1
|
Bednarska-Szczepaniak K, Hałagan K, Szwed M, Przelazły E, Leśnikowski ZJ. Quantum Chemical and Biological Insights into Redox Activity of Metallacarborane Complexes in Cancer Cells. J Chem Inf Model 2024; 64:6521-6541. [PMID: 39140958 DOI: 10.1021/acs.jcim.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A relationship between the electronic properties of metal ions in metallacarboranes and their ability to modulate mitochondrial oxidase activity and membrane hyperpolarization in cancer cells was demonstrated. Quantum chemistry methods, including DFT and molecular dynamics simulations, were used to understand the oxidized and reduced forms of metallacarboranes and their intramolecular rotatory behavior. According to the low-spin assumption for metal ions, the intramolecular oscillations of cluster ligands in metallacarboranes are significantly influenced by the type of metal and correspond to the cellular uptake of these complexes in vitro. In particular, the low-spin iron compound may be a new xenogeneic booster of redox homeostasis in cancer cells resistant to cisplatin, which induces metabolic 'exhaustion' of cancer cells and their death.
Collapse
Affiliation(s)
- Katarzyna Bednarska-Szczepaniak
- Laboratory of Medicinal Chemistry, Polish Academy of Sciences, Institute of Medical Biology, 106 Lodowa, 92-232 Lodz, Poland
| | - Krzysztof Hałagan
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Institute of Biophysics, Pomorska 141/143, 90-236 Lodz, Poland
| | - Ewelina Przelazły
- Laboratory of Medicinal Chemistry, Polish Academy of Sciences, Institute of Medical Biology, 106 Lodowa, 92-232 Lodz, Poland
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Polish Academy of Sciences, Institute of Medical Biology, 106 Lodowa, 92-232 Lodz, Poland
| |
Collapse
|
2
|
Nekvinda J, Bavol D, Litecká M, Tüzün EZ, Dušek M, Grüner B. Synthetic routes to carbon substituted cobalt bis(dicarbollide) alkyl halides and aromatic amines along with closely related irregular pathways. Dalton Trans 2024; 53:5816-5826. [PMID: 38465373 DOI: 10.1039/d4dt00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Carbon substituted cobalt bis(dicarbollide) alkyl halides [(1-X-(CH2)n-1,2-C2B9H10)(1,2-C2B9H11)-3,3'-Co]Me4N (X = Br, I; n = 1-3) are prepared in high yields (>90%) from their corresponding alcohols without side skeletal substitutions. These species offer access to the synthesis of aromatic cobalt bis(dicarbollide) amines, however only for particular terminal halogen substitution, the propylene pendant arm, and under appropriately controlled reaction conditions. Thus, the compounds substituted at cage carbon atoms with a propylene linker and terminal aromatic amine groups could be prepared. In other cases, numerous irregular reaction pathways occur, undoubtedly as a consequence of the bulky anionic boron cage in close proximity to the reaction site. Among them, an unusual intramolecular hydroboration forming rigidified carbon-to-boron bridged isomeric anions with an asymmetric structure that correspond to formulae [(1,8'-μ-C2H4)-(1,2-C2B9H10)(1',2'-C2B9H10)-3,3'-Co]- and [(1,7'-μ-C2H4)-(1,2-C2B9H10)(1',2'-C2B9H10)-3,3'-Co]- is described herein and the former isomer is structurally characterized. This product with a restrained geometry is widely accessible through nucleophile and/or thermally induced decomposition of (pseudo)halides attached to the cage via an ethylene linker. Surprisingly enough, also doubly bridged isomeric species [(1,8-μ-C2H4-1,2-C2B9H9)2-3,3'-Co]- and [(1,7-μ-C2H4-1,2-C2B9H9)2-3,3'-Co]- are available in good yield using these methods. Furthermore, other more typical side reactions are discussed, i.e. nucleophilic reactions of propyl halides with Me3N formed apparently by disproportionation of Me4N+ at higher temperatures or with pyridine used as a base.
Collapse
Affiliation(s)
- Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 182 21, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, Husinec-Řež 25068, Czech Republic.
| |
Collapse
|
3
|
Horáček O, Dhaubhadel U, Holub J, Grüner B, Armstrong DW, Kučera R. Employment of chiral columns with superficially porous particles in chiral separations of cobalt bis (dicarbollide) and nido-7,8-C 2 B 9 H 12 (1-) derivatives. Chirality 2023; 35:937-951. [PMID: 37461229 DOI: 10.1002/chir.23606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 11/17/2023]
Abstract
Derivatives of the nido-7,8-C2 B9 H12 (1-) (dicarbollide ion) and [3,3'-Co-(1,2-C2 B9 H11 )2 ](1-) cobalt sandwich (COSAN) ion represent groups of extremely chemically and thermally stable abiotic compounds. They are being investigated in many research areas, that is, medicinal chemistry, material sciences, analytical chemistry, and electrochemistry. The chirality of these compounds remains still grossly overlooked, what is also reflected in limited number of reports on their chiral separations. Continued progress depends on reliable, fast, and cost-effective methods for such separations. Recently, chiral separations of COSAN derivatives were achieved in liquid chromatography and supercritical fluid chromatography. Only five anionic derivatives of nido-7,8-C2 B9 H12 (1-) were successfully enantioseparated in liquid chromatography. Efforts to separate anionic nido-7,8-C2 B9 H12 (1-) in supercritical chromatography have failed, and only a few dicarbollide ions were separated using liquid chromatography. Generally, all chiral separations in liquid chromatography took about 30 min. Herein, we identify a versatile column capable of separating both COSAN and nido-7,8-C2 B9 H12 (1-) derivatives and achieve faster analyses times employing commercially available superficially porous chiral stationary phases. The semisynthetic hydroxypropyl β-cyclodextrin-based column (CDShell-RSP) is identified as the column of choice from the tested columns by separating 19 of 27 compounds from each structural motifs tested mainly in less than 10 min. The dihydroxyalkyl, oxygen-bridged hydroxyalkyl, and bisphenylene-bridged COSAN derivatives were baseline separated in less than 5 min exceeding the results of supercritical fluid chromatography. Methods developed herein will aid synthetic chemists without the possession of a supercritical fluid chromatograph to achieve fast chiral separations of COSAN and derivatives of nido-7,8-C2 B9 H12 (1-) on a common liquid chromatograph without the need of dedicated instrumentation.
Collapse
Affiliation(s)
- Ondřej Horáček
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Umang Dhaubhadel
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Josef Holub
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Řež, Czech Republic
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Pazderová L, Tüzün EZ, Bavol D, Litecká M, Fojt L, Grűner B. Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1 -) Ion and Recent Progress in Boron Substitution. Molecules 2023; 28:6971. [PMID: 37836814 PMCID: PMC10574808 DOI: 10.3390/molecules28196971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
Collapse
Affiliation(s)
- Lucia Pazderová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Ece Zeynep Tüzün
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
- Department of Inorganic Chemistry, Faculty of Natural Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Miroslava Litecká
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic; (L.P.); (E.Z.T.); (D.B.); (M.L.)
| |
Collapse
|
5
|
Horáček O, Nováková L, Tüzün E, Grüner B, Švec F, Kučera R. Advanced Tool for Chiral Separations of Anionic and Zwitterionic (Metalla)carboranes: Supercritical Fluid Chromatography. Anal Chem 2022; 94:17551-17558. [PMID: 36475613 DOI: 10.1021/acs.analchem.2c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The continuous expansion of research in the field of stable carboranes and their wide potential in the drug design require carrying out fundamental studies regarding their chiral separations. Although supercritical fluid chromatography (SFC) is a viable technique for fast enantioseparations, no investigation concerning boron cluster compounds has been done yet. We aimed at the development of a straightforward method enabling chiral separations of racemic mixtures of anionic cluster carboranes and metallacarboranes that represent an analytical challenge. The fast gradient screening testing nine polysaccharide-based columns was used. The key parameters affecting the selectivity were the type of chiral selector, the type of alcohol, and the base in cosolvent. Moreover, the addition of acetonitrile or water to the cosolvent was identified as an effective tool for decreasing the analysis time while preserving the resolution. After the optimization, the chiral separations of 19 out of 20 selected compounds were achieved in less than 10 min. These results demonstrate the clear advantage of SFC over chiral separations using HPLC in terms of both analysis time and structural variety of successfully separated compounds.
Collapse
Affiliation(s)
- Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Ece Tüzün
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 25068 Řež, Czech Republic.,Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague 2, 2030 Hlavova, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Horáček O, Marvalová J, Štilcová K, Holub J, Grüner B, Kučera R. Reversed-phase chromatography as an effective tool for the chiral separation of anionic and zwitterionic carboranes using polysaccharide-based chiral selectors. J Chromatogr A 2022; 1672:463051. [DOI: 10.1016/j.chroma.2022.463051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
|
7
|
Fojt L, Grüner B, Nekvinda J, Tűzűn EZ, Havran L, Fojta M. Electrochemistry of Cobalta Bis(dicarbollide) Ions Substituted at Carbon Atoms with Hydrophilic Alkylhydroxy and Carboxy Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061761. [PMID: 35335124 PMCID: PMC8953506 DOI: 10.3390/molecules27061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022]
Abstract
In this study we explore the effect on the electrochemical signals in aqueous buffers of the presence of hydrophilic alkylhydroxy and carboxy groups on the carbon atoms of cobalta bis(dicarbollide) ions. The oxygen-containing exo-skeletal substituents of cobalta bis(dicarbollide) ions belong to the perspective building blocks that are considered for bioconjugation. Carbon substitution provides wider versatility and applicability in terms of the flexibility of possible chemical pathways. However, until recently, the electrochemistry of compounds substituted only on boron atoms could be studied, due to the unavailability of carbon-substituted congeners. In the present study, electrochemistry in aqueous phosphate buffers is considered along with the dependence of electrochemical response on pH and concentration. The compounds used show electrochemical signals around −1.3 and +1.1 V of similar or slightly higher intensities than in the parent cobalta bis(dicarbollide) ion. The signals at positive electrochemical potential correspond to irreversible oxidation of the boron cage (the C2B9 building block) and at negative potential correspond to the reversible redox process of (CoIII/CoII) at the central atom. Although the first signal is typically sharp and its potential can be altered by a number of substituents, the second signal is complex and is composed of three overlapping peaks. This signal shows sigmoidal character at higher concentrations and may be used as a diagnostic tool for aggregation in solution. Surprisingly enough, the observed effects of the site of substitution (boron or carbon) and between individual groups on the electrochemical response were insignificant. Therefore, the substitutions would preserve promising properties of the parent cage for redox labelling, but would not allow for the further tuning of signal position in the electrochemical window.
Collapse
Affiliation(s)
- Lukáš Fojt
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (L.H.); (M.F.)
- Correspondence:
| | - Bohumír Grüner
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, 250 68 Řež, Czech Republic; (B.G.); (J.N.); (E.Z.T.)
| | - Jan Nekvinda
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, 250 68 Řež, Czech Republic; (B.G.); (J.N.); (E.Z.T.)
| | - Ece Zeynep Tűzűn
- Department of Synthesis, Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní 1001, 250 68 Řež, Czech Republic; (B.G.); (J.N.); (E.Z.T.)
| | - Luděk Havran
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (L.H.); (M.F.)
| | - Miroslav Fojta
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (L.H.); (M.F.)
| |
Collapse
|