1
|
Saha S, Khamrui S, Biradha K. Light-Induced Antiferromagnetic to Ferromagnetic Transition in Halogen Substituted 1,4-Bis(imidazolyl)benzene Systems: An Effect of Spin-Orbit Coupling and π-Stacking in Enhanced Photomagnetism. J Am Chem Soc 2024; 146:26556-26566. [PMID: 39231259 DOI: 10.1021/jacs.4c10757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Employing the spin-orbit coupling effect by introducing halogen substituents is an excellent strategy to tune the magnetic behavior of organic or metal-organic materials. Light is an alternative tool to modulate the magnetic behavior of a material through a photoinduced electron transfer process, without changing its chemical identity. In this work, three halogen containing 1,4-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene (F-BDPI, Cl-BDPI and Br-BDPI) systems have been chosen to exploit the role of halogen substituents on solid-state photoinduced phenomena. Through a comprehensive analysis involving various characterization techniques, including UV/vis diffuse reflectance, solid-state photoluminescence, and EPR measurements, it was found that the as-synthesized forms Cl-BDPI-IA and Br-BDPI-IA (IA denotes the hexahydrate form of Cl/Br-BDPI) exhibited fast photochromic response through the generation of photoinduced free radicals in the solid state. Moreover, the SQUID analysis revealed an antiferromagnetic to ferromagnetic transition in Cl-BDPI-IA through photoirradiation, which led to an increase in the magnetic moment value up to 38% at room temperature. This signifies the first occurrence of such a significant level of magnetization amplitude compared with previously reported metal-organic photomagnets. This investigation underscores the significance of halogen substitution in tailoring the magnetic properties of organic photomagnets, where strong halogen-π and π-π interactions facilitate the spin-orbit coupling effect in the solid state.
Collapse
Affiliation(s)
- Subhajit Saha
- Department of Chemistry Indian Institute of Technology, Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudipta Khamrui
- Department of Physics Indian Institute of Technology, Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kumar Biradha
- Department of Chemistry Indian Institute of Technology, Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Zhang X, Li Z, Zhang Y, Jiao C, Zheng H, Zhu Y, Sun Z. Ultrastable Lanthanide Metal-Organic Frameworks for Smartphone-Assisted Ratiometric Fluorescent Sensing of Toluenediamines and Tunable Luminescence. Inorg Chem 2024; 63:16418-16428. [PMID: 39163490 DOI: 10.1021/acs.inorgchem.4c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Lanthanide metal-organic frameworks (Ln-MOFs) have excellent optical properties and structural diversity, providing a unique platform for the development of fluorescent sensing and optical materials. In the work described herein, a series of isostructural 3D Ln-MOFs [Ln(L)(H2O)]·2H2O (Ln = Eu (1), Gd (2), Tb (3), H3L = 3,3',3″-[1,3,5-benzenetriyltris(carbonylimino)]tris-benzoate) are fabricated under solvothermal conditions. The good thermal, water, and acid-base stabilities of 3 are prerequisites for fluorescent sensing applications. 3 can be used as a ratiometric broad-spectrum fluorescent sensor for toluenediamines (TDAs) in real urine with the advantages of visualization, ultrasensitivity, and selectivity. Interestingly, a smartphone-assisted intelligent sensing platform manifests promising results for the detection of TDAs, providing a chance for further development of portable diagnostic tools. In addition, by tuning the ratios of Eu3+/Tb3+ and Eu3+/Gd3+/Tb3+, nine bimetallic-doped EuxTb1-x (x = 0.10-0.90, 4-12) and one trimetallic-doped Gd0.95Tb0.015Eu0.035 (13) were obtained. 4-12 exhibit a gradient of luminescent colors from yellow-green to pink with different ratios of Eu3+ and Tb3+ ions. Meanwhile, the trimetallic-doped Gd0.95Tb0.015Eu0.035 (13) shows near-white-light emission with a quantum yield of 8.76%. Interestingly, the inks made with 1-13 are invisible under ambient light but show visual color-tunable luminescence under a 254 nm UV lamp, which may facilitate their anti-counterfeiting applications.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zheng Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yana Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hanwen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yanyu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
3
|
Wang YH, Gao ZN, Liang S, Jie Li, Wei WJ, Han SD, Zhang YQ, Hu JX, Wang GM. Synergism of Light-Induced [4 + 4] Cycloaddition and Electron Transfer Toward Switchable Photoluminescence and Single-Molecule Magnet Behavior in a Dy 4 Cubane. RESEARCH (WASHINGTON, D.C.) 2024; 7:0411. [PMID: 38974011 PMCID: PMC11223772 DOI: 10.34133/research.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.
Collapse
Affiliation(s)
- Yu-Han Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Zhen-Ni Gao
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Shuai Liang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Jie Li
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Wu-Ji Wei
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Song-De Han
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,
Nanjing Normal University, Nanjing 210023, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering,
Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Wang ST, Liu XY, Li QH, Fang WH, Zhang J, Chen SM. Aluminum Molecular Ring Meets Deep Eutectic Solvents: Adaptive Assembly and Optical Behavior. Inorg Chem 2024; 63:12100-12108. [PMID: 38896443 DOI: 10.1021/acs.inorgchem.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Different from the previous neutral reaction solvent system, this work explores the synthesis of Al-oxo rings in ionic environments. Deep eutectic solvents (DESs) formed by quaternary ammonium salts hydrogen bond acceptor (HBA) and phenols hydrogen bond donor (HBD) further reduce the melting point of the reaction system and provide an ionic environment. Further, the quaternary ammonium salt was chosen as the HBA because it contains a halogen anion that matches the size of the central cavity of the molecular ring. Based on this thought, five Al8 ion pair cocrystals were synthesized via "DES thermal". The general formula is Q+ ⊂ {Cl@[Al8(BD)8(μ2-OH)4L12]} (AlOC-180-AlOC-185, Q+ = tetrabutylammonium, tetrapropylammonium, 1-butyl-3-methylimidazole; HBD = phenol, p-chlorophenol, p-fluorophenol; HL = benzoic acid, 1-naphthoic acid, 1-pyrenecarboxylic acid, anthracene-9-carboxylic acid). Structural studies reveal that the phenol-coordinated Al molecular ring and the quaternary ammonium ion pair form the cocrystal compounds. The halogen anions in the DES component are confined in the center of the molecular ring, and the quaternary ammonium cations are located in the organic shell. Such an adaptive cocrystal binding pattern is particularly evident in the structures coordinated with low-symmetry ligands such as naphthoic acid and pyrene acid. Finally, the optical behavior of these cocrystal compounds is understood from the analysis of crystal structure and theoretical calculation.
Collapse
Affiliation(s)
- San-Tai Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian College, University of Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou, Fujian 350002, China
| | - Xi-Yan Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian College, University of Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou, Fujian 350002, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian College, University of Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou, Fujian 350002, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian College, University of Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian College, University of Chinese Academy of Sciences, No.155 Yangqiao West Road, Fuzhou, Fujian 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Liao PY, Li JX, Liu JC, Xiong Q, Ruan ZY, Li T, Deng W, Jiang SD, Jia JH, Tong ML. Radical-Induced Photochromic Silver(I) Metal-Organic Frameworks: Alternative Topology, Dynamic Photoluminescence and Efficient Photothermal Conversion Modulated by Anionic Guests. Angew Chem Int Ed Engl 2024; 63:e202401448. [PMID: 38530747 DOI: 10.1002/anie.202401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024]
Abstract
Photogenerated radicals are an indispensable member of the state-of-the-art photochromic material family, as they can effectively modulate the photoluminescence and photothermal conversion performance of radical-induced photochromic complexes. Herein, two novel radical-induced photochromic metal-organic frameworks (MOFs), [Ag(TEPE)](AC) ⋅ 7/4H2O ⋅ 5/4EtOH (1) and [Ag(TEPE)](NC) ⋅ 3H2O ⋅ EtOH (2), are reported. Distinctly different topological networks can be obtained by judiciously introducing alternative π-conjugated anionic guests, including a new topological structure (named as sfm) first reported in this work, describing as 4,4,4,4-c net. EPR data and UV-Vis spectra prove the radical-induced photochromic mechanism. Dynamic photochromism exhibits tunability in a wide CIE color space, with a linear segment from yellow to red for 1, while a curved coordinate line for 2, resulting in colorful emission from blue to orange. Moreover, photogenerated TEPE* radicals effectively activate the near-infrared (NIR) photothermal conversion effect of MOFs. Under 1 W cm-2 808 nm laser irradiation, the surface temperatures of photoproducts 1* and 2* can reach ~160 °C and ~120 °C, respectively, with competitive NIR photothermal conversion efficiencies η=51.8 % (1*) and 36.2 % (2*). This work develops a feasible electrostatic compensation strategy to accurately introduce photoactive anionic guests into MOFs to construct multifunctional radical-induced photothermal conversion materials with tunable photoluminescence behavior.
Collapse
Affiliation(s)
- Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jia-Xin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jia-Chuan Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qi Xiong
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Tao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Orihashi K, Yamauchi A, Inoue M, Parmar B, Fujiwara S, Kimizuka N, Asada M, Nakamura T, Yanai N. Radical qubits photo-generated in acene-based metal-organic frameworks. Dalton Trans 2024; 53:872-876. [PMID: 38164969 DOI: 10.1039/d3dt03959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A series of metal-organic frameworks (MOFs) assembled with diazatetracene (DAT)-based linkers were synthesized and characterized. Despite different chromophore orientations and spacings, photoinduced persistent radicals were generated in all the MOFs, and their spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) were found to be relatively long even at room temperature. The generality of long T1 and T2 values of photogenerated radicals in the chromophore-assembled MOFs provides a new platform towards quantum sensing applications.
Collapse
Affiliation(s)
- Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Miku Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Saiya Fujiwara
- RIKEN Center for Emergent Matter Science, Riken, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- FOREST, CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
7
|
Li J, Wang YH, Han SD, Wen YX, Hu JX, Li JH, Yang GY. Photochromism and Photomagnetism in Two Ni(II) Complexes Based on a Photoactive 2,4,6-Tris-2-Pyridyl-1,3,5-Triazine Ligand. Inorg Chem 2024; 63:1142-1150. [PMID: 38175800 DOI: 10.1021/acs.inorgchem.3c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
It is still challenging to construct novel photochromic and photomagnetic materials in the field of molecular materials. Herein, the 2,4,6-tris-2-pyridyl-1,3,5-triazine (TPTz) molecule was found to display photochromic properties under room temperature light irradiation. Two mononuclear structures, [Ni(H2O)(TPTz)(C2O4)]·2H2O (1; C2O42- = oxalate) [Ni(H2O)(TPTz)(C2O4)]·0.5H2O (2), and one chain compound [Ni(TPTz)(H2-HEDP)]·2H2O (3; HEDP = hydroxyethylidene diphosphonate) were obtained by assembling TPTz with polydentate O-ligands (oxalate and phosphonate) and the paramagnetic Ni2+ ions. The electron-transfer (ET)-dominated photochromism was observable in 1 and 2 after light irradiation with the photogeneration of relatively stable radicals, and the resultant photochromism was demonstrated via UV-vis, photoluminescence, X-ray photoelectron spectra, electron paramagnetic resonance spectra, and molecular orbital calculations. Due to the denser stacking interactions between the adjacent organic molecules, 2 exhibited a faster photochromic rate than 1. Compared with 1 and 2, compound 3 did not show photochromic behavior, which was deciphered by the theoretical calculations for all of the compounds. Importantly, the magnetic couplings appeared between photogenerated radicals and paramagnetic Ni2+ ions, resulting in a scarcely photomagnetic phenomenon of 1 and 2 in the Ni-based electron transfer photochromic materials. This work enriches the available kind of ligands for the design of ET photochromic materials, putting forward a method to tune the electron transfer photochromic efficiency in the molecular materials.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu-Han Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu-Xuan Wen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guo-Yu Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| |
Collapse
|
8
|
Orihashi K, Yamauchi A, Fujiwara S, Asada M, Nakamura T, Ka-Ho Hui J, Kimizuka N, Tateishi K, Uesaka T, Yanai N. Spin-Polarized Radicals with Extremely Long Spin-Lattice Relaxation Time at Room Temperature in a Metal-Organic Framework. J Am Chem Soc 2023; 145:27650-27656. [PMID: 38079364 DOI: 10.1021/jacs.3c09563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The generation of spin polarization is key in quantum information science and dynamic nuclear polarization. Polarized electron spins with long spin-lattice relaxation times (T1) at room temperature are important for these applications but have been difficult to achieve. We report the realization of spin-polarized radicals with extremely long T1 at room temperature in a metal-organic framework (MOF) in which azaacene chromophores are densely integrated. Persistent radicals are generated in the MOF by charge separation after photoexcitation. Spin polarization of a triplet generated by photoexcitation is successfully transferred to the persistent radicals. Pulse electron spin resonance measurements reveal that the T1 of the polarized radical in the MOF is as long as 214 μs with a relatively long spin-spin relaxation time T2 of the radicals of up to 0.98 μs at room temperature. The achievement of extremely long spin polarization in MOFs with nanopores accessible to guest molecules will be an important cornerstone for future highly sensitive quantum sensing and efficient dynamic nuclear polarization.
Collapse
Affiliation(s)
- Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Saiya Fujiwara
- RIKEN Center for Emergent Matter Science, Riken, Wako, Saitama 351-0198, Japan
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Joseph Ka-Ho Hui
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering and Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Gou X, Liu N, Wu Y, Lan W, Wang M, Shi W, Cheng P. Modulation of magnetization dynamics of an Er(III) coordination polymer by the conversion of a ligand to a radical using UV light. Dalton Trans 2023. [PMID: 37465927 DOI: 10.1039/d3dt01800h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Light-induced substance conversion is highly promising for creating new radical-based compounds. Herein, we report an Er(III) coordination polymer [Er(CA)(ACA)(DMF)(H2O)]n (1) and its Y(III)-diluted analogue 1@Y (H2CA = 2,5-dichloro-3,6-dihydroxy-p-quinone, HACA = 9-anthracene carboxylic acid) with the light-induced transformation of the ligand to a radical. The χMT values of light-transformed products 1a and 1a@Y are higher than those of 1 and 1@Y, respectively, due to the formation of radicals by ultraviolet light irradiation, confirmed by EPR measurement as well. The effective energy barriers for magnetization reversal (Ueff) decrease from 72 K for 1 to 67 K for 1a, and from 117 K for 1@Y to 94 K for 1a@Y. This work not only provides a new light-conversion system but also reveals the nature of photo-induced variation of magnetic properties.
Collapse
Affiliation(s)
- Xiaoshuang Gou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ning Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuewei Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenlong Lan
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengmeng Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Ma YJ, Xiao G, Fang X, Chen T, Yan D. Leveraging Crystalline and Amorphous States of a Metal-Organic Complex for Transformation of the Photosalient Effect and Positive-Negative Photochromism. Angew Chem Int Ed Engl 2023; 62:e202217054. [PMID: 36571433 DOI: 10.1002/anie.202217054] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Uncovering differences between crystalline and amorphous states in molecular solids would both promote the understanding of their structure-property relationships, as well as inform development of multi-functional materials based on the same compound. Herein, for the first time, we report an approach to leverage crystalline and amorphous states of a zero-dimensional metal-organic complex, which exhibited negative and positive photochromism, due to the competitive chemical routes between photocycloaddition and photogenerated radicals. Furthermore, different polymorphs lead to the on/off toggling of photo-burst movement (photosalient effect), indicating the controllable light-mechanical conversion. Three demos were further constructed to support their application in information encryption and anti-counterfeiting. This work provides the proof-of-concept of a state- and polymorph-dependent photochemical route, paving an effective way for the design of new dynamically responsive systems.
Collapse
Affiliation(s)
- Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
11
|
Zou Y, Lv W, Wang AN, Li XY, Li JH, Wang GM. Gradual Size Enlargement of Aluminum-Oxo Clusters and the Photochromic Properties. Inorg Chem 2023; 62:2617-2624. [PMID: 36716134 DOI: 10.1021/acs.inorgchem.2c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metallic clusters, assembled by functional motifs, possess the attribute of regulating the properties by changing inorganic and organic components. In this work, a series of aluminum-oxo clusters, [Al6O(dmp)4(Hdmp)2]·2iPrOH [Al6-1, H3dmp = 2,2-bis(hydroxymethyl)propionic acid], [Al6(H2thmmg)6]·2DMF·2H2O [Al6-2, H5thmmg = N-tris(hydroxymethyl)methylglycine], [Al8(OH)4(NAP-OH)12(MeO)7(MeOH)]Cl·7MeCN·3MeOH (Al8, HNAP-OH = 3-hydroxy-2-naphthoic acid), and [Al10(NA)10(MeO)20] (Al10, HNA = nicotinic acid), were obtained based on different carboxylic acids, realizing metallic ring size enlargement from 5.91 to 9.32 Å. They all exhibit good chemical stability. Importantly, the Al8 cluster displays obvious photochromic behavior from pale yellow to orange yellow, originating from the generation of photoinduced radicals in the metal-assisted ligand-ligand electron transfer process of 3-hydroxy-2-naphthoic acid (HNAP-OH). This work enriches the metal ring cluster chemistry and reports the example of the aluminum-oxo cluster-based photochromic material, developing a novel system of photochromic materials.
Collapse
Affiliation(s)
- Ying Zou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Wei Lv
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - A-Ni Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xiao-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
12
|
Liao PY, Liu Y, Ruan ZY, Wang HL, Shi CG, Deng W, Wu SG, Jia JH, Tong ML. Magnetic and Luminescent Dual Responses of Photochromic Hexaazamacrocyclic Lanthanide Complexes. Inorg Chem 2023; 62:1075-1085. [PMID: 36625763 DOI: 10.1021/acs.inorgchem.2c02868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, hexaazamacrocyclic ligand LN6 was employed to construct a series of photochromic rare-earth complexes, [Ln(LN6)(NO3)2](BPh4) [1-Ln, Ln = Dy, Tb, Eu, Gd, Y; LN6 = (3E,5E,10E,12E)-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane-3,5,10,12-tetraene]. The behavior of photogenerated radicals of hexaazamacrocyclic ligands was revealed for the first time. Upon 365 nm light irradiation, complexes 1-Ln exhibit photochromic behavior induced by photogenerated radicals according to EPR and UV-vis analyses. Static and dynamic magnetic studies of 1-Dy and irradiated product 1-Dy* indicate weak ferromagnetic interactions among DyIII ions and photogenerated LN6 radicals, as well as slow magnetization relaxation behavior under a 2 kOe applied field. Further fitting analyses show that the magnetization relaxation in 1-Dy* is markedly different from 1-Dy. Time-dependent fluorescence measurements reveal the characteristic luminescence quenching dynamics of lanthanide in the photochromic process. Especially for irradiated product 1-Eu*, the luminescence is almost completely quenched within 5 min with a quenching efficiency of 98.4%. The results reported here provide a prospect for the design of radical-induced photochromic lanthanide single-molecule magnets and will promote the further development of multiresponsive photomagnetic materials.
Collapse
Affiliation(s)
- Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hai-Ling Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Chen-Guang Shi
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Zhou YN, Wang L, Yu JH, Ding TY, Zhang X, Jiao CQ, Li X, Sun ZG, Zhu YY. Two Stable Cd-MOFs as Dual-Functional Materials with Luminescent Sensing of Antibiotics and Proton Conduction. Inorg Chem 2022; 61:20111-20122. [PMID: 36424127 DOI: 10.1021/acs.inorgchem.2c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Construction and investigation of dual-functional metal-organic frameworks (MOFs) with luminescent sensing and proton conduction provide widespread applications in clean energy and environmental monitoring fields. By selecting a phosphonic acid ligand 4-pyridyl-CH2N(CH2PO3H2)2 (H4L) and coligand 2,2'-biimidazole (H2biim), two cadmium-based MOFs [Cd1.5(HL)(H2biim)0.5] (1) and (H4biim)0.5·[Cd2(L)(H2biim)Cl] (2) with different structures and properties have been hydrothermally synthesized by controlling reaction temperature. Based on the excellent thermal and chemical stabilities, and good luminescent stabilities in water solution, 1 and 2 can serve as luminescent sensors of chloramphenicol (CAP) with different quenching constant (KSV) values and detection limits (LODs) in water, simulated environmental system, and real fish water system. Meanwhile, different sensing effects and possible sensing mechanisms are analyzed in detail. Moreover, 1 and 2 can also serve as good proton-conducting materials. The proton conductivities can reach up to 1.41 × 10-4 S cm-1 for 1 and 1.02 × 10-3 S cm-1 for 2 at 368 K and 95% relative humidity (RH). Among them, 2 shows better luminescent sensing and proton conduction performance than 1, which indicates that different crystal structures have a great impact on the properties of MOFs. Through the discussion of the relationship between structures and properties in detail, the possible reasons for the differences in properties are obtained, which can provide theoretical guidance for the rational design of this kind of dual-functional MOFs in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jia-Hui Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Tian-Yang Ding
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yan-Yu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
14
|
Liu JJ, Fu JJ, Shen X, Liu T, Cheng FX. The effect of dicarboxylic acid isomer on the photochromism of naphthalenediimide-based metal-organic frameworks. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Gao ZN, Feng DX, Wang Y, Li FH, Sun HY, Hu JX, Wang GM. Large Room Temperature Magnetization Enhancement in a Copper-Based Photoactive Metal–Organic Framework. Inorg Chem 2022; 61:15812-15816. [DOI: 10.1021/acs.inorgchem.2c02687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhen-Ni Gao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Dong-Xue Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Fang-Hui Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Hui-Yu Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
16
|
Cui B, Guo C, Fu G, Zhang Z. Photochromic performance of hydrogel based on deep eutectic solvent induced water soluble Cu-doped WO3 hybrids with antibacterial property. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Liu JJ, Fu JJ, Liu T, Cheng FX. Photochromic polyoxometalate/naphthalenediimide hybrid structure with visible-light-driven dye degradation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Li Q, Zhang Q, Xue ZZ, Hu JX, Wang GM. Photoactive Anthracene-9,10-dicarboxylic Acid for Tuning of Photochromism in the Cd/Zn Coordination Polymers. Inorg Chem 2022; 61:10792-10800. [PMID: 35796673 DOI: 10.1021/acs.inorgchem.2c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron transfer photochromic materials with photo-triggered radicals have received huge interest from chemists due to their potentialities in anticounterfeiting, displays, energy conversion, and information storage. However, utilizing the sole carboxylic acid to synthesize novel electron transfer photochromic species is still confronted with huge challenges. Herein, an acentric three-dimensional network Cd2(ADC)2(DMF)2(H2O) (1; ADC = anthracene-9,10-dicarboxylate; DMF = N,N-dimethylformamide) and a two-dimensional layer Zn(ADC)(H2O)·DMA·H2O (2; DMA = N,N-dimethylacetamide) were synthesized and characterized via a photoactive H2ADC ligand. Both compounds exhibited electron transfer photochromism with the formation of radical photoproducts at the solid state, which was revealed by IR, UV-Vis absorption, photoluminescence and electron spin resonance spectra, and magnetic susceptibility measurements. Density functional theory calculations for 1 showed that the coloration process is a metal-assisted ligand-to-ligand electron transfer process between adjacent ADC molecules, and photogenerated stable radicals are delocalized over the ADC components. Compared with 1, the shorter distances between ADC components via coordination bonds promoted 2 to exhibit a higher coloration efficiency and larger quantity of photogenerated radicals. Furthermore, both compounds showed unexpected radical-actuated photochromism in aqueous solution. This work showed that the carboxylic acid ligands, without viologen acceptors, could construct the electron transfer photochromic complexes, showing a novel kind of ligand for the design of hybrid photochromic materials.
Collapse
Affiliation(s)
- Qi Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Qian Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Zhen-Zhen Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
20
|
Li Q, Wei W, Xue Z, Mu Y, Pan J, Hu J, Wang G. Achieving an electron transfer photochromic complex for switchable white-light emission. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer. Nat Commun 2022; 13:2646. [PMID: 35551184 PMCID: PMC9098415 DOI: 10.1038/s41467-022-30425-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn2+ and Zn2+ compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn2+ analog, light irradiation changes the spin topology from a single Mn2+ ion to a radical-Mn2+ single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1–O2–C8 angle and coordination geometries of the Mn2+ center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism. Achieving magnetic bistability with large thermal hysteresis is still a challenge in material science. Here, the authors report a Mn(II) chain complex that enables light-induced magnetic bistability with a 177 K thermal hysteresis loop.
Collapse
|
22
|
Zhang Q, Hu J, Li Q, Feng D, Gao Z, Wang G. Single molecule magnetic behavior and photo-enhanced proton conductivity in a series of photochromic complexes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
A viologen-derived host-guest MOF material: Photochromism, photoswitchable luminescence, and inkless and erasable printing. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Yu LM, Fu JJ, Xia SB, Liu JJ. Encapsulating viologen derivatives in anionic MOFs: Photochromism and photocontrolled luminescence. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Kajiwara Y, Miyata S, Nakai H. Unusual motion of the n-methoxypropyl moiety observed in the photochromic crystals of an organorhodium dithionite complex with n-methoxypropyltetramethylcyclopentadienyl ligands. Dalton Trans 2021; 51:48-52. [PMID: 34878457 DOI: 10.1039/d1dt03347f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The crystalline-state photochromism of a new organorhodium dinuclear complex having n-methoxypropyltetramethylcyclopentadienyl (η5-C5Me4n-C3H6OCH3) and photoresponsive dithionite (μ-O2SSO2) ligands was investigated directly by performing single-crystal X-ray diffraction experiments; a reversible conformational change of the n-methoxypropyl moiety was intriguingly observed during the course of a thermal back-reaction.
Collapse
Affiliation(s)
- Yuu Kajiwara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| | - Seiya Miyata
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
26
|
Hu JX, Zhang Q, Xia B, Liu T, Pang J, Bu XH. Photo Switchable Two-step Photochromism in a Series of Ln-Phosphonate(Ln=Dy, Gd, Tb, Y) Dinuclear Complexes. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1373-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Zhou YN, Liu LL, Liu QW, Liu XX, Feng MZ, Wang L, Sun ZG, Zhu YY, Zhang X, Jiao CQ. Dual-Functional Metal-Organic Framework for Luminescent Detection of Carcinoid Biomarkers and High Proton Conduction. Inorg Chem 2021; 60:17303-17314. [PMID: 34699193 DOI: 10.1021/acs.inorgchem.1c02655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It remains a challenge to exploit dual-functional metal-organic frameworks (MOFs) for applications, including luminescence detection and proton conduction. With the deliberate selection of the bifunctional organic ligand 5-sulfoisophthalic acid monosodium salt (NaH2bts), and the phosphonic acid ligand N,N'-piperazine (bismethylenephosphonic acid; H4L), a robust three-dimensional (3D) noninterpenetrating dual-functional MOF, [Tb(H2L)(H2bts)(H2O)]·H2O (1), has been synthesized hydrothermally. On the basis of the excellent thermal and chemical as well as superior luminescence stabilities in water and solutions with different pHs, 1 can serve as the simple, rapid, and highly selective and sensitive luminescence detection of the carcinoid biomarkers 5-hydroxytryptamine (HT) and its metabolite 5-hydroxyindole-3-acetic acid (HIAA) with detection limits of nanomolar magnitude in water and in simulated blood plasma and urine systems. Due to the change in the signals that could be readily differentiated by the naked eye under a UV lamp, a portable test paper has been developed. The probable quenching mechanisms are discussed in detail. In addition, a great number of hydrogen-bonding networks are formed among the uncoordinated carboxylic oxygen atoms, sulfonate oxygen atoms, protonated nitrogen atoms, and water molecules, which provide potential proton-hopping sites for proton conduction, leading to a maximum proton conductivity of 2.3 × 10-4 S cm-1 at 368 K and 95% relative humidity. The above results suggest that rationally designed dual-functional MOFs can open an avenue for the development of occupational diagnostic tools and alternative energy technology.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Li-Li Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Qi-Wei Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Xiao-Xin Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Ming-Ze Feng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Yan-Yu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|