1
|
He Y, Collado JT, Iuliano JN, Woroniecka HA, Hall CR, Gil AA, Laptenok SP, Greetham GM, Illarionov B, Bacher A, Fischer M, French JB, Lukacs A, Meech SR, Tonge PJ. Elucidating the Signal Transduction Mechanism of the Blue-Light-Regulated Photoreceptor YtvA: From Photoactivation to Downstream Regulation. ACS Chem Biol 2024; 19:696-706. [PMID: 38385342 PMCID: PMC10949197 DOI: 10.1021/acschembio.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV β-scaffold in signal transduction.
Collapse
Affiliation(s)
- YongLe He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Helena A. Woroniecka
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher R. Hall
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Agnieszka A. Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Boris Illarionov
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Adelbert Bacher
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
- TUM School
of Natural Sciences, Technical University
of Munich, 85747 Garching, Germany
| | - Markus Fischer
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Jarrod B. French
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
2
|
Maity S, Price BD, Wilson CB, Mukherjee A, Starck M, Parker D, Wilson MZ, Lovett JE, Han S, Sherwin MS. Triggered Functional Dynamics of AsLOV2 by Time-Resolved Electron Paramagnetic Resonance at High Magnetic Fields. Angew Chem Int Ed Engl 2023; 62:e202212832. [PMID: 36638360 DOI: 10.1002/anie.202212832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
We present time-resolved Gd-Gd electron paramagnetic resonance (TiGGER) at 240 GHz for tracking inter-residue distances during a protein's mechanical cycle in the solution state. TiGGER makes use of Gd-sTPATCN spin labels, whose favorable qualities include a spin-7/2 EPR-active center, short linker, narrow intrinsic linewidth, and virtually no anisotropy at high fields (8.6 T) when compared to nitroxide spin labels. Using TiGGER, we determined that upon light activation, the C-terminus and N-terminus of AsLOV2 separate in less than 1 s and relax back to equilibrium with a time constant of approximately 60 s. TiGGER revealed that the light-activated long-range mechanical motion is slowed in the Q513A variant of AsLOV2 and is correlated to the similarly slowed relaxation of the optically excited chromophore as described in recent literature. TiGGER has the potential to valuably complement existing methods for the study of triggered functional dynamics in proteins.
Collapse
Affiliation(s)
- Shiny Maity
- Dept. of Chemistry and Biochemistry, Univ. of California, Santa Barbara, CA 93106, USA
| | - Brad D Price
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
| | - C Blake Wilson
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA.,Laboratory of Chemical Physics, Nat. Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892-0520, USA
| | - Arnab Mukherjee
- Dept. of Chemical Engineering, Univ. of California, Santa Barbara, CA 93106, USA
| | | | - David Parker
- Dept. of Chemistry, Univ. of Durham, Durham, DH1 3LE, UK
| | - Maxwell Z Wilson
- Dept. of Molecular, Cellular, and Developmental Biology, Univ. of California, Santa Barbara, CA 93106, USA
| | - Janet E Lovett
- School of Physics and Astronomy and the Biomedical Sciences Research Complex, Univ. of St. Andrews, St. Andrews, KY16 9SS, UK
| | - Songi Han
- Dept. of Chemistry and Biochemistry, Univ. of California, Santa Barbara, CA 93106, USA
| | - Mark S Sherwin
- Dept. of Physics, Univ. of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
3
|
Chaudhari AS, Chatterjee A, Domingos CAO, Andrikopoulos PC, Liu Y, Andersson I, Schneider B, Lórenz-Fonfría VA, Fuertes G. Genetically encoded non-canonical amino acids reveal asynchronous dark reversion of chromophore, backbone and side-chains in EL222. Protein Sci 2023; 32:e4590. [PMID: 36764820 PMCID: PMC10019195 DOI: 10.1002/pro.4590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Photoreceptors containing the light-oxygen-voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark-state recovery are not well understood. Here we incorporated the non-canonical amino acid p-cyanophenylalanine (CNF) by genetic code expansion technology at forty-five positions of the bacterial transcription factor EL222. Screening of light-induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time-resolved multi-probe UV/Visible and IR spectroscopy experiments of the lit-to-dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN-cysteinyl adduct scission, folding of α-helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N-terminal A'α extension of the LOV domain in controlling EL222 photocycle length. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aditya S Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Aditi Chatterjee
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Catarina A O Domingos
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Lavradio, Portugal
| | | | - Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Inger Andersson
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
4
|
Liu Y, Chaudhari AS, Chatterjee A, Andrikopoulos PC, Picchiotti A, Rebarz M, Kloz M, Lorenz-Fonfria VA, Schneider B, Fuertes G. Sub-Millisecond Photoinduced Dynamics of Free and EL222-Bound FMN by Stimulated Raman and Visible Absorption Spectroscopies. Biomolecules 2023; 13:161. [PMID: 36671546 PMCID: PMC9855911 DOI: 10.3390/biom13010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Time-resolved femtosecond-stimulated Raman spectroscopy (FSRS) provides valuable information on the structural dynamics of biomolecules. However, FSRS has been applied mainly up to the nanoseconds regime and above 700 cm-1, which covers only part of the spectrum of biologically relevant time scales and Raman shifts. Here we report on a broadband (~200-2200 cm-1) dual transient visible absorption (visTA)/FSRS set-up that can accommodate time delays from a few femtoseconds to several hundreds of microseconds after illumination with an actinic pump. The extended time scale and wavenumber range allowed us to monitor the complete excited-state dynamics of the biological chromophore flavin mononucleotide (FMN), both free in solution and embedded in two variants of the bacterial light-oxygen-voltage (LOV) photoreceptor EL222. The observed lifetimes and intermediate states (singlet, triplet, and adduct) are in agreement with previous time-resolved infrared spectroscopy experiments. Importantly, we found evidence for additional dynamical events, particularly upon analysis of the low-frequency Raman region below 1000 cm-1. We show that fs-to-sub-ms visTA/FSRS with a broad wavenumber range is a useful tool to characterize short-lived conformationally excited states in flavoproteins and potentially other light-responsive proteins.
Collapse
Affiliation(s)
- Yingliang Liu
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | - Aditya S. Chaudhari
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Aditi Chatterjee
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | | | - Alessandra Picchiotti
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
- The Hamburg Centre for Ultrafast Imaging, Hamburg University, 22761 Hamburg, Germany
| | - Mateusz Rebarz
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | - Miroslav Kloz
- ELI Beamlines Facility Extreme Light Infrastructure ERIC, 25241 Dolni Brezany, Czech Republic
| | | | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| | - Gustavo Fuertes
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|