1
|
Li Y, Cheng Y, Huang Y, Zhao P, Fei J, Xie Y. Bimetallic PdCu anchored to 3D flower-like carbon material for portable and efficient detection of glyphosate. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135786. [PMID: 39278031 DOI: 10.1016/j.jhazmat.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate (Gly), as a widely used broad-spectrum herbicide, may lead to soil and water pollution due to its persistence in the environment. Herein, the co-reduction method was employed to anchor bimetallic PdCu onto the Ni and nitrogen-doped 3D Flower-like Carbon Materials (Ni@NC), creating a composite material (PdCu/Ni@NC) with high specific surface area and good catalytic performance. This composite was used to modify screen-printed electrodes (SPE) to develop a portable and efficient Gly detection platform. In the presence of Cl⁻, the copper active sites convert to CuCl, achieving signal amplification. Upon the addition of Gly, a competitive reaction between Cu and Gly converts CuCl into a Cu-Gly complex, resulting in a sharp decrease in the electrochemical signal. This signal drop is used to detect Gly. The bimetallic PdCu nanoparticles (NPs) endowed the sensing platform with better stability and electrochemical performance due to their synergistic effect, and their stability was simply verified by Density functional theory (DFT). The sensor demonstrates a linear detection range spanning from 1 × 10⁻¹ ³ to 1 × 10⁻⁵ M, with a limit of detection (LOD) of 3.72 × 10⁻¹ ⁴ M. The sensor demonstrated a recovery rate of 95.9 % to 104.5 % in actual samples such as water and soil, indicating its potential for practical application.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
2
|
Wang L, Li Q, Yang D, Yang Y, Zhu Y, Yin Q. Copper-Cobalt Nanozyme Mimicking Laccase for Sensitive Colorimetric Determination of Cannabidiol in Food and Cosmetics. LUMINESCENCE 2024; 39:e70054. [PMID: 39689976 DOI: 10.1002/bio.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
In colorimetric analysis, nanozymes are invaluable tools due to their simple production, long-lasting stability, and adaptable enzymatic activity, which enable them to induce changes in substrate color. In this study, a simple nanozyme-based colorimetric sensor was developed to detect cannabidiol (CBD) by using the laccase activity of the self-made MOF with copper and cobalt loading (Cu/Co@MOF) nanozyme, which was synthesized using a one-pot microwave method. The Cu/Co@MOF has the ability to catalyze the coupling reaction between 4-AP and various phenolic substrates, thereby converting colorless phenolic substrates into red substances. Notably, 16 ng/mL was the limit of detection. Based on Y = 0.137X + 0.003 equation, absorbance and CAN concentrations (0.067 to 10 μg/mL with a correlation value [R2] of 0.993) had a significant correlation. The developed colorimetric method was subsequently employed to determine CBD in facial masks and essential oil samples, resulting in relative standard deviations (RSDs) ranging from 1.4% to 4.3%. Therefore, this sensitive, cost-effective, and rapid method ensures an effective determination of CBD in food and cosmetics.
Collapse
Affiliation(s)
- Le Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yanqin Zhu
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, China
| | - Qinhong Yin
- Key Laboratory of Intelligent Drug Control, Ministry of Education, Yunnan Key Laboratory of Intelligent Drug Control, Faculty of Narcotics Control, Yunnan Police College, Kunming, China
| |
Collapse
|
3
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024; 60:12964-12976. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
4
|
Chen Y, Li B, Li K, Lin Y. Superoxide dismutase nanozymes: current status and future perspectives on brain disease treatment and diagnosis. Chem Commun (Camb) 2024; 60:4140-4147. [PMID: 38566603 DOI: 10.1039/d3cc06288k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Superoxide dismutase (SOD) is an important metalloenzyme that catalyzes the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). However, the clinical application of SOD is severely limited due to its structural instability and high cost. Compared with natural enzymes, nanomaterials with enzyme-like activity, nanoenzymes, are more stable, economical and easy to modify and their activity can be adjusted. Certain nanozymes that exhibit SOD-like activity have been created and shown to help prevent illnesses brought about by oxidative stress. These SOD-like nanozymes offer an important solution to the problems associated with the clinical application of SOD. In this review, we briefly introduce neurodegenerative diseases, present the research progress of SOD-like nanoenzymes in the diagnosis and treatment of brain diseases, review their mechanism of action in the treatment and diagnosis of brain diseases, and discuss the shortcomings of the current research with a view to providing a reference for future research. We expect more highly active SOD-like nanoenzymes to be developed with a wide range of applications in the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Bo Li
- Department of Chemistry, Henan Open University, Henan, 450046, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
5
|
Lu X, Yan L, Zhou X, Qu T. Highly selective colorimetric determination of glutathione based on sandwich-structured nanoenzymes composed of gold nanoparticle-coated molecular imprinted metal-organic frameworks. Mikrochim Acta 2024; 191:140. [PMID: 38363397 DOI: 10.1007/s00604-023-06167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
A sandwich-structured composite nanoenzyme (NH2-MIL-101(Fe)@Au@MIP) was prepared using molecularly imprinted polymers, metal-organic frameworks, and gold nanoparticles and a highly selective glutathione (GSH) colorimetric sensor was constructed. The inner part of the composite nanoenzymes is a metal-organic framework loaded with gold nanoparticles (AuNPs), NH2-MIL-101(Fe)@Au, which has superior peroxidase-like activity compared with NH2-MIL-101(Fe). This is due to the surface plasmon resonance effect of AuNPs. GSH can form strong Au-S bonds with AuNPs, which can significantly reduce the enzymatic activity of NH2-MIL-101(Fe)@Au, thereby changing the absorbance at 450 nm of the sensing system. The degree of change in absorbance is correlated with the concentration of GSH. In the outer part, the molecularly imprinted polymer with oxidized glutathione (GSSG) as a dummy template provided specific pores, which significantly improved the selectivity of the sensing system. The sensor showed good GSH sensing performance in the range 1 ~ 50 μM with a lower limit of detection (LOD) of 0.231 μM and good sensing performance in fetal bovine serum, indicating its high potential for clinical diagnostic applications.
Collapse
Affiliation(s)
- Xiaolin Lu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Liqiu Yan
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoxue Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingli Qu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Guo K, Lin X, Duan N, Lu C, Wang Z, Wu S. Detection of acrylamide in food based on MIL-glucose oxidase cascade colorimetric aptasensor. Anal Chim Acta 2024; 1288:342150. [PMID: 38220284 DOI: 10.1016/j.aca.2023.342150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Maillard reaction involves the polymerization, condensation, and other reactions between compounds containing free amino groups and reducing sugars or carbonyl compounds during heat processing. This process endows unique flavors and colors to food, while it can also produce numerous hazards. Acrylamide (AAm) is one of Maillard's hazards with neurotoxicity and carcinogenicity, these effects can trigger mutations and alternations in gene expression in human cells and accelerate organ aging. An accurate and reliable acrylamide detection method with high sensitivity and specificity for future regulatory activities is urgently needed. RESULTS Herein, we constructed a colorimetric aptasensor with the hybridization of MIL-glucose oxidase (MGzyme)-cDNA and magnetic nanoparticle-aptamer (MNP-Apt) to specifically detect AAm. The incorporation of MB-Apt and AAm released MGzyme-cDNA in the supernatant, took the supernatant out, with the addition of glucose and TMB, MGzyme would oxidize glucose, the resulting •OH facilitated the oxidation of colorless TMB to blue ox-TMB. The absorbance value at 652 nm, which indicates the characteristic absorption peak of ox-TMB, exhibited a proportion to the concentration of AAm. MGzyme avoided the addition of harmful intermediate H2O2 and created an acid microenvironment for the catalytic reaction. MNP-Apt possessed the advantages of high specificity and simplified separation. Under optimal conditions, this method displayed a linear range of 0.01-100 μM with the limit of detection of 1.53 nM. With the spiked analysis data cross-verified by ELISA kit, this aptasensor was proven to specifically detect AAm at low concentrations. SIGNIFICANCE This colorimetric aptasensor was the integration of aptamer and the enzyme-cascade system, which could broaden the applicable range of enzyme-cascade system, break the limits of specific detection of substrates, eliminate the need for harmful intermediates, improve the reaction efficiency, implement the specific detection, whilst enabling the accurate detection of AAm. Given these remarkable performances, this method has shown significant potential in the field of food safety inspection.
Collapse
Affiliation(s)
- Kaixi Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Chunxia Lu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Sciences, Shihezi, 83200, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Chen C, Li J, Luo F, Lin Z, Wang J, Zhang T, Huang A, Qiu B. Eu MOF-enhanced FeNCD nanozymes for fluorescence and highly sensitive colorimetric detection of tetracycline. Analyst 2024; 149:815-823. [PMID: 38117163 DOI: 10.1039/d3an02046k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The constrained enzymatic activity and aggregation challenges encountered by small-sized nanozymes pose obstacles to their practical utility, necessitating a strategy to mitigate aggregation and boost enzymatic catalytic efficiency. In this work, a negatively charged Eu MOF was utilized as the encapsulation matrix, encapsulating the small-sized nanozymes FeNCDs into the Eu MOF to synthesize an FeNCDs@Eu MOF. The dispersibility of the encapsulated FeNCDs was increased, and owing to the negative charge of the FeNCDs@Eu MOF, electrostatic pre-concentration of the positively charged target molecule tetracycline (TC) was facilitated, thereby amplifying the enzymatic catalytic efficiency of the FeNCDs. The response of the FeNCDs to TC increased by nearly 6 times upon encapsulation. The TC detection limit (LOD) of the FeNCDs@Eu MOF-based sensor is as low as 11.63 nM. The incorporation of fluorescence detection expanded the linear range of the sensor, rendering it more suitable for practical sample detection.
Collapse
Affiliation(s)
- Cheng Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Jing Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Tao Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, P. R. China.
| | - Aiwen Huang
- Clinical Pharmacy Department, 900th Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350001, P. R. China.
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
8
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Zhang D, Zhang H, Sun H, Yang Y, Zhong W, Chen Q, Ren Q, Jin G, Zhang Y. Differential identification of GSH for acute coronary syndrome using a colorimetric sensor based on nanoflower-like artificial nanozymes. Talanta 2024; 266:124967. [PMID: 37536104 DOI: 10.1016/j.talanta.2023.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
The ability to detect glutathione (GSH) concentrations in human blood offered a simple and non-invasive method to monitor changes associated with cardiovascular diseases, cancers and diabetes. We showed the potential of employing catalytically active protein-directed nanoflower-like artificial nanozymes (apo-TF-MnOx NFs) by bio-mineralization method to produce simple and visible colorimetric sensor for GSH. The experiments proved that apo-TF-MnOx NFs exhibited peroxidase, catalase- and superoxide dismutase-like activities, but the most notable feature was the excellent peroxidase-like activity, which could efficiently catalyze the oxidation reaction of 3,3',5,5'- tetramethylbenzidine (TMB) in the existence of hydrogen peroxide (H2O2) to generate a blue product. Some outcomes also indicated that the apo-TF-MnOx NFs had stronger peroxidase-like activity, which was proved by the Michaelis-Menten constant (Km) and maximum initial velocity (Vmax). Hence, we used the peroxidase-like activity to develop a GSH colorimetric biosensor. Fortunately, the colorimetric platform exhibited a sensitive response to H2O2 and GSH in the range of 5 μМ to 300 μМ and 0.5 μМ to 35 μМ with a limit of detection of 3.29 μM and 0.15 μM (S/N = 3) under optimal conditions. The feasibility of the simple method was confirmed by qualitative detection of H2O2 and GSH in blood samples from acute coronary syndrome patients. A key outcome of our study was the ability to realized differential identification of GSH for acute coronary syndrome and healthy human without invasive treatment which was an advantage over other methods. This work not only proposed a new type of nanozymes, but also showed the multiple advantages of the apo-TF-MnOx NFs for the construction of biosensors. Thus, we believe that apo-TF-MnOx NFs with strong peroxidase-like activity can be employed as nanozymes and be widely applied in the fields of medicine and biological sensors.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Public Health, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Hongjin Zhang
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - He Sun
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Yuanzhen Yang
- School of Stomatology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Qing Chen
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Qunxiang Ren
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| | - Yang Zhang
- School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| |
Collapse
|
10
|
Shi P, Sun X, Yuan H, Chen K, Bi S, Zhang S. Nanoscale Metal-Organic Frameworks Combined with Metal Nanoparticles and Metal Oxide/Peroxide to Relieve Tumor Hypoxia for Enhanced Photodynamic Therapy. ACS Biomater Sci Eng 2023; 9:5441-5456. [PMID: 37729521 DOI: 10.1021/acsbiomaterials.3c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved noninvasive tumor therapy that can selectively kill malignant tumor cells, with promising use in the treatment of various cancers. PDT is typically composed of three important parts: the specific wavelength of light, photosensitizer (PS), and oxygen. With the progressing investigation on PDT treatment, the most recent attention has focused on improving photodynamic efficiency. Tumor hypoxia has always been a critical factor hindering the efficacy of PDT. Nanoscale metal-organic frameworks (nMOF), the fourth generation of PS, present great potential in photodynamic therapy. In particular, nMOF combined with metal nanoparticles and metal oxide/peroxide has demonstrated unique properties for enhanced PDT. The metal and metal oxide nanoparticles can catalyze H2O2 to generate oxygen or automatically produces oxygen, alleviating the hypoxia and improving the photodynamic efficiency. Metal peroxide nanoparticles can spontaneously produce oxygen in water or under acidic conditions. Therefore, this Review summarizes the recent development of nMOF combined with metal nanoparticles (platinum nanoparticles and gold nanoparticles) and metal oxide/peroxide (manganese dioxide, ferric oxide, cerium oxide, calcium peroxide, and magnesium peroxide) for enhanced photodynamic therapy by alleviating tumor hypoxia. Finally, future perspectives of nMOF combined nanomaterials in PDT are put forward.
Collapse
Affiliation(s)
- Pengfei Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Xinran Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Haoming Yuan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, People's Republic of China
| |
Collapse
|
11
|
Liu J, Mo YY, Zhang H, Tang J, Bao H, Wei L, Yang H. Target-Responsive Metal-Organic Framework Nanosystem with Synergetic Sensitive Detection and Controllable Degradation against the Pesticide Triazophos in Contaminated Samples for Environment Assessment and Food Safety. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23783-23791. [PMID: 37145985 DOI: 10.1021/acsami.3c03248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developing sensitive practical sensors for monitoring pesticide residues in edible foods and environmental samples is vital for food safety and environmental protection. Enzyme-inhibited biosensors offer effective alternative sensing strategies by using the inherent characteristics of pesticides. To further improve the degradation function of pesticide sensors, here, a target-triggered porphyrin metal-organic framework (MOF)-based nanosystem was designed with the synergetic bifunction of sensitive detection and controllable degradation of the triazophos pesticide. As a result of triazophos-inhibited glutathione consumption, the MOF collapsed and released the ligand porphyrin, leading to the recovery of fluorescence and photosensitization of the free porphyrin. The fluorescence recovery resulted in a sensitive detection limit of 0.6 ng mL-1 for triazophos, which was also applied for the determination of contaminated samples and bioaccumulation in rice. Furthermore, the target-activated photocatalytic ability of porphyrin endowed the system with the ability to effectively generate reactive oxygen species for degrading triazophos with a removal rate of ∼85%, achieving eco-friendly synergetic detection and photodegradation in a controllable way. Therefore, the intelligent multifunctional MOF system demonstrated the potential of programmable systems for jointly controllable tracking and elimination of pesticide residues in the environment and opened a new avenue for designing a precise mechanism for stimulus-triggered degradation of pesticide residues accompanied by sensitive detection for environmental friendliness and food safety.
Collapse
Affiliation(s)
- Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Yang Mo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heng Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Tang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Bao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuyu Wei
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi SG, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21:358-380. [PMID: 36185736 PMCID: PMC9483748 DOI: 10.1016/j.bioactmat.2022.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kyungwoo Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Zehra Zunbul
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Injun Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sung-Gil Chi
- Department of Life Science, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
13
|
Tang JLY, Moonshi SS, Ta HT. Nanoceria: an innovative strategy for cancer treatment. Cell Mol Life Sci 2023; 80:46. [PMID: 36656411 PMCID: PMC9851121 DOI: 10.1007/s00018-023-04694-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Nanoceria or cerium oxide nanoparticles characterised by the co-existing of Ce3+ and Ce4+ that allows self-regenerative, redox-responsive dual-catalytic activities, have attracted interest as an innovative approach to treating cancer. Depending on surface characteristics and immediate environment, nanoceria exerts either anti- or pro-oxidative effects which regulate reactive oxygen species (ROS) levels in biological systems. Nanoceria mimics ROS-related enzymes that protect normal cells at physiological pH from oxidative stress and induce ROS production in the slightly acidic tumour microenvironment to trigger cancer cell death. Nanoceria as nanozymes also generates molecular oxygen that relieves tumour hypoxia, leading to tumour cell sensitisation to improve therapeutic outcomes of photodynamic (PDT), photothermal (PTT) and radiation (RT), targeted and chemotherapies. Nanoceria has been engineered as a nanocarrier to improve drug delivery or in combination with other drugs to produce synergistic anti-cancer effects. Despite reported preclinical successes, there are still knowledge gaps arising from the inadequate number of studies reporting findings based on physiologically relevant disease models that accurately represent the complexities of cancer. This review discusses the dual-catalytic activities of nanoceria responding to pH and oxygen tension gradient in tumour microenvironment, highlights the recent nanoceria-based platforms reported to be feasible direct and indirect anti-cancer agents with protective effects on healthy tissues, and finally addresses the challenges in clinical translation of nanoceria based therapeutics.
Collapse
Affiliation(s)
- Joyce L. Y. Tang
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia
| | - Shehzahdi S. Moonshi
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia
| | - Hang T. Ta
- grid.1022.10000 0004 0437 5432Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 Australia ,grid.1022.10000 0004 0437 5432Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD 4111 Australia ,grid.1003.20000 0000 9320 7537Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
14
|
Wang Y, Zulpya M, Zhang X, Xu S, Sun J, Dong B. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2256-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wang M, He H, Liu D, Ma M, Zhang Y. Preparation, Characterization and Multiple Biological Properties of Peptide-Modified Cerium Oxide Nanoparticles. Biomolecules 2022; 12:biom12091277. [PMID: 36139116 PMCID: PMC9496055 DOI: 10.3390/biom12091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Although cerium oxide nanoparticles are attracting much attention in the biomedical field due to their unique physicochemical and biological functions, the cerium oxide nanoparticles greatly suffer from several unmet physicochemical challenges, including loss of enzymatic activity during the storage, non-specific cellular uptake, off-target toxicities, etc. Herein, in order to improve the targeting property of cerium oxide nanoparticles, we first modified cerium oxide nanoparticles (CeO2) with polyacrylic acid (PAA) and then conjugated with an endothelium-targeting peptide glycine-arginine-aspartic acid (cRGD) to construct CeO2@PAA@RGD. The physiochemical characterization results showed that the surface modifications did not impact the intrinsic enzymatic properties of CeO2, including catalase-like (CAT) and superoxide dismutase-like (SOD) activities. Moreover, the cellular assay data showed that CeO2@PAA@RGD exhibited a good biocompatibility and a higher cellular uptake due to the presence of RGD targeting peptide on its surface. CeO2@PAA@RGD effectively scavenged reactive oxygen species (ROS) to protect cells from oxidative-stress-induced damage. Additionally, it was found that the CeO2@PAA@RGD converted the phenotype of macrophages from proinflammatory (M1) to anti-inflammatory (M2) phenotype, inhibiting the occurrence of inflammation. Furthermore, the CeO2@PAA@RGD also promoted endothelial cell-mediated migration and angiogenesis. Collectively, our results successfully demonstrate the promising application of CeO2@PAA@RGD in the future biomedical field.
Collapse
Affiliation(s)
| | | | | | - Ming Ma
- Correspondence: (M.M.); (Y.Z.)
| | | |
Collapse
|
16
|
Liu B, Liu C, Zhang X, Yao S, Wang Z, Liu Z, Song K, Li J. X-ray triggered pea-shaped LuAG:Mn/Ca nano-scintillators and their applications for photodynamic therapy. J Mater Chem B 2022; 10:6380-6391. [PMID: 35968697 DOI: 10.1039/d2tb01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is a new minimally invasive technology for disease diagnosis and treatment. However, the biological tissue attenuation of visible light renders the depth of its penetration in tissues quite modest, which significantly restricts its therapeutic applicability. Therefore, it is an essential but yet a difficult task to enhance the X-ray sensitization impact while concurrently limiting the tissue scattering by the rational design of novel biological vectors. Herein, a novel Lu3Al5O12:Mn/Ca-Ce6@SiO2 nanoparticle system (LAMCCS) based on a pea-shaped LuAG:Mn/Ca nano-scintillator (LAMC) activating photosensitizer agent (Ce6) was designed. Due to the high radiosensitization of LAMC nano-scintillators and efficient energy conversion efficiency between LAMC and Ce6, more singlet oxygen (1O2) could be generated to efficiently damage DNA fragments and reveal a good effect of inhibiting the long-term proliferation of tumor cells in vitro. Significantly, synergistic therapy with PDT/radiotherapy (RT) and from LAMCCS nanocomposites may still maintain a high tumor growth inhibition rate of 72% than single RT of 10% in vivo. Owing to their excellent ability for X-ray sensitization and energy conversion, LAMCCS nanocomposites may have significant tumor growth suppression rates under lower X-ray dose irradiation due to their outstanding X-ray sensitization and energy conversion capabilities, which may open up a new avenue for the advancement of cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Chang Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiaolei Zhang
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Shu Yao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Ziying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Division of Gynecologic Oncology, Qilu Hospital of Shandong University, Jinan, China.
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics(Kunshan)Co, Ltd, Kunshan, China
| |
Collapse
|
17
|
Mao Z, Chen J, Wang Y, Xia J, Zhang Y, Zhang W, Zhu H, Hu X, Chen H. Copper metal organic framework as natural oxidase mimic for effective killing of Gram-negative and Gram-positive bacteria. NANOSCALE 2022; 14:9474-9484. [PMID: 35748350 DOI: 10.1039/d2nr01673g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanozymes have been widely studied as substitutes for natural enzymes. However, the delicacy of their structures and their unclear catalytic sites make it difficult to maintain their structural robustness and catalytic durability. By mimicking active catalytic sites of natural enzymes and combining them with distinct channels of metal organic frameworks (MOFs), an active copper mimetic oxidase enzyme (Cu-MOF) was designed and synthesized with good structure and clear catalytic sites for improvement in catalytic activity. The Cu-MOFs showed excellent oxidase-like activity with a low Km of 1.09 mM and exogenous ROS generation capacity. The Cu-MOFs exhibited antibacterial efficacy at a low concentration of 12.5 μg mL-1 by an oxidative stress response. These Cu-MOFs with their simple design and effective oxidase mimicking show attractive application prospects in the field of antibacterial and enzyme catalysis.
Collapse
Affiliation(s)
- Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yindian Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yajing Zhang
- School of Qianweichang, Shanghai University, Shanghai, 200444, China
| | - Weiwen Zhang
- School of Qianweichang, Shanghai University, Shanghai, 200444, China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
18
|
|
19
|
Liu J, Córdova Wong BJ, Liu T, Yang H, Yao Ye L, Lei J. Glutathione‐Responsive Heterogeneous Metal–Organic Framework Hybrids for Photodynamic‐Gene Synergetic Cell Apoptosis. Chemistry 2022; 28:e202200305. [DOI: 10.1002/chem.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jintong Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Bernardino J. Córdova Wong
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Yang
- Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lin Yao Ye
- Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
20
|
Babu N, Rahaman SA, John AM, Balakrishnan SP. Photosensitizer Anchored Nanoparticles: A Potential Material for Photodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nisha Babu
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Shaik Abdul Rahaman
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Athira Maria John
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | | |
Collapse
|
21
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Li Y, Zhang X, Zheng Z. CeO 2 Functionalized Cobalt Layered Double Hydroxide for Efficient Catalytic Oxygen-Evolving Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107594. [PMID: 35344284 DOI: 10.1002/smll.202107594] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Water splitting to produce hydrogen is an effective means to alleviate the energy crisis. The anodic oxygen-evolving reaction (OER) limits the overall efficiency due to its high energy barrier. To address this, layered double hydroxides (LDHs) with high catalytic activities have been widely studied, especially those modified with CeO2 , either bound to the surface or doped into interior. However, experimental evidence for the atomic-level understanding of the mechanism for the enhanced catalytic performance is conspicuously missing. Herein, anchoring CeO2 nanoparticles onto Co LDH, based on the thoughts of loading capacity and size effect to regulate the properties of the interface and to optimize the performance, is attempted. The electronic interactions are studied by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), revealing electron transfer from Co2+ to Ce4+ that leads to an increase in Co3+ . The strong Lewis acidity of Co3+ helps the binding of OH- , which is conducive to the formation and transformation of oxygen-containing intermediates. Providing evidence is the formation of one of the key intermediates Co-OOH at a sizably reduced potential as monitored by in situ Raman spectroscopy. With this work, the atomic level correlation of site-specific electronic interactions with the enhanced catalytic performance is clearly established.
Collapse
Affiliation(s)
- Yanyan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xinyu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhiping Zheng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, and Key Laboratory of Energy Conversion and Storage Technologies (Ministry of Education), Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
23
|
Photochromic property of cerium oxide nanoparticles prepared by dialysis of solution of cerium nitrate. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Amalraj A, Narayanan M, Perumal P. Highly efficient peroxidase-like activity of a metal–oxide-incorporated CeO 2–MIL(Fe) metal–organic framework and its application in the colorimetric detection of melamine and mercury ions via induced hydrogen and covalent bonds. Analyst 2022; 147:3234-3247. [PMID: 35766241 DOI: 10.1039/d2an00864e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The illegal addition of melamine to dairy products and the contamination of water with Hg2+ are serious threats to human health. This necessitates the search for new and efficient probe for detection of melamine in foods and Hg2+ in water samples.
Collapse
Affiliation(s)
- Arunjegan Amalraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Mariyammal Narayanan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| |
Collapse
|
25
|
Amalraj A, Perumal P. Dual fluorometric biosensor based on a nanoceria encapsulated metal organic framework and a signal amplification strategy of a hybridization chain reaction for the detection of melamine and Pb 2+ ions in food samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj01089e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increased need for melamine and Pb2+ ion detection systems that are versatile, ultra-sensitive, and easy to use is highly significant.
Collapse
Affiliation(s)
- Arunjegan Amalraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
26
|
Ge X, Wong R, Anisa A, Ma S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2021; 281:121322. [PMID: 34959029 DOI: 10.1016/j.biomaterials.2021.121322] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Albeit metal-organic framework (MOF) composites have been extensively explored, reducing the size and dimensions of various contents within the composition, to the nanoscale regime, has recently presented unique opportunities for enhanced properties with the formation of MOF-based nanocomposites. Many distinctive strategies have been used to fabricate these nanocomposites such as through the introduction of nanoparticles (NPs) into a MOF precursor solution or vice versa to achieve a core-shell or heterostructure configuration. As such, MOF-based nanocomposites offer seemingly limitless possibilities and promising solutions for the vast range of applications across biomedical disciplines especially for improving in vivo implementation. In this review, we focus on the recent development of MOF-based nanocomposites, outline their classification according to the type of integrations (NPs, coating materials, and different MOF-derived nanocomposites), and direct special attention towards the various approaches and strategies employed to construct these nanocomposites for their prospective utilization in biomedical applications including biomimetic enzymes and photo, chemo, sonodynamic, starvation and hyperthermia therapies. Lastly, our work aims to highlight the exciting potential as well as the challenges of MOF-based nanocomposites to help guide future research as well as to contribute to the progress of MOF-based nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Raymond Wong
- Department of Cell and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL, 33620, United States
| | - Anee Anisa
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, United States.
| |
Collapse
|
27
|
Li S, Pang C, Ma X, Zhang Y, Xu Z, Li J, Zhang M, Wang M. Microfluidic paper-based chip for parathion-methyl detection based on a double catalytic amplification strategy. Mikrochim Acta 2021; 188:438. [PMID: 34839414 DOI: 10.1007/s00604-021-05084-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023]
Abstract
The rapid detection of insecticides such as parathion-methyl (PM) requires methods with high sensitivities and selectivities. Herein, a dual catalytic amplification strategy was developed using Fe3O4 nanozyme-supported carbon quantum dots and silver terephthalate metal-organic frameworks (Fe3O4/C-dots@Ag-MOFs) as current amplification elements. Based on this strategy, a novel electrochemical microfluidic paper-based chip was designed to detect PM. Fe3O4/C-dots@Ag-MOFs were synthesised by a hydrothermal method, and a molecularly imprinted polymer (MIP) was then synthesised on the surface of Fe3O4/C-dots@Ag-MOFs using PM as a template molecule. Finally, the reaction zone of a chip was modified with MIP/Fe3O4/C-dots@Ag-MOFs. PM from a sample introduced into the reaction zone was captured by the MIP, which generated a reduction current response at - 0.53 V in a three-electrode system embedded in the chip. Simultaneous catalysis by Fe3O4/C-dots and Ag-MOFs significantly enhanced the signal. The chip had a detection limit of 1.16 × 10-11 mol L-1 and was successfully applied to the determination of PM in agricultural products and environmental samples with recovery rates ranging from 82.7 to 109%, with a relative standard deviation (RSD) of less than 5.0%. This approach of combining a dual catalytic amplification strategy with an MIP significantly increased the sensitivity as well as selectivity of chips and can potentially be used to detect a wide variety of target analytes using microfluidic paper-based chips.
Collapse
Affiliation(s)
- Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Yanling Zhang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China
| | - Zhi Xu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Meng Zhang
- School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
| | - Mingyue Wang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou, 571101, China.
| |
Collapse
|
28
|
Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) is an important catecholamine neurotransmitter that plays a highly relevant role in regulating the central nervous system, and abnormal DA content can cause many immune-related diseases. Hence, it is of significance to sensitively and specifically identify DA for clinical medicine. In this work, Pt/NH2-MIL-101 hybrid nanozymes with bimetallic catalytic centers were fabricated by forming coordinate bonds between Pt nanoparticles (Pt NPs) and –NH2 on metal–organic frameworks (MOF). The catalytic activity of Pt/NH2-MIL-101 was increased by 1.5 times via enlarging the exposure of more active sites and improving the activity of the active sites through the strategy of forming bimetallic catalytic centers. In the presence of DA, competing with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) for the generated hydroxyl radicals (•OH), the blue oxidation state TMB (Ox-TMB) is reduced to colorless TMB, showing dramatic color changes. The Pt/NH2-MIL-101-based colorimetric assay enables the sensitive and robust detection of DA molecules with a detection limit of only 0.42 μM and has an observable potential in clinical applications.
Collapse
|