1
|
Zhang Y, Zhang N, Hu Y, Pereira C, Fertleman M, Jiang N, Yetisen AK. Fully Automated and AI-Assisted Optical Fiber Sensing System for Multiplexed and Continuous Brain Monitoring. ACS Sens 2024; 9:6605-6620. [PMID: 39629823 DOI: 10.1021/acssensors.4c02126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Continuous and comprehensive brain monitoring is crucial for timely identification of changes or deterioration in brain function, enabling prompt intervention and personalized treatments. However, existing brain monitoring systems struggle to offer continuous and accurate monitoring of multiple brain biomarkers simultaneously. This study introduces a multiplexed optical fiber sensing system for continuous and simultaneous monitoring of six cerebrospinal fluid (CSF) biomarkers using tip-functionalized optical fibers and computational algorithms. Optimized machine learning models are developed and integrated for real-time spectra analysis, allowing for precise and continuous readout of biomarker concentrations. The developed machine learning-assisted fiber optic sensing system exhibits high sensitivity (0.04, 0.38, 0.67, 2.62, 0.0064, 0.33 I/I0 change per units of temperature, dissolved oxygen, glucose, pH, Na+, Ca2+, respectively), reversibility, and selectivity toward target biomarkers with a total diameter less than 2.5 mm. By monitoring brain metabolic and ionic dynamics, this system accurately identified brain physiology deterioration and recovery using ex vivo traumatic brain injury models. Additionally, the system successfully tracked biomarker fluctuations in clinical CSF samples with high accuracy (R2 > 0.93), demonstrating excellent sensitivity and selectivity in reflecting disease progression in real time. These findings underscore the enormous potential of automated and multiplexed optical fiber sensing systems for intraoperative and postoperative monitoring of brain physiologies.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Naihan Zhang
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
- Institute of Lightwave Technology, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Christopher Pereira
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London W12 0BZ, U.K
| | - Michael Fertleman
- Cutrale Perioperative and Ageing Group, Department of Bioengineering, Imperial College London, London W12 0BZ, U.K
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
2
|
Talekar S, Tak Y, Joshi A, Ahn K, Yeon KM, Kim J. Magnetic hollow fibers of covalent organic frameworks (COF) for pollutant degradation and adsorptive removal. ENVIRONMENTAL RESEARCH 2024; 259:119519. [PMID: 38964582 DOI: 10.1016/j.envres.2024.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The shaping of covalent organic frameworks (COFs) from non-processible powder forms into applicable architectures with additional functionality remains a challenge. Using pre-electrospun polymer fibers as a sacrificial template, herein, we report a green synthesis of an architecture in the form of COF hollow fibers with an inner layer of peroxidase-like iron oxide nanoparticles as a catalytic material. When compared to peroxidase-like pristine iron oxide nanoparticles, these COF hollow fibers demonstrate higher catalytic breakdown of crystal violet due to their peroxidase-like activity via advanced oxidation process. Furthermore, as a potential adsorbent, hollow COF fibers exhibit significantly effective adsorption capacity and removal efficiency of organic solvent and oil from water. Because of their magnetic nature, COF hollow fibers can be easily recovered and have exhibited high recycling stability for both catalytic dye degradation and organic solvent removal from water.
Collapse
Affiliation(s)
- Sachin Talekar
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Yeojin Tak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Asavari Joshi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung-Min Yeon
- Engineering Center, Samsung C&T Corporation, Tower B, 26, Sangil-ro, 6- gil, Gangdong-gu, Seoul, Republic of Korea.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
4
|
Torre J, Cimavilla-Román P, Cuadra-Rodríguez D, Rodríguez-Pérez MÁ, Guttmann P, Werner S, Pinto J, Barroso-Solares S. Unveiling the Inner Structure of Micrometric Hollow Polymeric Fibers Using Synchrotron X-Ray Nanotomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:14-26. [PMID: 38214892 DOI: 10.1093/micmic/ozad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024]
Abstract
In this study, a novel application of synchrotron X-ray nanotomography based on high-resolution full-field transmission X-ray microscopy for characterizing the structure and morphology of micrometric hollow polymeric fibers is presented. By employing postimage analysis using an open-source software such as Tomviz and ImageJ, various key parameters in fiber morphology, including diameter, wall thickness, wall thickness distribution, pore size, porosity, and surface roughness, were assessed. Electrospun polycaprolactone fibers with micrometric diameters and submicrometric features with induced porosity via gas dissolution foaming were used to this aim. The acquired synchrotron X-ray nanotomography data were analyzed using two approaches: 3D tomographic reconstruction and 2D radiographic projection-based analysis. The results of the combination of both approaches demonstrate unique capabilities of this technique, not achievable by other available techniques, allowing for a full characterization of the internal and external morphology and structure of the fibers as well as to obtain valuable qualitative insights into the overall fiber structure.
Collapse
Affiliation(s)
- Jorge Torre
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Paula Cimavilla-Román
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Daniel Cuadra-Rodríguez
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
| | - Peter Guttmann
- Department of X-Ray Microscopy, Electron Storage Ring at BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße, 12489, 15, Berlin, Germany
| | - Stephan Werner
- Department of X-Ray Microscopy, Electron Storage Ring at BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße, 12489, 15, Berlin, Germany
| | - Javier Pinto
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| | - Suset Barroso-Solares
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Calle Dr. Mergelina, 47011, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT) Research Group, Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, 47011, P.º de Belén, 7, Spain
| |
Collapse
|
5
|
Merdalimova A, Barmin R, Vorobev V, Aleksandrov A, Terentyeva D, Estifeeva T, Chernyshev V, German S, Maslov O, Skibina Y, Rudakovskaya P, Gorin D. Two-in-one sensor of refractive index and Raman scattering using hollow-core microstructured optical waveguides for colloid characterization. Colloids Surf B Biointerfaces 2024; 234:113705. [PMID: 38194837 DOI: 10.1016/j.colsurfb.2023.113705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Hollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection. The performance of the sensor was evaluated by characterizing protein-copolymer multicomponent colloids, specifically, bovine serum albumin (BSA) and poly(N - vinyl-2 -pyrrolidone-co-acrylic acid) P(VP-AA) nano-sized complexes and microbubbles of the corresponding shell. Monocomponent solutions showed linear dependencies of RI and characteristic Raman peak intensities on mass concentration. Multicomponent Raman sensing of BSA@P(VP-AA) complexes and microbubbles revealed that changes in P(VP-AA) characteristic peak intensities can describe interactions between components needed to produce colloid systems. RI sensing of multicomponent colloids demonstrated linear dependence on total mass concentrations for BSA@P(VP-AA) complexes, while corresponding BSA@P(VP-AA) microbubbles can be detected with concentrations as high as 4.0 × 108 MB/mL. Therefore, the developed two-in-one sensor of RI and Raman scattering can be used the robust characterization of albumin-based colloids designed for therapeutic and diagnostic needs.
Collapse
Affiliation(s)
- Anastasiia Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Laboratory of Photonic Gas Sensors, University of Science and Technology MISIS, Moscow 119049, Russia.
| | - Roman Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Viktor Vorobev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Artem Aleksandrov
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Faculty of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia; National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow 117997, Russia
| | - Daria Terentyeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tatiana Estifeeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Vasiliy Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow 117997, Russia
| | - Sergey German
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Oleg Maslov
- Department of Nanomaterials and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Yulia Skibina
- SPE LLC Nanostructured Glass Technology, Saratov 410033, Russia
| | - Polina Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitry Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
6
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Wan Y, Liu H, Yan K, Li X, Lu Z, Wang D. An ionic/thermal-responsive agar/alginate wet-spun microfiber-shaped hydrogel combined with grooved/wrinkled surface patterns and multi-functions. Carbohydr Polym 2023; 304:120501. [PMID: 36641168 DOI: 10.1016/j.carbpol.2022.120501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
A dual stimuli-responsive wet-spun microfiber-shaped hydrogel is prepared by injecting a hot blend of two stimuli biopolymers alginate (i.e., ionic-responsive) and agar (i.e., temperature-responsive) into a pre-cooling and metal cation containing coagulation bath. Experimental results indicate the fiber microstructure could be manipulated by the extrusion rate and cooling temperature, achieving an anisotropic shrinkage characteristic and novel grooved/wrinkled surface patterns. Importantly, the integration of metal cations (e.g., Ca2+and/or Zn2+) was confirmed to significantly improve the hydrogel mechanical properties (i.e., double networks) and enhanced blue fluorescent intensity as a typical metal-polymer complexation formed within the agar gel matrix. Moreover, the functionality-independent double networks enabled typical pH-shape memory and sustainable antibacterial properties have also been demonstrated. Therefore, combing the facile fabricating approach and multifunctionality, this study would advance the development of stimuli-responsive hydrogel microfiber for complex biomedical systems.
Collapse
Affiliation(s)
- Yekai Wan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Haoran Liu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
8
|
Vohra A, Raturi P, Hussain E. Scope of using hollow fibers as a medium for drug delivery. FIBER AND TEXTILE ENGINEERING IN DRUG DELIVERY SYSTEMS 2023:169-213. [DOI: 10.1016/b978-0-323-96117-2.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
9
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Wang J, Zhu Y, Li S, Zhai S, Fu N, Niu Y, Hou S, Luo J, Mu S, Huang Y. Ni-soc-MOF derived carbon hollow sphere encapsulated Ni 3Se 4 nanocrystals for high-rate supercapacitors. Chem Commun (Camb) 2022; 58:8846-8849. [PMID: 35849002 DOI: 10.1039/d2cc01951e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Carbon hollow sphere encapsulated Ni3Se4 (Ni3Se4@CHS) nanocrystals are prepared using the Ni-soc-MOF by pyrolysis and further selenization. Ni3Se4@CHS exhibits a capacitance of 1720 F g-1 at 1 A g-1 and a capacitance retention of 97% after 6000 cycles at 5 A g-1. Moreover, the asymmetric supercapacitor of Ni3Se4@CHS//AC displays a wide potential window of 1.6 V, an energy density of 45.2 W h kg-1 at a power density of 800 W kg-1, and excellent cycling stability (89% capacitance retention) after 5000 cycles. Overall, this work establishes a significant step to synthesize a new carbon-based material with appreciable capacitance and long cycling durability for potential applications in energy storage and beyond.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yue Zhu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shuo Li
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shengxian Zhai
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shaogang Hou
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Jiahuan Luo
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide. Nat Commun 2022; 13:3080. [PMID: 35654817 PMCID: PMC9163090 DOI: 10.1038/s41467-022-30733-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Efficient conversion of CO2 to commodity chemicals by sustainable way is of great significance for achieving carbon neutrality. Although considerable progress has been made in CO2 utilization, highly efficient CO2 conversion with high space velocity under mild conditions remains a challenge. Here, we report a hierarchical micro/nanostructured silver hollow fiber electrode that reduces CO2 to CO with a faradaic efficiency of 93% and a current density of 1.26 A · cm−2 at a potential of −0.83 V vs. RHE. Exceeding 50% conversions of as high as 31,000 mL · gcat−1 · h−1 CO2 are achieved at ambient temperature and pressure. Electrochemical results and time-resolved operando Raman spectra demonstrate that enhanced three-phase interface reactions and oriented mass transfers synergistically boost CO production. An activated silver hollow fiber electrode enables enhanced triphasic interface reactions and oriented mass transfers synergistically, facilitating efficient CO2 conversion (> 50%) to boost CO production with a current density of 1.26 A · cm−2.
Collapse
|
12
|
Razmgar K, Nasiraee M. Polyvinyl alcohol
‐based membranes for filtration of aqueous solutions: A comprehensive review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kourosh Razmgar
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| | - Mohammad Nasiraee
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|