1
|
Izquierdo-García P, Fernández-García JM, Perles J, Martín N. Enantiomerically Pure Helical Bilayer Nanographenes: A Straightforward Chemical Approach. J Am Chem Soc 2024; 146:34943-34949. [PMID: 39642941 DOI: 10.1021/jacs.4c14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The semiconductor properties of nanosized graphene fragments, known as molecular nanographenes, position them as exceptional candidates for next-generation optoelectronics. In addition to their remarkable optical and electronic features, chiral nanographenes exhibit high dissymmetry factors in circular dichroism and circularly polarized luminescence measurements. However, the synthesis of enantiomerically pure nanographenes remains a significant challenge. Typically, these materials are synthesized in their racemic form, followed by separation of the enantiomers using high-performance liquid chromatography (HPLC). While effective, this method often requires expensive instrumentation, extensive optimization of separation conditions, and typically yields analytical quantities of the desired samples. An alternative approach is the enantioselective synthesis of chiral molecular nanographenes; however, to date, only two examples have been documented in the literature. In this work, we present a straightforward chemical method for the chiral resolution of helical bilayer nanographenes. This approach enables the effective and scalable preparation of enantiomerically pure nanographenes while avoiding the need for HPLC. The incorporation of a BINOL core into the polyarene precursor facilitates the separation of diastereomers through esterification with enantiomerically pure camphorsulfonyl chloride. Following the separation of the diastereomers by standard chromatographic column, the hydrolysis of the camphorsulfonyl group yields enantiomerically pure nanographene precursors. The subsequent graphitization, achieved through the Scholl reaction, occurs in an enantiospecific manner and with the concomitant formation of a furan ring and a heterohelicene moiety. The absolute configurations of the final enantiomers, P-oxa[9]HBNG and M-oxa[9]HBNG, have been determined using X-ray diffraction. Additionally, electrochemical, photophysical, and chiroptical properties have been thoroughly evaluated.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
2
|
Dongre SD, Venugopal G, Kumar V, Badrinarayan Jadhav A, Kumar J, Santhosh Babu S. Chiroptical Amplification of [7]-Helicene Nanographene by Additional Helical Chirality. Angew Chem Int Ed Engl 2024:e202420767. [PMID: 39641263 DOI: 10.1002/anie.202420767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
Nanographenes have captivated scientific interest since the pioneering discovery of graphene. Recently, attention has shifted towards exploring chiral and nonplanar nanographenes, for their distinct optical, chiroptical, and electronic properties. Despite the growing acceptance of helicenes, the research on inducing helical chirality on π-extended derivatives to boost chiroptical properties remains unattended. In our study, we introduce a new π-extended [7]-helicene resulting from the condensation of diamines with 3,6-dibromophenanthrene-9,10-dione, complemented by two hexabenzocoronene arms in the periphery. Notably, the nanographene containing binaphtho-[1,4]diazocine, compared to the corresponding phenazine, exhibits a remarkable average 2.5, 5, and 10-fold enhancements in quantum yield, dissymmetry factor, and brightness, respectively, when measured in five different solvents. These improvements underscore the significance of the induced helical chirality by the antiaromatic binaphtho-[1,4]diazocine in influencing the chiroptical properties of the helical nanographene. Our research represents a significant stride toward unlocking the potential of π-extended helicenes and lays the groundwork for further exploration in designing and synthesizing new chiral nanomaterials.
Collapse
Affiliation(s)
- Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Geethu Venugopal
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashok Badrinarayan Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517 507, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517 507, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
3
|
Izquierdo-García P, Fernández-García JM, Martín N. Twenty Years of Graphene: From Pristine to Chemically Engineered Nano-Sized Flakes. J Am Chem Soc 2024; 146:32222-32234. [PMID: 39537345 PMCID: PMC11613509 DOI: 10.1021/jacs.4c12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
It is a celebratory moment for graphene! This year marks the 20th anniversary of the discovery of this amazing material by Geim and Novoselov. Curiously, it coincides with the century mark of graphite's layered structure discovery. Since the discovery of graphene with the promise that its outstanding properties would change the world, society often wonders where is graphene? In this context, their discoverers said in 2005, "despite the reigning optimism about graphene-based electronics, "graphenium" microprocessors are unlikely to appear for the next 20 years". Today, possibilities for graphene are endless! It can be used in electronics, photonics, fuel cells, energy storage, artificial intelligence, biomedicine, and even cultural heritage or sports. Additionally, the electronic properties of this material have been modified in fascinating ways. Bilayer graphene sheets have been found to be superconductive when twisted at a "magic angle", leading to a new and exciting field of research known as "moiré quantum materials" or "twistronics". Additionally, small graphene fragments with nanometer sizes undergo a quantum confinement effect of electrons, affording semiconductive materials with applications in optoelectronics. Organic synthesis allows the preparation of molecules with a graphene-like pattern with total control of the shape and size, exhibiting a big catalog of chiroptical and optoelectronic properties. This Perspective shows some of the fascinating milestones raised in the field of graphene-like materials from a chemical point of view, including functionalization strategies employed to chemically modify the topology and the properties of pristine graphene as well as the rising molecular graphenes.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús M. Fernández-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nazario Martín
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Sekiya R, Arimura S, Moriguchi H, Haino T. Chirality generation on carbon nanosheets by chemical modification. NANOSCALE 2024. [PMID: 39585660 DOI: 10.1039/d4nr02952f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Chirality is an intriguing property of molecules, and an exciting area of study involves the generation of chirality in nanographenes (NGs), also known as graphene quantum dots. Unlike those synthesized through stepwise carbon-carbon bond formation by organic reactions (bottom-up method), NGs obtained by cutting parent carbons (top-down method) pose challenges in precisely regulating their three-dimensional structures by post-synthesis. This includes the incorporation of non-hexagonal rings and helicene-like structures in carbon frameworks. Currently, edge functionalization is the only method for generating chirality in NGs produced by the top-down method. While various chiral NGs have been synthesized through organic methods, examples of chemical modification remain rare due to limited structural information and the substantial size of NGs. However, these problems can be mitigated by disclosing the structures of NGs, particularly their edge structures. This mini-review focuses on recently published papers that have addressed the structural characterization of NGs and their chirality generation by edge modification. Comparing these NGs with those synthesized by organic synthesis will help to develop reasonable strategies for creating sophisticated chiral NGs. We hope this mini-review contributes to the advancement of NG-organic hybrid materials.
Collapse
Affiliation(s)
- Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| | - Saki Arimura
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruka Moriguchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
5
|
Kumar V, Dongre SD, Venugopal G, Narayanan A, Babu SS. Tailoring helical ends of π-extended [6]heterohelicenes to control optical, and electrochemical features. Chem Commun (Camb) 2024; 60:11944-11947. [PMID: 39352689 DOI: 10.1039/d4cc03707c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The inherent helical chirality and improved π-stacking capabilities endow helicenes with fascinating photophysical characteristics when decorated with lateral π-extensions. Here, we report the synthesis and physicochemical characterization of expanded hetero[6]helicenes fused with thiadiazole and selenadiazole rings at the helical ends. Comparing these heterohelicenes revealed the impact of the heteroatom-embedded aromatic rings on the excited state and redox features. A small structural variation of the terminal rings from thiadiazole to selenadiazole caused a striking change in the heterohelical nanographenes.
Collapse
Affiliation(s)
- Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Geethu Venugopal
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Aswini Narayanan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
6
|
Zhuang W, Hung FF, Che CM, Liu J. Nonalternant B,N-Embedded Helical Nanographenes Containing Azepines: Programmable Synthesis, Responsive Chiroptical Properties and Spontaneous Resolution into a Single-Handed Helix. Angew Chem Int Ed Engl 2024; 63:e202406497. [PMID: 39031496 DOI: 10.1002/anie.202406497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Heteroatom-embedded helical nanographenes (NGs) constitute an important and appealing class of intrinsically chiral materials. In this work, a series of B,N-embedded helical NGs (BN-HNGs) bearing azepines was synthesized via stepwise regioselective cyclodehydrogenation. First, the phenyl- or nitrogen-bridged dimers were efficiently clipped into highly congested model compounds 1 and 2. Later, the controllable Scholl reactions of the tetraphenyl-tethered precursor generated 1, 7 or 8 new C-C bonds, thereby establishing a robust method for the preparation of nonalternant BN-HNGs with up to 31 fused rings. The helical bilayer nature was unambiguously verified by X-ray diffraction analysis. The helical chirality was transferred to the stereogenic boron centers upon fluoride coordination, with a concave-concave structure to comply with the bilayer skeleton. Notably, the largest nonalternant BN-HNG (6) spontaneously resolved into a homochiral 41 helix structure as a molecular spiral staircase during crystallization via conglomerate formation at the single-crystal scale. The large twisted C2-symmetric π-surface and the dynamic chiral skeleton induced by curved azepines might have synergistic effects on self-recognition of enantiomers of 6 to achieve the intriguing spontaneous resolution behavior. The chiroptical properties of the enantiomer of 6 were further investigated, revealing that 6 had a strong chiroptical response in the visible range (400-700 nm).
Collapse
Affiliation(s)
- Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518005, P.R. China
| |
Collapse
|
7
|
Hiroto S, Chujo M. Donor-Acceptor-Donor Dyads with Electron-Rich π-Extended Azahelicenes to Panchromatic Absorbing Dyes. Chem Asian J 2024:e202400830. [PMID: 39215744 DOI: 10.1002/asia.202400830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Panchromatic dyes have been highly useful in the realm of optical devices. Here, we report that panchromatic dyes with heterohelicenes have been successfully synthesized using a donor-acceptor strategy. Our synthesis resulted in the creation of π-extended aza[5]helicene oligomers with butadiyne linkages, which displayed bathochromically shifted absorption and emission spectra. The solvent-dependent optical measurements revealed the intramolecular charge transfer characteristic of these molecules, and theoretical calculations described the biased molecular orbitals on the azahelicene units that generated the charge-transfer characteristic. Encouraged by these results, we also prepared donor-acceptor-donor dyads using azahelicenes and dimide derivatives, resulting in panchromatic absorbing characteristics covering the range from 250 nm to 800 nm. Theoretical calculations showed the presence of mixed charge-transfer transitions and localized transitions on the azahelicene units, which led to a broad light-absorbing property covering the near IR region. Additionally, we conducted measurements of circular dichroism and circularly polarized luminescence for the obtained products. The g-values were reduced by oligomerization, indicating that the lowest energy transitions were allowed in nature.
Collapse
Affiliation(s)
- Satoru Hiroto
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Moeko Chujo
- Graduate School of Human and Environmental Studies, Kyoto University, Nihonmatsu-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
8
|
Swain A, Radacki K, Braunschweig H, Ravat P. Helically twisted nanoribbons via stereospecific annulative π-extension reaction employing [7]helicene as a molecular wrench. Chem Sci 2024; 15:11737-11747. [PMID: 39092091 PMCID: PMC11290328 DOI: 10.1039/d4sc01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past decade, significant progress has been made in synthesizing atomically precise carbon nanostructures, particularly graphene nanoribbons (NRs), employing advanced synthetic methodologies. Despite these advancements, achieving control over the stereochemistry of twisted NRs has proven to be a formidable challenge. This manuscript presents a strategic approach to achieve absolute control over the single-handed helical conformation in a cove-edged NR. This strategy leverages enantiopure helicenes as a molecular wrench, intricately influencing the overall conformation of the NR. [7]helicenes stitched to the terminal K-regions of a conjugated pyrene NR through a stereospecific annulative π-extension reaction to produce a helically twisted NR with an end-to-end twist of 171°. Furthermore, a detailed investigation of the impact of twisting on the conformational population was studied by quantum chemical calculations.
Collapse
Affiliation(s)
- Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| |
Collapse
|
9
|
Qiu S, Valdivia AC, Zhuang W, Hung FF, Che CM, Casado J, Liu J. Nonalternant Nanographenes Containing N-Centered Cyclopenta[ ef]heptalene and Aza[7]Helicene Units. J Am Chem Soc 2024; 146:16161-16172. [PMID: 38720418 DOI: 10.1021/jacs.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| |
Collapse
|
10
|
Ju YY, Luo H, Li ZJ, Zheng BH, Xing JF, Chen XW, Huang LX, Nie GH, Zhang B, Liu J, Tan YZ. Helical Nanographenes Bearing Pentagon-Heptagon Pairs by Stepwise Dehydrocyclization. Angew Chem Int Ed Engl 2024; 63:e202402621. [PMID: 38443314 DOI: 10.1002/anie.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach. A wide variation in the molecular geometries and photophysical properties of these helical nanographenes was observed, with changes in the helical length of these structures and the introduction of the pentagon-heptagon pairs. The embedded pentagon-heptagon pairs reduced the oxidation potential of the synthesized helical nanographenes. The high isomerization energy barriers enabled the chiral resolution of the helicene enantiomers. Chiroptical investigations revealed remarkably enhanced circularly polarized luminescence and luminescence dissymmetry factors with an increasing number of the pentagon-heptagon pairs.
Collapse
Affiliation(s)
- Yang-Yang Ju
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huan Luo
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ze-Jia Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bing-Hui Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiang-Feng Xing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling-Xi Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guo-Hui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
11
|
Niu W, Fu Y, Deng Q, Qiu ZL, Liu F, Popov AA, Komber H, Ma J, Feng X. Enhancing Chiroptical Responses in Helical Nanographenes via Geometric Engineering of Double [7]Helicenes. Angew Chem Int Ed Engl 2024; 63:e202319874. [PMID: 38372180 DOI: 10.1002/anie.202319874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Helical nanographenes with high quantum yields and strong chiroptical responses are pivotal for developing circularly polarized luminescence (CPL) materials. Here, we present the successful synthesis of novel π-extended double [7]helicenes (ED7Hs) where two helicene units are fused at the meta- or para-position of the middle benzene ring, respectively, as the structural isomers of the reported ortho-fused ED7H. The structural geometry of these ED7Hs is clearly characterized by single-crystal X-ray analysis. Notably, this class of ED7Hs exhibits bright luminescence with high quantum yields exceeding 40 %. Through geometric regulation of two embedded [7]helicene units from ortho-, meta- to para-position, these ED7Hs display exceptional amplification in chiroptical responses. This enhancement is evident in a remarkable approximate fivefold increase in the absorbance and luminescence dissymmetry factors (gabs and glum), respectively, along with a boosted CPL brightness up to 176 M-1 cm-1, surpassing the performance of most helicene-based chiral NGs. Furthermore, DFT calculations elucidate that the geometric adjustment of two [7]helicene units allows the precise alignment of electric and magnetic transition dipole moments, leading to the observed enhancement of their chiroptical responses. This study offers an effective strategy for magnifying the CPL performance in chiral NGs, promoting their expanded application as CPL emitters.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Qingsong Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069, Dresden, Germany
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
12
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Venugopal G, Kumar V, Badrinarayan Jadhav A, Dongre SD, Khan A, Gonnade R, Kumar J, Santhosh Babu S. Boron- and Oxygen-Doped π-Extended Helical Nanographene with Circularly Polarised Thermally Activated Delayed Fluorescence. Chemistry 2024; 30:e202304169. [PMID: 38270385 DOI: 10.1002/chem.202304169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
Helical nanographenes have garnered substantial attention owing to their finely adjustable optical and semiconducting properties. The strategic integration of both helicity and heteroatoms into the nanographene structure, facilitated by a boron-oxygen-based multiple resonance (MR) thermally activated delayed fluorescence (TADF), elevates its photophysical and chiroptical features. This signifies the introduction of an elegant category of helical nanographene that combines optical (TADF) and chiroptical (CPL) features. In this direction, we report the synthesis, optical, and chiroptical properties of boron, oxygen-doped Π-extended helical nanographene. The π-extension induces distortion in the DOBNA-incorporated nanographene, endowing a pair of helicenes, (P)-B2NG, and (M)-B2NG exhibiting circularly polarized luminescence with glum of -2.3×10-3 and +2.5×10-3, respectively. B2NG exhibited MR-TADF with a lifetime below 5 μs, and a reasonably high fluorescence quantum yield (50 %). Our molecular design enriches the optical and chiroptical properties of nanographenes and opens up new opportunities in multidisciplinary fields.
Collapse
Affiliation(s)
- Geethu Venugopal
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Viksit Kumar
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashok Badrinarayan Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sangram D Dongre
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Abujunaid Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- NCIM-Resource Center, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sukumaran Santhosh Babu
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
14
|
Eichelmann R, Jeudy P, Schneider L, Zerhoch J, Mayer PR, Ballmann J, Deschler F, Gade LH. Chiral Bay-Alkynylated Tetraazaperylenes: Photophysics and Chiroptical Properties. Org Lett 2024; 26:1172-1177. [PMID: 38300988 DOI: 10.1021/acs.orglett.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Fully bay-alkynylated octaazaperopyrene dioxide (OAPPDO) derivatives were accessible through Stille cross coupling reaction of the corresponding bay-chlorinated derivatives. This steric congestion of the bay area led to helically chiral fluorophores, and chiral resolution of two derivatives allowed the investigation of their chiroptical properties as well as their kinetics of enantiomerization and the related thermodynamic parameters depending on the size of the terminal alkynyl substituent. An increase of the latter resulted in stable OAPPDO atropisomers at room temperature. The dynamics of the photoexcited states of two of the OAPPDO derivatives were investigated by transient absorption (TA) and time-resolved photoluminescence (tr-PL) spectroscopy.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Jeudy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jonathan Zerhoch
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Paula R Mayer
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Sala J, Capdevila L, Berga C, de Aquino A, Rodríguez L, Simon S, Ribas X. Luminescent Chiral Furanol-PAHs via Straightforward Ni-Catalysed C sp2 -F Functionalization: Mechanistic Insights into the Scholl Reaction. Chemistry 2024; 30:e202303200. [PMID: 37903141 DOI: 10.1002/chem.202303200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Here we report the stepwise synthesis of new nanographenes (NGs) and polycyclic aromatic hydrocarbons (PAHs) obtained via Scholl ring fusion applied at aromatic homologation compounds, which are obtained through one-step Ni-catalysed Csp2 -F functionalization. The latter are rapidly accessed valid precursors for the Scholl reaction, and screening of experimental conditions allowed us to describe for the first time furanol-bearing PAHs. Mechanistic insights are obtained by DFT to rationalize the formation of the furanol PAHs under moderately acidic conditions. All PAHs and NGs synthesized show moderate/weak fluorescent properties, and all PAHs crystallized show some degree of curvature and are obtained as racemic mixtures. Enantiomeric separation by chiral HPLC of one furanol-bearing PAH allowed the study of their chiroptical CD properties.
Collapse
Affiliation(s)
- Judith Sala
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Lorena Capdevila
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Cristina Berga
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Araceli de Aquino
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain), Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain), Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| |
Collapse
|
16
|
Niu W, Fu Y, Qiu ZL, Schürmann CJ, Obermann S, Liu F, Popov AA, Komber H, Ma J, Feng X. π-Extended Helical Multilayer Nanographenes with Layer-Dependent Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38048528 DOI: 10.1021/jacs.3c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Helical nanographenes (NGs) have attracted increasing attention recently because of their intrinsic chirality and exotic chiroptical properties. However, the efficient synthesis of extended helical NGs featuring a multilayer topology is still underdeveloped, and their layer-dependent chiroptical properties remain elusive. In this study, we demonstrate a modular synthetic strategy to construct a series of novel helical NGs (1-3) with a multilayer topology through a consecutive Diels-Alder reaction and regioselective cyclodehydrogenation from the readily accessible phenanthrene-based precursors bearing ethynyl groups. The resultant NGs exhibit bilayer, trilayer, and tetralayer structures with elongated π extension and rigid helical backbones, as unambiguously confirmed by single-crystal X-ray or electron diffraction analysis. We find that the photophysical properties of these helical NGs are notably influenced by the degree of π extension, which varies with the number of layers, leading to obvious redshifted absorption, a fast rising molar extinction coefficient (ε), and markedly boosted fluorescence quantum yield (Φf). Moreover, the embedded [7]helicene subunits in these NGs result in stable chirality, enabling both chiral resolution and exploration of their layer-dependent chiroptical properties. Profiting from the good alignment of electric and magnetic dipole moments determined by the multilayer structure, the resultant NGs exhibit excellent circular dichroism and circularly polarized luminescence response with unprecedented high CPL brightness up to 168 M-1 cm-1, rendering them promising candidates for CPL emitters.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | | | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| |
Collapse
|
17
|
Oró A, Romeo-Gella F, Perles J, Fernández-García JM, Corral I, Martín N. Tetrahedraphene: A Csp 3 -centered 3D Molecular Nanographene Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2023; 62:e202312314. [PMID: 37846849 DOI: 10.1002/anie.202312314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.
Collapse
Affiliation(s)
- Arturo Oró
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Fernando Romeo-Gella
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Inés Corral
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9. Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
18
|
Kumar V, Bharathkumar HJ, Dongre SD, Gonnade R, Krishnamoorthy K, Babu SS. Isomer Effect on Energy Storage of π-Extended S-Shaped Double[6]Heterohelicene. Angew Chem Int Ed Engl 2023; 62:e202311657. [PMID: 37782466 DOI: 10.1002/anie.202311657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/03/2023]
Abstract
Recently, chiral and nonplanar cutouts of graphene have been the favorites due to their unique optical, electronic, and redox properties and high solubility compared with their planar counterparts. Despite the remarkable progress in helicenes, π-extended heterohelicenes have not been widely explored. As an anode in a lithium-ion battery, the racemic mixture of π-extended double heterohelical nanographene containing thienothiophene core exhibited a high lithium storage capability, attaining a specific capacity of 424 mAh g-1 at 0.1 A g-1 with excellent rate capability and superior long-term cycling performance over 6000 cycles with negligible fade. As a first report, the π-extended helicene isomer (PP and MM), with the more interlayer distance that helps faster diffusion of ions, has exhibited a high capacity of 300 mAh g-1 at 2 A g-1 with long-term cycling performance over 1500 cycles compared to the less performing MP and PM isomer and racemic mixture (150 mAh g-1 at 2 A g-1 ). As supported by single-crystal X-ray analysis, a unique molecular design of nanographenes with a fixed (helical) molecular geometry, avoiding restacking of the layers, renders better performance as an anode in lithium-ion batteries. Interestingly, the recycled nanographene anode material displayed comparable performance.
Collapse
Affiliation(s)
- Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - H J Bharathkumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Polymer Science and Engineering Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kothandam Krishnamoorthy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Polymer Science and Engineering Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
19
|
Duan Y, Chen M, Hayashi H, Yamada H, Liu X, Zhang L. Buckybowl and its chiral hybrids featuring eight-membered rings and helicene units. Chem Sci 2023; 14:10420-10428. [PMID: 37800001 PMCID: PMC10548505 DOI: 10.1039/d3sc00658a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 10/07/2023] Open
Abstract
Here we report the synthesis of a novel buckybowl (7) with a high bowl-to-bowl inversion barrier (ΔG‡ = 38 kcal mol-1), which renders the rate of inversion slow enough at room temperature to establish two chiral polycyclic aromatic hydrocarbons (PAHs). By strategic fusion of eight-membered rings to the rim of 7, the chiral hybrids 8 and 9 are synthesized and display helicity and positive and negative curvature, allowing the enantiomers to be configurationally stable and their chiroptical properties are thoroughly examined. Computational and experimental studies reveal the enantiomerization mechanisms for the chiral hybrids and demonstrate that the eight-membered ring strongly affects the conformational stability. Because of its static and doubly curved conformation, 9 shows a high binding affinity towards C60. The OFET performance of 7-9 could be tuned and the hybrids show ambipolar characteristics. Notably, the 9·C60 cocrystal exhibits well-balanced ambipolar performance with electron and hole mobilities of up to 0.19 and 0.11 cm2 V-1 s-1, respectively. This is the first demonstration of a chiral curved PAH and its complex with C60 for organic devices. Our work presents new insight into buckybowl-based design of PAHs with configurational stability and intriguing optoelectronic properties.
Collapse
Affiliation(s)
- Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
20
|
Nishimura Y, Harimoto T, Suzuki T, Ishigaki Y. One-Pot Synthesis of Helical Azaheptalene and Chiroptical Switching of an Isolable Radical Cation. Chemistry 2023; 29:e202301759. [PMID: 37280181 DOI: 10.1002/chem.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
A nitrogen-centered heptalene, azaheptalene, was designed as a representative of a new class of redox-responsive molecules with a large steric strain that originates from the adjacent seven-membered rings. The pentabenzo derivative of azaheptalene was efficiently synthesized by a palladium-catalyzed one-pot reaction of commercially available reagents. Bromination led to mono- and dibrominated derivatives, the latter of which is interconvertible with isolable radical cation species exhibiting near-infrared absorption. Since the azaheptalene skeleton shows configurationally stable helicity with a large torsion angle, enantiomers could be successfully separated. Thus, optically pure azaheptalenes with P- or M-helicity showed strong chiroptical properties (|gabs |≥0.01), which could be changed by an electric potential.
Collapse
Affiliation(s)
- Yuta Nishimura
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| |
Collapse
|
21
|
Li R, Ma B, Li S, Lu C, An P. Chalcogen-doped, ( seco)-hexabenzocoronene-based nanographenes: synthesis, properties, and chalcogen extrusion conversion. Chem Sci 2023; 14:8905-8913. [PMID: 37621425 PMCID: PMC10445433 DOI: 10.1039/d3sc02595k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023] Open
Abstract
A series of chalcogen-doped nanographenes (NGs) and their oxides are described. Their molecular design is conceptually based on the insertion of different chalcogens into the hexa-peri-hexabenzocoronene (HBC) backbone. All the NGs adopt nonplanar conformations, which would show better solubility compared to planar HBC. Except for the oxygen-doped, saddle-shaped NG, the insertion of large chalcogens like sulfur and selenium leads to a seco-HBC-based, helical geometry. All the three-dimensional structures are unambiguously confirmed by single-crystal X-ray diffractometry. Their photophysical properties including UV-vis absorption, fluorescence, chiroptical, charge distribution, and orbital gaps are investigated experimentally or theoretically. The properties of each structure are significantly affected by the doped chalcogen and its related oxidative state. Notably, upon heating or adding an acid, the selenium-doped NG or its oxide undergoes a selenium extrusion reaction to afford seco-HBC or HBC quantitatively, which can be treated as precursors of hydrocarbon HBCs.
Collapse
Affiliation(s)
- Ranran Li
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Bin Ma
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Shengtao Li
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Chongdao Lu
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
22
|
Gao WB, Li Z, Tong T, Dong X, Qu H, Yang L, Sue ACH, Tian ZQ, Cao XY. Chiral Molecular Cage with Tunable Stereoinversion Barriers. J Am Chem Soc 2023; 145:17795-17804. [PMID: 37527407 DOI: 10.1021/jacs.3c04761] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The manipulation of chirality in molecular entities that rapidly interconvert between enantiomeric forms is challenging, particularly at the supramolecular level. Advances in controlling such dynamic stereochemical systems offer opportunities to understand chiral symmetry breaking and homochirality. Herein, we report the synthesis of a face-rotating tetrahedron (FRT), an organic molecular cage composed of tridurylborane facial units that undergo stereomutations between enantiomeric trefoil propeller-like conformations. After resolution, we show that the racemization barrier of the enantiopure FRT can be regulated in situ through the reversible binding of fluoride anions onto the tridurylborane moieties. Furthermore, the addition of an enantiopure phenylethanol to the FRT can effectively induce chirality of the molecular cage by preferentially binding to one of its enantiomeric conformers. This study presents a new paradigm for controlling dynamic chirality in supramolecular systems, which may have implications for asymmetric synthesis and dynamic stereochemistry.
Collapse
Affiliation(s)
- Wen-Bin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianyi Tong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Andrew C-H Sue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
23
|
Medina-Lopez D, Liu T, Osella S, Levy-Falk H, Rolland N, Elias C, Huber G, Ticku P, Rondin L, Jousselme B, Beljonne D, Lauret JS, Campidelli S. Interplay of structure and photophysics of individualized rod-shaped graphene quantum dots with up to 132 sp² carbon atoms. Nat Commun 2023; 14:4728. [PMID: 37550308 PMCID: PMC10406913 DOI: 10.1038/s41467-023-40376-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Nanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials. Here, we report the synthesis of a family of highly soluble and easily processable rod-shaped graphene quantum dots with fluorescence quantum yields up to 94%. This is uncommon for a red emission. The high solubility is directly related to the design of the structure, allowing for an accurate description of the photophysical properties of the graphene quantum dots both in solution and at the single molecule level. These photophysical properties were fully predicted by quantum-chemical calculations.
Collapse
Affiliation(s)
- Daniel Medina-Lopez
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - Thomas Liu
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Hugo Levy-Falk
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Nicolas Rolland
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Christine Elias
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Gaspard Huber
- Université Paris-Saclay, CEA, CNRS, NIMBE, LSDRM, 91191, Gif-sur-Yvette, France
| | - Pranav Ticku
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Loïc Rondin
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France
| | - Bruno Jousselme
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, 7000, Mons, Belgium
| | - Jean-Sébastien Lauret
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, 91400, Orsay, France.
| | - Stephane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
24
|
Mahlmeister B, Schembri T, Stepanenko V, Shoyama K, Stolte M, Würthner F. Enantiopure J-Aggregate of Quaterrylene Bisimides for Strong Chiroptical NIR-Response. J Am Chem Soc 2023. [PMID: 37285519 DOI: 10.1021/jacs.3c03367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral polycyclic aromatic hydrocarbons can be tailored for next-generation photonic materials by carefully designing their molecular as well as supramolecular architectures. Hence, excitonic coupling can boost the chiroptical response in extended aggregates but is still challenging to achieve by pure self-assembly. Whereas most reports on these potential materials cover the UV and visible spectral range, systems in the near infrared (NIR) are underdeveloped. We report a new quaterrylene bisimide derivative with a conformationally stable twisted π-backbone enabled by the sterical congestion of a fourfold bay-arylation. Rendering the π-subplanes accessible by small imide substituents allows for a slip-stacked chiral arrangement by kinetic self-assembly in low polarity solvents. The well dispersed solid-state aggregate reveals a sharp optical signature of strong J-type excitonic coupling in both absorption (897 nm) and emission (912 nm) far in the NIR region and reaches absorption dissymmetry factors up to 1.1 × 10-2. The structural elucidation was achieved by atomic force microscopy and single-crystal X-ray analysis which we combined to derive a structural model of a fourfold stranded enantiopure superhelix. We could deduce that the role of phenyl substituents is not only granting stable axial chirality but also guiding the chromophore into a chiral supramolecular arrangement needed for strong excitonic chirality.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Izquierdo-García P, Fernández-García JM, Medina Rivero S, Šámal M, Rybáček J, Bednárová L, Ramírez-Barroso S, Ramírez FJ, Rodríguez R, Perles J, García-Fresnadillo D, Crassous J, Casado J, Stará IG, Martín N. Helical Bilayer Nanographenes: Impact of the Helicene Length on the Structural, Electrochemical, Photophysical, and Chiroptical Properties. J Am Chem Soc 2023; 145:11599-11610. [PMID: 37129470 DOI: 10.1021/jacs.3c01088] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Helical bilayer nanographenes (HBNGs) are chiral π-extended aromatic compounds consisting of two π-π stacked hexabenzocoronenes (HBCs) joined by a helicene, thus resembling van der Waals layered 2D materials. Herein, we compare [9]HBNG, [10]HBNG, and [11]HBNG helical bilayers endowed with [9], [10], and [11]helicenes embedded in their structure, respectively. Interestingly, the helicene length defines the overlapping degree between the two HBCs (number of benzene rings involved in π-π interactions between the two layers), being 26, 14, and 10 benzene rings, respectively, according to the X-ray analysis. Unexpectedly, the electrochemical study shows that the lesser π-extended system [9]HBNG shows the strongest electron donor character, in part by interlayer exchange resonance, and more red-shifted values of emission. Furthermore, [9]HBNG also shows exceptional chiroptical properties with the biggest values of gabs and glum (3.6 × 10-2) when compared to [10]HBNG and [11]HBNG owing to the fine alignment in the configuration of [9]HBNG between its electric and magnetic dipole transition moments. Furthermore, spectroelectrochemical studies as well as the fluorescence spectroscopy support the aforementioned experimental findings, thus confirming the strong impact of the helicene length on the properties of this new family of bilayer nanographenes.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Samara Medina Rivero
- Departament of Physical Chemistry, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
- Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, U.K
| | - Michal Šámal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Sergio Ramírez-Barroso
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco J Ramírez
- Departament of Physical Chemistry, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Rafael Rodríguez
- Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226 CNRS─Univ Rennes, 35000 Rennes, France
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David García-Fresnadillo
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes (ISCR), UMR 6226 CNRS─Univ Rennes, 35000 Rennes, France
| | - Juan Casado
- Departament of Physical Chemistry, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Irena G Stará
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
27
|
Xu X, Muñoz-Mármol R, Vasylevskyi S, Villa A, Folpini G, Scotognella F, Maria Paternò G, Narita A. Synthesis of Bioctacene-Incorporated Nanographene with Near-Infrared Chiroptical Properties. Angew Chem Int Ed Engl 2023; 62:e202218350. [PMID: 36727244 DOI: 10.1002/anie.202218350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
We report the synthesis of a hexabenzoperihexacene (HBPH) with two incorporated octacene substructures, which was unambiguously characterized by single-crystal X-ray analysis. The theoretical isomerization barrier of the (P,P)-/(P,M)-forms was estimated to be 38.4 kcal mol-1 , and resolution was achieved by chiral HPLC. Notably, the enantiomers exhibited opposite circular dichroism responses up to the near-infrared (NIR) region (830 nm) with a high gabs value of 0.017 at 616 nm. Moreover, HBPH demonstrated NIR emission with a maximum at 798 nm and an absolute PLQY of 41 %. The excited-state photophysical properties of HBPH were investigated by ultrafast transient absorption spectroscopy, revealing an intriguing feature that was attributed to the rotational and/or conformational dynamics of HBPH after excitation. These results provide new insight into the design of chiral nanographene with NIR optical properties for potential chiroptical applications.
Collapse
Affiliation(s)
- Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Rafael Muñoz-Mármol
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Serhii Vasylevskyi
- Engineering Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Andrea Villa
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Giulia Folpini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70, 20133, Milano, Italy
| | - Francesco Scotognella
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy
| | - Giuseppe Maria Paternò
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133, Milano, Italy.,Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70, 20133, Milano, Italy
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
28
|
Gan F, Shen C, Cui W, Qiu H. [1,4]Diazocine-Embedded Electron-Rich Nanographenes with Cooperatively Dynamic Skeletons. J Am Chem Soc 2023; 145:5952-5959. [PMID: 36795894 DOI: 10.1021/jacs.2c13823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Curved nanographenes (NGs) are emerging as promising candidates for organic optoelectronics, supramolecular materials, and biological applications. Here we report a distinctive type of curved NGs bearing a [1,4]diazocine core that is fused with four pentagonal rings. This is formed by Scholl-type cyclization of two adjacent carbazole moieties through an unusual diradical cation mechanism followed by C-H arylation. Owing to the strain in the unique 5-5-8-5-5-membered ring skeleton, the resulting NG adopts an interesting concave-convex cooperatively dynamic structure. By peripheral π-extension, a helicene moiety with fixed helical chirality can be further mounted to modulate the vibration of the concave-convex structure, through which the distant bay region of the curved NG inherits the chirality of the helicene moiety in a reversed fashion. The [1,4]diazocine-embedded NGs show typical electron-rich characteristics and form charge transfer complexes with tunable emissions with a series of electron acceptors. The relatively protruding armchair edge also allows the fusion of three NGs into a C2 symmetric triple diaza[7]helicene which reveals a subtle balance of fixed and dynamic chirality.
Collapse
Affiliation(s)
- Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute of Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengshuo Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenying Cui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute of Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Zhang B, Ruan L, Zhang YK, Zhang H, Li R, An P. Azepine-Embedded Seco-Hexabenzocoronene-Based Helix Nanographenes: Access to Modification of the Core by N-H Functionalization. Org Lett 2023; 25:732-737. [PMID: 36700631 DOI: 10.1021/acs.orglett.2c04097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Contorted polycyclic aromatic hydrocarbons (PAHs) or nanographenes (NGs) have received increasing attention and are mostly prepared by "bottom-up" strategies. Apparently, systematically tuning the properties of NGs for application is important but challenging. Here, a new type of helix, azepine-embedded NGs, were designed and synthesized by the introduction of NH into the hexa-peri-hexabenzocoronene (HBC) core. We demonstrate that this nitrogen-doped NG can be functionalized via N-H derivatization. Through modifications to the NH site with a chiral auxiliary reagent, optical resolution of the chiral NG was achieved. Meanwhile, it was found that by introducing various aryl groups with electron-donating or electron-withdrawing substituents, the emission intensity and the fluorescence mechanism can be modulated. Compared to the original NH-containing NG, the modified derivative exhibited improved fluorescence efficiency and tunable emission wavelength. A functionalized structure of benzoic acid with considerably improved fluorescence efficiency, hydrophilicity, and membrane permeability to stain the live cells was proved.
Collapse
Affiliation(s)
- Bin Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Lan Ruan
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Yi-Kang Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Haifan Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Ranran Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
30
|
Izquierdo‐García P, Fernández‐García JM, Perles J, Fernández I, Martín N. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angew Chem Int Ed Engl 2023; 62:e202215655. [PMID: 36495528 PMCID: PMC10107473 DOI: 10.1002/anie.202215655] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate (1 a, b). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2, or the expected dehydrogenation reaction leading solely to the helical nanographene 3. The crystal structures of four of the new spiro compounds (syn 2, syn 9, anti 9 and syn 10) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.
Collapse
Affiliation(s)
- Patricia Izquierdo‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de MonocristalSIdIUniversidad Autónoma de Madridc/Francisco Tomás y Valiente, 7 Campus de Cantoblanco28049MadridSpain
| | - Israel Fernández
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
- IMDEA-NanocienciaC/Faraday, 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
31
|
Liu G, Zhang W, Xiao Y, Cao J, Liang Y, Liu G, Zhou L, Gong J, Wang J, Wang Q. Dimerized Nitrogen-Annulated Perylene Synthesized from 1,6-Diazecine as Chiral Emitter. Chemistry 2023; 29:e202203550. [PMID: 36720699 DOI: 10.1002/chem.202203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
In this work, nitrogen-annulated perylene (NP) was dimerized into one framework connected by two nitrogen atoms, generating the target molecule of DNP-DA. Owing to the substructure of 1,6-diazecine ten-membered ring, DNP-DA illustrates helical chirality with moderate dissymmetry factor, elevated molecular levels, expanded conjugation and supramolecular interactions with acceptors etc. Notably, DNP-DA represents a limited example of nitrogen-perylene based CPL emitter with glum around 6×10-3 . Intrigued by the facile fabrication via a simple amination-cross coupling sequence and other above advancing features, this work demonstrates the potential generality of utilizing 1,6-diazecine as a chiral unit to build CPL-active materials.
Collapse
Affiliation(s)
- Guiru Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Wenhao Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yao Xiao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jing Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Yamei Liang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Guanghua Liu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianye Gong
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianguo Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
32
|
Vázquez‐Nakagawa M, Rodríguez‐Pérez L, Martín N, Herranz MÁ. Supramolecular Assembly of Edge Functionalized Top-Down Chiral Graphene Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202211365. [PMID: 36044587 PMCID: PMC9828669 DOI: 10.1002/anie.202211365] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/12/2023]
Abstract
The construction of supramolecular assemblies of heterogeneous materials at the nanoscale is an open challenge in science. Herein, new chiral graphene quantum dots (GQDs) prepared by amidation reaction introducing chiral amide groups and pyrene moieties into the periphery of GQDs are described. The analytical and spectroscopic data show an efficient chemical functionalization and the morphological study of the supramolecular ensembles using SEM and AFM microscopies reveals the presence of highly ordered fibers of several micrometers length. Fluorescence studies, using emission spectroscopy and confocal microscopy, reveal that the fibers stem from the π-π stacking of both pyrenes and GQDs, together with the hydrogen bonding interactions of the amide groups. Circular dichroism analysis supports the chiral nature of the supramolecular aggregates.
Collapse
Affiliation(s)
- Mikiko Vázquez‐Nakagawa
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
| | - Laura Rodríguez‐Pérez
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
| | - Nazario Martín
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
- IMDEA-Nanocienciac/Faraday 9, Campus Cantoblanco28049MadridSpain
| | - M. Ángeles Herranz
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid28040MadridSpain
| |
Collapse
|
33
|
Hashikawa Y, Okamoto S, Sadai S, Murata Y. Chiral Open-[60]Fullerene Ligands with Giant Dissymmetry Factors. J Am Chem Soc 2022; 144:18829-18833. [PMID: 36169337 DOI: 10.1021/jacs.2c09556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The optical resolution of open-[60]fullerenes has been limited to only one example since 1998, while the recent advances revealed the excellence of fullerenes as revisited chiral functional materials. Different from conventional chiral induction on [60]fullerene by a multiple-functionalization, a random disruption of the spherical π-conjugation is avoidable for open-[60]fullerenes. Moreover, the macrocyclic orifices enable a metal coordination which endows modulated electronic structures on chiral chromophores. Herein, we showcase Li+-coordination behavior and optical resolution of three chiral open-[60]fullerene ligands, showing a giant dissymmetry factor up to 0.20 owing to a congenital topology of the spherical π-conjugation.
Collapse
Affiliation(s)
- Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shu Okamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shumpei Sadai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
34
|
Vázquez-Nakagawa M, Rodríguez-Pérez L, Martin N, Herranz MÁ. Supramolecular Assembly of Edge Functionalized Top‐down Chiral Graphene Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Nazario Martin
- University Complutense Faculty of Chemistry 28040 Madrid SPAIN
| | | |
Collapse
|
35
|
Zhou Z, Zhu Y, Fernández-García JM, Wei Z, Fernández I, Petrukhina MA, Martín N. Stepwise reduction of a corannulene-based helical molecular nanographene with Na metal. Chem Commun (Camb) 2022; 58:5574-5577. [PMID: 35353101 DOI: 10.1039/d2cc00971d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemical reduction of a corannulene-based molecular nanographene, C76H64 (1), with Na metal in the presence of 18-crown-6 afforded the doubly-reduced state of 1. This reduction provokes a distortion of the helicene core and has a significant impact on the aromaticity of the system.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA. .,School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China
| | - Yikun Zhu
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA.
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA.
| | - Israel Fernández
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany, NY 12222, USA.
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain. .,IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
36
|
Hou ICY, Hinaut A, Scherb S, Meyer E, Narita A, Müllen K. Synthesis of Giant Dendritic Polyphenylenes with 366 and 546 Carbon Atoms and their High-vacuum Electrospray Deposition. Chem Asian J 2022; 17:e202200220. [PMID: 35381624 PMCID: PMC9321752 DOI: 10.1002/asia.202200220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Indexed: 11/21/2022]
Abstract
Dendritic polyphenylenes (PPs) can serve as precursors of nanographenes (NGs) if their structures represent 2D projections without overlapping benzene rings. Here, we report the synthesis of two giant dendritic PPs fulfilling this criteria with 366 and 546 carbon atoms by applying a “layer‐by‐layer” extension strategy. Although our initial attempts on their cyclodehydrogenation toward the corresponding NGs in solution were unsuccessful, we achieved their deposition on metal substrates under ultrahigh vacuum through the electrospray technique. Scanning probe microscopy imaging provides valuable information on the possible thermally induced partial planarization of such giant dendritic PPs on a metal surface.
Collapse
Affiliation(s)
- Ian Cheng-Yi Hou
- Max-Planck-Institut fur Polymerforschung, synthetic chemitry, GERMANY
| | - Antoine Hinaut
- University of Basel: Universitat Basel, physics, GERMANY
| | | | - Ernst Meyer
- University of Basel: Universitat Basel, physics, GERMANY
| | - Akimitsu Narita
- Max-Planck-Institut für Polymerforschung: Max-Planck-Institut fur Polymerforschung, synthetic chemistry, GERMANY
| | - Klaus Müllen
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, GERMANY
| |
Collapse
|