151-9156. [PMID: 39415106 PMCID: PMC11519919 DOI: 10.1021/acs.orglett.4c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Presented herein is a synthetic biological method using genome mining and heterologous expression systems that provides access to natural products with desirable structural features as building blocks. In this investigation, we synthesized polyketide-peptide hybrid macrocycles with DNA tags, which have the potential to access a DNA-encoded library containing over one million compounds. This study demonstrates that synthetic biology offers a tool for expanding the diversity of building blocks, facilitating the exploration of unexplored chemical space.
Collapse
Affiliation(s)
| | | | | | - Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Huang Y, Hou R, Lam FS, Jia Y, Zhou Y, He X, Li G, Xiong F, Cao Y, Wang D, Li X. Agonist Discovery for Membrane Proteins on Live Cells by Using DNA-encoded Libraries. J Am Chem Soc 2024; 146:24638-24653. [PMID: 39171830 DOI: 10.1021/jacs.4c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Identifying biologically active ligands for membrane proteins is an important task in chemical biology. We report an approach to directly identify small molecule agonists against membrane proteins by selecting DNA-encoded libraries (DELs) on live cells. This method connects extracellular ligand binding with intracellular biochemical transformation, thereby biasing the selection toward agonist identification. We have demonstrated the methodology with three membrane proteins: epidermal growth factor receptor (EGFR), thrombopoietin receptor (TPOR), and insulin receptor (INSR). A ∼30 million and a 1.033 billion-compound DEL were selected against these targets, and novel agonists with subnanomolar affinity and low micromolar cellular activities have been discovered. The INSR agonists activated the receptor by possibly binding to an allosteric site, exhibited clear synergistic effects with insulin, and activated the downstream signaling pathways. Notably, the agonists did not activate the insulin-like growth factor 1 receptor (IGF-1R), a highly homologous receptor whose activation may lead to tumor progression. Collectively, this work has developed an approach toward "functional" DEL selections on the cell surface and may provide a widely applicable method for agonist discovery for membrane proteins.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yunxuan Jia
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| | - Xun He
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Xiong
- Shenzhen NewDEL Biotech Co., Ltd., Shenzhen 518110, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Dongyao Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Gras M, Adler P, Smietana M. A Catalytic Approach for the Synthesis of Peptide-Oligonucleotides Conjugates in Aqueous Solution or On-Column. Chemistry 2024; 30:e202401069. [PMID: 38709711 DOI: 10.1002/chem.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Peptide-oligonucleotide conjugates (POCs) are covalent architectures composed of a DNA or RNA molecules linked to a peptide. These constructs have found widespread applications ranging from hybrid nanomaterials to gene-targeted therapies. Considering the important role of POCs, a new catalytic approach for their preparation is reported here, that could be applied either on solid support in anhydrous media, or post-synthetically in aqueous buffer. Single amino acids, peptides and cell penetrating peptides (CPPs) were conjugated to various oligo(ribo)nucleotides with high conversions and good isolated yields. The applicability of the method was demonstrated on more than 35 examples including an analogue of a commercial therapeutic oligonucleotide. Other conjugation partners, such as deoxycholic acid and biotin were also successfully conjugated to oligonucleotides. To highlight the potential of this catalytic approach, these conditions have been applied to iterative processes, which is of high interest for the development of DNA-Encoded Libraries.
Collapse
Affiliation(s)
- Marion Gras
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Pauline Adler
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Michael Smietana
- IBMM, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
5
|
Nielsen AL, Bognar Z, Mothukuri GK, Zarda A, Schüttel M, Merz ML, Ji X, Will EJ, Chinellato M, Bartling CRO, Strømgaard K, Cendron L, Angelini A, Heinis C. Large Libraries of Structurally Diverse Macrocycles Suitable for Membrane Permeation. Angew Chem Int Ed Engl 2024; 63:e202400350. [PMID: 38602024 DOI: 10.1002/anie.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.
Collapse
Affiliation(s)
- Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zsolt Bognar
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ganesh K Mothukuri
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anne Zarda
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel L Merz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Edward J Will
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Christian R O Bartling
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Laura Cendron
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice, 30172, Italy
- European Centre for Living Technologies (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Bruce A, Adebomi V, Czabala P, Palmer J, McFadden WM, Lorson ZC, Slack RL, Bhardwaj G, Sarafianos SG, Raj M. A Tag-Free Platform for Synthesis and Screening of Cyclic Peptide Libraries. Angew Chem Int Ed Engl 2024; 63:e202320045. [PMID: 38529717 PMCID: PMC11254100 DOI: 10.1002/anie.202320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
In the realm of high-throughput screening (HTS), macrocyclic peptide libraries traditionally necessitate decoding tags, essential for both library synthesis and identifying hit peptide sequences post-screening. Our innovation introduces a tag-free technology platform for synthesizing cyclic peptide libraries in solution and facilitates screening against biological targets to identify peptide binders through unconventional intramolecular CyClick and DeClick chemistries (CCDC) discovered through our research. This combination allows for the synthesis of diverse cyclic peptide libraries, the incorporation of various amino acids, and facile linearization and decoding of cyclic peptide binder sequences. Our sensitivity-enhancing derivatization method, utilized in tandem with nano LC-MS/MS, enables the sequencing of peptides even at exceedingly low picomolar concentrations. Employing our technology platform, we have successfully unearthed novel cyclic peptide binders against a monoclonal antibody and the first cyclic peptide binder of HIV capsid protein responsible for viral infections as validated by microscale thermal shift assays (TSA), biolayer interferometry (BLI) and functional assays.
Collapse
Affiliation(s)
- Angele Bruce
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Victor Adebomi
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States, 98195
| | - Patrick Czabala
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Jonathan Palmer
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States, 98195
| | - William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Zachary C Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Ryan L Slack
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Gaurav Bhardwaj
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States, 98195
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, 30322, United States
- Children's Healthcare of Atlanta, Atlanta, GA, 30322, United States
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
7
|
Merz ML, Habeshian S, Li B, David JAGL, Nielsen AL, Ji X, Il Khwildy K, Duany Benitez MM, Phothirath P, Heinis C. De novo development of small cyclic peptides that are orally bioavailable. Nat Chem Biol 2024; 20:624-633. [PMID: 38155304 PMCID: PMC11062899 DOI: 10.1038/s41589-023-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.
Collapse
Affiliation(s)
- Manuel L Merz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sevan Habeshian
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bo Li
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Alexandre G L David
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Khaled Il Khwildy
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maury M Duany Benitez
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Phoukham Phothirath
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Bao Y, Xing M, Matthew N, Chen X, Wang X, Lu X. Macrocyclizing DNA-Linked Peptides via Three-Component Cyclization and Photoinduced Chemistry. Org Lett 2024; 26:2763-2767. [PMID: 37382883 DOI: 10.1021/acs.orglett.3c01817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
While DNA-encoded macrocyclic libraries have gained substantial attention and several hit compounds have been identified from DNA-encoded library technology, efficient on-DNA macrocyclic methods are also required to construct DNA-linked libraries with a high degree of cyclization and DNA integrity. In this paper, we reported a set of on-DNA methodologies, including the use of an OPA-mediated three-component cyclization with native handles of amino acids and photoredox chemistries. These chemistries proceed smoothly under mild conditions in good to excellent conversions, successfully generating novel isoindole, isoindoline, indazolone, and bicyclic scaffolds.
Collapse
Affiliation(s)
- Yandan Bao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Minyan Xing
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Naylor Matthew
- UCB, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaohua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Zhou Y, Shen W, Gao Y, Peng J, Li Q, Wei X, Liu S, Lam FS, Mayol-Llinàs J, Zhao G, Li G, Li Y, Sun H, Cao Y, Li X. Protein-templated ligand discovery via the selection of DNA-encoded dynamic libraries. Nat Chem 2024; 16:543-555. [PMID: 38326646 DOI: 10.1038/s41557-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
DNA-encoded chemical libraries (DELs) have become a powerful technology platform in drug discovery. Dual-pharmacophore DELs display two sets of small molecules at the termini of DNA duplexes, thereby enabling the identification of synergistic binders against biological targets, and have been successfully applied in fragment-based ligand discovery and affinity maturation of known ligands. However, dual-pharmacophore DELs identify separate binders that require subsequent linking to obtain the full ligands, which is often challenging. Here we report a protein-templated DEL selection approach that can identify full ligand/inhibitor structures from DNA-encoded dynamic libraries (DEDLs) without the need for subsequent fragment linking. Our approach is based on dynamic DNA hybridization and target-templated in situ ligand synthesis, and it incorporates and encodes the linker structures in the library, along with the building blocks, to be sampled by the target protein. To demonstrate the performance of this method, 4.35-million- and 3.00-million-member DEDLs with different library architectures were prepared, and hit selection was achieved against four therapeutically relevant target proteins.
Collapse
Grants
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17318322, C7005-20G, C7016-22G, and 2122-7S04 Research Grants Council, University Grants Committee (RGC, UGC)
- 21877093, 22222702, and 91953119 National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
- Health@InnoHK Innovation and Technology Commission (ITF)
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Gao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Qingrong Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Joan Mayol-Llinàs
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hongzhe Sun
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, China.
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Hong Kong SAR, China.
| |
Collapse
|
10
|
Abstract
Cyclic peptides are fascinating molecules abundantly found in nature and exploited as molecular format for drug development as well as other applications, ranging from research tools to food additives. Advances in peptide technologies made over many years through improved methods for synthesis and drug development have resulted in a steady stream of new drugs, with an average of around one cyclic peptide drug approved per year. Powerful technologies for screening random peptide libraries, and de novo generating ligands, have enabled the development of cyclic peptide drugs independent of naturally derived molecules and now offer virtually unlimited development opportunities. In this review, we feature therapeutically relevant cyclic peptides derived from nature and discuss the unique properties of cyclic peptides, the enormous technological advances in peptide ligand development in recent years, and current challenges and opportunities for developing cyclic peptides that address unmet medical needs.
Collapse
Affiliation(s)
- Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Fan L, Yu Y, Jayne C, Frost JR, Scott JD. Synthesis of DNA-Encoded Macrocyclic Peptides via Nitrile-Aminothiol Click Reaction. Org Lett 2023; 25:8038-8042. [PMID: 37889907 DOI: 10.1021/acs.orglett.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
DNA-encoded library (DEL) technology holds exciting potential for discovering novel therapeutic macrocyclic peptides (MPs). Herein, we describe the development of a DEL-compatible peptide macrocyclization method that proceeds via intramolecular click-condensation between 3-(2-cyano-4-pyridyl)-l-alanine (Cpa) and an N-terminal cysteine. Cyclization takes place spontaneously in a buffered aqueous solution and affords the cyclized products in excellent yields. The reaction exhibits a broad substrate scope and can be employed to generate MPs of variable ring size and amino acid composition.
Collapse
Affiliation(s)
- Lijun Fan
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yang Yu
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Charles Jayne
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John R Frost
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jack D Scott
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
12
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Abstract
DNA-encoded libraries (DELs) are widely used in the discovery of drug candidates, and understanding their design principles is critical for accessing better libraries. Most DELs are combinatorial in nature and are synthesized by assembling sets of building blocks in specific topologies. In this study, different aspects of library topology were explored and their effect on DEL properties and chemical diversity was analyzed. We introduce a descriptor for DEL topological assignment (DELTA) and use it to examine the landscape of possible DEL topologies and their coverage in the literature. A generative topographic mapping analysis revealed that the impact of library topology on chemical space coverage is secondary to building block selection. Furthermore, it became apparent that the descriptor used to analyze chemical space dictates how structures cluster, with the effects of topology being apparent when using three-dimensional descriptors but not with common two-dimensional descriptors. This outcome points to potential challenges of attempts to predict DEL productivity based on chemical space analyses alone. While topology is rather inconsequential for defining the chemical space of encoded compounds, it greatly affects possible interactions with target proteins as illustrated in docking studies using NAD/NADP binding proteins as model receptors.
Collapse
Affiliation(s)
- William K Weigel
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Zhang P, Koch G, Zhang Y, Yang K, Lokey RS. DNA-Compatible Conditions for the Formation of N-Methyl Peptide Bonds. ACS OMEGA 2023; 8:23477-23483. [PMID: 37426286 PMCID: PMC10323948 DOI: 10.1021/acsomega.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023]
Abstract
DNA-encoded libraries (DELs) are a powerful platform in drug discovery. Peptides have unique properties that make them attractive pharmaceutical candidates. N-methylation of the peptide backbone can confer beneficial properties such as increased proteolytic stability and membrane permeability. Herein, we evaluate different DEL reaction systems and report a DNA-compatible protocol for forming N-methylated amide bonds. The DNA-compatible, bis(trichloromethyl)carbonate-mediated amide coupling is efficient for the formation of N-methyl peptide bonds, which promises to increase the opportunity to identify passively cell-permeable macrocyclic peptide hits by DNA-encoded technology.
Collapse
Affiliation(s)
- Panpan Zhang
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - Grant Koch
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - Yankun Zhang
- College
of Letters and Science, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Kevin Yang
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| | - R. Scott Lokey
- Department
of Chemistry and Biochemistry, University
of California Santa Cruz, Santa
Cruz, California 95064, United States
| |
Collapse
|
15
|
Silvestri AP, Zhang Q, Ping Y, Muir EW, Zhao J, Chakka SK, Wang G, Bray WM, Chen W, Fribourgh JL, Tripathi S, He Y, Rubin SM, Satz AL, Pye CR, Kuai L, Su W, Schwochert JA. DNA-Encoded Macrocyclic Peptide Libraries Enable the Discovery of a Neutral MDM2-p53 Inhibitor. ACS Med Chem Lett 2023; 14:820-826. [PMID: 37312849 PMCID: PMC10258823 DOI: 10.1021/acsmedchemlett.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023] Open
Abstract
Synthetic macrocyclic peptides are an emerging molecular class for both targeting intracellular protein-protein interactions (PPIs) and providing an oral modality for drug targets typically addressed by biologics. Display technologies, such as mRNA and phage display, often yield peptides that are too large and too polar to achieve passive permeability or oral bioavailability without substantial off-platform medicinal chemistry. Herein, we use DNA-encoded cyclic peptide libraries to discover a neutral nonapeptide, UNP-6457, that inhibits MDM2-p53 interaction with an IC50 of 8.9 nM. X-ray structural analysis of the MDM2-UNP-6457 complex revealed mutual binding interactions and identified key ligand modification points which may be tuned to enhance its pharmacokinetic profile. These studies showcase how tailored DEL libraries can directly yield macrocyclic peptides benefiting from low MW, TPSA, and HBD/HBA counts that are capable of potently inhibiting therapeutically relevant protein-protein interactions.
Collapse
Affiliation(s)
- Anthony P. Silvestri
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Qi Zhang
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yan Ping
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Erik W. Muir
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Jingsi Zhao
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sai Kumar Chakka
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Gaonan Wang
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Walter M. Bray
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Wenhua Chen
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jennifer L. Fribourgh
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Sarvind Tripathi
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Yunyun He
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Seth M. Rubin
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | | | - Cameron R. Pye
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| | - Letian Kuai
- WuXi
AppTec, 55 Cambridge
Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Wenji Su
- WuXi
AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Joshua A. Schwochert
- Unnatural
Products, Inc., 2161 Delaware Ave. Suite A, Santa Cruz, California 95060, United States
| |
Collapse
|
16
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
17
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
18
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Habeshian S, Merz ML, Sangouard G, Mothukuri GK, Schüttel M, Bognár Z, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Cendron L, Angelini A, Heinis C. Synthesis and direct assay of large macrocycle diversities by combinatorial late-stage modification at picomole scale. Nat Commun 2022; 13:3823. [PMID: 35780129 PMCID: PMC9250534 DOI: 10.1038/s41467-022-31428-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Macrocycles have excellent potential as therapeutics due to their ability to bind challenging targets. However, generating macrocycles against new targets is hindered by a lack of large macrocycle libraries for high-throughput screening. To overcome this, we herein established a combinatorial approach by tethering a myriad of chemical fragments to peripheral groups of structurally diverse macrocyclic scaffolds in a combinatorial fashion, all at a picomole scale in nanoliter volumes using acoustic droplet ejection technology. In a proof-of-concept, we generate a target-tailored library of 19,968 macrocycles by conjugating 104 carboxylic-acid fragments to 192 macrocyclic scaffolds. The high reaction efficiency and small number of side products of the acylation reactions allowed direct assay without purification and thus a large throughput. In screens, we identify nanomolar inhibitors against thrombin (Ki = 44 ± 1 nM) and the MDM2:p53 protein-protein interaction (Kd MDM2 = 43 ± 18 nM). The increased efficiency of macrocycle synthesis and screening and general applicability of this approach unlocks possibilities for generating leads against any protein target. Macrocycles have potential as therapeutics, but their libraries are currently not large enough for high-throughput screening. Here, the authors show a combinatorial approach to generate a library of almost 20’000 macrocycles by conjugating carboxylic-acid fragments to macrocyclic scaffolds, identifying nanomolar inhibitors against thrombin and binders of MDM2.
Collapse
Affiliation(s)
- Sevan Habeshian
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel Leonardo Merz
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Gontran Sangouard
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ganesh Kumar Mothukuri
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zsolt Bognár
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice, 30172, Italy.,European Centre for Living Technologies (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
20
|
Melsen PRA, Yoshisada R, Jongkees SAK. Opportunities for Expanding Encoded Chemical Diversification and Improving Hit Enrichment in mRNA-Displayed Peptide Libraries. Chembiochem 2022; 23:e202100685. [PMID: 35100479 PMCID: PMC9306583 DOI: 10.1002/cbic.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Indexed: 11/07/2022]
Abstract
DNA-encoded small-molecule libraries and mRNA displayed peptide libraries both use numerically large pools of oligonucleotide-tagged molecules to identify potential hits for protein targets. They differ dramatically, however, in the 'drug-likeness' of the molecules that each can be used to discover. We give here an overview of the two techniques, comparing some advantages and disadvantages of each, and suggest areas where particularly mRNA display can benefit from adopting advances developed with DNA-encoded small molecule libraries. We outline cases where chemical modification of the peptide library has already been used in mRNA display, and survey opportunities to expand this using examples from DNA-encoded small molecule libraries. We also propose potential opportunities for encoding such reactions within the mRNA/cDNA tag of an mRNA-displayed peptide library to allow a more diversity-oriented approach to library modification. Finally, we outline alternate approaches for enriching target-binding hits from a pooled and tagged library, and close by detailing several examples of how an adjusted mRNA-display based approach could be used to discover new 'drug-like' modified small peptides.
Collapse
Affiliation(s)
- Paddy R. A. Melsen
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemistry and Pharmaceutical SciencesVU AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
21
|
Gui Y, Wong CS, Zhao G, Xie C, Hou R, Li Y, Li G, Li X. Converting Double-Stranded DNA-Encoded Libraries (DELs) to Single-Stranded Libraries for More Versatile Selections. ACS OMEGA 2022; 7:11491-11500. [PMID: 35415338 PMCID: PMC8992267 DOI: 10.1021/acsomega.2c01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 06/06/2023]
Abstract
DNA-encoded library (DEL) is an efficient high-throughput screening technology platform in drug discovery and is also gaining momentum in academic research. Today, the majority of DELs are assembled and encoded with double-stranded DNA tags (dsDELs) and has been selected against numerous biological targets; however, dsDELs are not amendable to some of the recently developed selection methods, such as the cross-linking-based selection against immobilized targets and live-cell-based selections, which require DELs encoded with single-stranded DNAs (ssDELs). Herein, we present a simple method to convert dsDELs to ssDELs using exonuclease digestion without library redesign and resynthesis. We show that dsDELs could be efficiently converted to ssDELs and used for affinity-based selections either with purified proteins or on live cells.
Collapse
Affiliation(s)
- Yuhan Gui
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Clara Shania Wong
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Chao Xie
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
| | - Rui Hou
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences; Key Laboratory of Biorheological Science
and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 401331, China
| | - Gang Li
- Institute
of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyu Li
- Department
of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road,
Hong Kong SAR, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK,
Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology
Parks, New Territories, Hong Kong SAR , China
| |
Collapse
|
22
|
Liu W, Bai X, Song L, Wang X, Lu X. Constructing Head-to-Tail Cyclic Peptide DNA-Encoded Libraries Using Two-Directional Synthesis Strategy. Bioconjug Chem 2022; 33:560-565. [PMID: 35274526 DOI: 10.1021/acs.bioconjchem.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrocyclic peptides are an important class of therapeutic agents for the biological targets that are difficult to modulate by small-molecule compounds. Meanwhile, DNA-encoded library technology (DELT) provides a powerful platform for hits discovery. The unity of both fields has proven highly productive in finding cyclic peptide hits against diverse pharmaceutical proteins. Many researchers have extended the chemical toolbox for constructing head-to-tail macrocyclic DNA-encoded libraries with various ring sizes. However, the linear peptides of different lengths necessitate tuning the distance between closing sites and DNA-linked sites to perform the macrocyclization process, presumably due to the constrained conformation of linear precursors. To tackle this issue and streamline the synthetic workflow, we report a two-directional synthesis strategy. This method starts from a trifunctional reagent and prepares DNA-linked macrocyclic peptides of ring size between 15 (5-mer) and 24 (8-mer) via amide bond formation reaction, a common method to create macrocyclic peptides.
Collapse
Affiliation(s)
- Wang Liu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaopeng Bai
- UCB, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Liping Song
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, P. R. China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Plais L, Lessing A, Keller M, Martinelli A, Oehler S, Bassi G, Neri D, Scheuermann J. Universal encoding of next generation DNA-encoded chemical libraries. Chem Sci 2022; 13:967-974. [PMID: 35211261 PMCID: PMC8790773 DOI: 10.1039/d1sc05721a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
DNA-encoded chemical libraries (DELs) are useful tools for the discovery of small molecule ligands to protein targets of pharmaceutical interest. Compared with single-pharmacophore DELs, dual-pharmacophore DELs simultaneously display two chemical moieties on both DNA strands, and allow for the construction of highly diverse and pure libraries, with a potential for targeting larger protein surfaces. Although methods for the encoding of simple, fragment-like dual-display libraries have been established, more complex libraries require a different encoding strategy. Here, we present a robust and convenient "large encoding design" (LED), which facilitates the PCR-amplification of multiple codes distributed among two partially complementary DNA strands. We experimentally implemented multiple coding regions and we compared the new DNA encoding scheme with previously reported dual-display DEL modalities in terms of amplifiability and performance in test selections against two target proteins. With the LED methodology in place, we foresee the construction and screening of DELs of unprecedented sizes and designs.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Alice Lessing
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Michelle Keller
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Gabriele Bassi
- Philochem AG Libernstrasse 3 CH-8112 Otelfingen Switzerland
| | - Dario Neri
- Philochem AG Libernstrasse 3 CH-8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|