1
|
Harris T. Physical and Chemical Characterization of Aerosols Produced from Commercial Nicotine Salt-Based E-Liquids. Chem Res Toxicol 2025; 38:115-128. [PMID: 39654291 DOI: 10.1021/acs.chemrestox.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Nicotine salt e-liquids are widely used in pod-style and disposable electronic nicotine delivery systems (ENDS). Studying the physical and chemical properties of their emissions can inform their toxicological impact. A prior companion study reported the harmful and potentially harmful constituents (HPHCs) and aerosol particle sizes produced from laboratory-made nicotine salt and freebase nicotine e-liquids to assess the effects of varying nicotine salts and nicotine protonation. This study reports the HPHCs and aerosol particle sizes for commercial brand nicotine salt and freebase nicotine formulations. Several tobacco, fruit, mint, and menthol flavored e-liquids of varying nicotine concentrations were tested with open and closed pod-style ENDS and a disposable ENDS. The nicotine yields showed a positive correlation with aerosol output, and the aerosol nicotine mass fractions reflected the e-liquid nicotine quantities. Benzene, crotonaldehyde, and 2,3-pentanedione were not detected or quantified in any of the aerosols, whereas acetaldehyde, acrolein, diacetyl, and formaldehyde were each quantified in at least one of the tested conditions. The aerosol particle number concentrations indicated that 97-99% of the aerosols for all the ENDS tested were composed of ultrafine (<0.1 μm) and fine (0.1-1.0 μm) aerosol particle sizes, and the mass median aerodynamic diameters ranged from 1.0 to 1.4 μm. The estimated regional deposition fractions and total respiratory depositions were calculated for all the ENDS conditions using a dosimetry modeling program. The calculations predicted depositions would predominantly occur in the pulmonary and head regions with a low total respiratory deposition (≤41%) calculated for all ENDS tested. This study broadens the availability of high-quality and reliable testing data of popular commercial nicotine salt-based ENDS for the scientific and regulatory communities. In conjunction with the previous work on the model e-liquids, these studies offer an extensive examination of the HPHCs and physical aerosol parameters of nicotine salt e-liquids.
Collapse
Affiliation(s)
- Trevor Harris
- Office of Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Belyakova YY, Radulov PS, Novikov RA, Prolomov IV, Krivoshchapov NV, Medvedev MG, Yaremenko IA, Alabugin IV, Terent'ev AO. FeCl 2-Mediated Rearrangement of Aminoperoxides into Functionalized Tetrahydrofurans: Dynamic Non-innocence of O-Ligands at an Fe Center Coordinates a Radical Cascade. J Am Chem Soc 2025; 147:965-977. [PMID: 39727309 DOI: 10.1021/jacs.4c14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The selective reaction of cyclic aminoperoxides with FeCl2 proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans. Although the aminoperoxide cores undergo multiple bond scissions, this cascade is atom-economical. Computational analysis shows that the O-ligands at the Fe center have enough radical character to promote C-C bond fragmentation and subsequent cyclization. The stereoelectronic flexibility of oxygen, combined with iron's capacity to stabilize multiple reactive intermediates during the multistep cascade, explains the efficiency of this new atom-economic peroxide rearrangement.
Collapse
Affiliation(s)
- Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Ilya V Prolomov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- Mendeleev University of Chemical Technology, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| |
Collapse
|
3
|
Ogasahara R, Mae M, Matsuura K, Yoshimura S, Ishimoto T, Udagawa T, Harada K, Fujioka H, Kamiya M, Asada R, Uchiyama H, Tozuka Y, Akai S, Sawama Y. Photocatalytic Multiple Deuteration of Polyethylene Glycol Derivatives Using Deuterium Oxide. Chemistry 2024:e202404204. [PMID: 39714818 DOI: 10.1002/chem.202404204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Deuterated molecules are of growing interest because of the specific characteristics of deuterium, such as stronger C-D bonds being stronger than C-H bonds. Polyethylene glycols (PEGs) are widely utilized in scientific fields (e. g., drug discovery and material sciences) as linkers and for the improvement of various properties (solubility in water, stability, etc.) of mother compounds. Therefore, deuterated PEGs can be used as novel tools for drug discovery. Although the H/D exchange reaction (deuteration) is a powerful and straightforward method to produce deuterated compounds, the deuteration of PEGs bearing many unactivated C(sp3)-H bonds has not been developed. Herein, we report the photocatalytic deuteration of multiple sites of PEGs using tetra-n-butylammonium decatungstate (TBADT) and D2O as an inexpensive deuterium source. This deuteration can be adapted to PEG derivatives bearing various substituents ((hetero)aryl, benzoyl, alkyl, etc.). The deuteration efficiencies of the α-oxy C(sp3)-H bonds at the terminal positions of the PEGs were strongly influenced by the substituents. These reactivities were elucidated by density functional theory calculations of the reaction barriers towards the formation of radical intermediates, induced by the excited state of TBADT and the PEG substrate. In addition, the applicability of deuterated PEGs to internal standard experiments and Raman spectroscopy was demonstrated.
Collapse
Affiliation(s)
- Riku Ogasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Miyu Mae
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Matsuura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Sota Yoshimura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takayoshi Ishimoto
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Fujioka
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- The Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Rio Asada
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinari Sawama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
4
|
Navazeni M, Zolfigol MA, Torabi M, Khazaei A. Application of magnetic deep eutectic solvents as an efficient catalyst in the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:34668-34678. [PMID: 39479491 PMCID: PMC11520567 DOI: 10.1039/d4ra05177g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Magnetic deep eutectic solvents (MDESs) are adjuvants and an emerging subclass of heterogeneous catalysts in organic transformations. Herein, choline chloride (Ch/Cl) embedded on naphthalene bis-urea-supported magnetic nanoparticles, namely, Fe3O4@SiO2@DES1, was constructed by a special approach. This compound was scrutinized and characterized by instrumental techniques such as FTIR, thermogravimetry and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analyses. Potential catalytic activity of Fe3O4@SiO2@DES1 was impressive, facilitating the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a multicomponent method with 65-98% yields. Enhanced rates, high yields, mild reaction conditions, and recycling and reusability of Fe3O4@SiO2@DES1 are the distinct benefits of this catalytic organic synthetic methodology.
Collapse
Affiliation(s)
- Monireh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
5
|
Maity R, Paul S, Sen A, Garain S, Maji B. Electricity-Driven Strain-Release Cascade Cyclization of Bicyclo[1.1.0]butane (BCB): Stereoselective Synthesis of Functionalized Spirocyclobutyl Oxindoles. CHEMSUSCHEM 2024:e202401701. [PMID: 39439087 DOI: 10.1002/cssc.202401701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Spirocyclobutyl oxindoles, characterized by their unique three-dimensional structures, are valuable building blocks for many pharmacophores and drug units. However, stereoselective synthetic strategies for these scaffolds remain underdeveloped, with most existing methods relying on transition metal catalysts and stoichiometric redox reagents. In this work, we introduce an electrochemical strain-release driven cascade spirocyclization of bicyclo[1.1.0]butane (BCB) derivatives for the stereoselective synthesis of functionalized spirocyclobutyl oxindoles. Tetrabutylammonium bromide serves a dual purpose as both a supporting electrolyte and brominating agent. The method offers a broad substrate scope, high atom economy, and excellent diastereoselectivity. The stereoselectivity of the product is controlled by minimizing the dipolar repulsion between the amide C=O and the C-Br bonds. We also explored the methodology's versatility by applying it to various functionalizations and demonstrated its scalability for practical use. The efficient derivatization of the products allowed for the rapid creation of a diverse library of functionalized spirocyclobutyl oxindoles.
Collapse
Affiliation(s)
- Rajib Maity
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Sudipta Paul
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Anupam Sen
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Sukla Garain
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Biplab Maji
- Department of Chemical Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
6
|
Courbière B, Pilmé J. Exploring chemical reactivity through a combined conceptual DFT and ELF topology approach. J Mol Model 2024; 30:362. [PMID: 39361052 DOI: 10.1007/s00894-024-06144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
CONTEXT In a proof-of-concept study, we explore how a combined approach using the topology of the electron localization function (ELF) and the condensed dual descriptor (DD) function can guide the optimal orientation between reactants and mimic the potential energy surfaces of molecular systems at the beginning of the chemical pathway. The DD has been chosen for its ability to evaluate the regioselectivity of neutral and soft species and to potentially mimic the interaction energy obtained from the mutual interactions between nucleophilic and electrophilic regions of the building blocks under perturbative theory. METHOD Our method has been illustrated with examples in which the optimal orientation of several systems can be successfully identified. The limitations of the presented model in predicting chemical reactivity are outlined in particular the influence of the selected condensation scheme.
Collapse
Affiliation(s)
- Bastien Courbière
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 4, place Jussieu, Paris Cedex 05, 75052, France
| | - Julien Pilmé
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, 4, place Jussieu, Paris Cedex 05, 75052, France.
| |
Collapse
|
7
|
Hollenwäger D, Thamm S, Bockmair V, Nitzer A, Kornath AJ. Synthesis and Structure of Protonated Propiolic Acid. J Org Chem 2024; 89:11421-11428. [PMID: 39083812 DOI: 10.1021/acs.joc.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Propiolic acid was investigated in the superacidic system XF/SbF5 (X = H, D). The salts of the monoprotonated species of propiolic acid were characterized by vibrational and NMR spectroscopy as well as single-crystal analyses. The rotational conformers of the protonated species can be distinguished by NMR spectroscopy via the temperature-dependent rotational barrier. In the solid state, they can be detected by H/D exchange and packing effects due to different anions. The experimental results are discussed together with an IRC calculation of the rotational barrier. After acetic acid and formic acid, this is the third protonated carboxylic acid for which the energy differences between the conformers have been determined.
Collapse
Affiliation(s)
- Dirk Hollenwäger
- Department of Chemistry, University of Munich (LMU), Munich 81377, Germany
| | - Simon Thamm
- Department of Chemistry, University of Munich (LMU), Munich 81377, Germany
| | - Valentin Bockmair
- Department of Chemistry, University of Munich (LMU), Munich 81377, Germany
| | - Alexander Nitzer
- Department of Chemistry, University of Munich (LMU), Munich 81377, Germany
| | - Andreas J Kornath
- Department of Chemistry, University of Munich (LMU), Munich 81377, Germany
| |
Collapse
|
8
|
Ilyina IV, Patrusheva OS, Goltsova VV, Christopher KM, Gatilov YV, Sidorenko AY, Agabekov VE, Salakhutdinov NF, Alabugin IV, Volcho KP. Unusual Cascade Reactions of 8-Acetoxy-6-hydroxymethyllimonene with Salicylic Aldehydes: Diverse Oxygen Heterocycles from Common Precursors. J Org Chem 2024; 89:11593-11606. [PMID: 39083794 DOI: 10.1021/acs.joc.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Chiral oxygen-containing heterocyclic compounds are of great interest for the development of pharmaceuticals. Monoterpenes and their derivatives are naturally abundant precursors of novel synthetic chiral oxygen-containing heterocyclic compounds. In this study, acid catalyzed reactions of salicylic aldehydes with (-)-8-acetoxy-6-hydroxymethyllimonene, readily accessible from α-pinene, leads to the formation of chiral polycyclic products of various structural types. Three of the six isolated chiral heterocyclic products obtained from salicylic aldehyde contain previously unknown polycyclic ring types. Having carried out the reaction in the presence of Brønsted or Lewis acids (Amberlyst 15, trifluoromethanesulfonic acid, trifluoroacetic acid and boron trifluoride etherate) or aluminosilicates (montmorillonite K10, halloysite nanotubes), we found that the nature of products depends on the catalyst as well as the reaction conditions (reaction time, reactant ratio, presence or absence of solvent). Detailed mechanistic insight on the complex cascade reactions for product formation is provided with extensive experimental and quantum mechanical computational studies.
Collapse
Affiliation(s)
- Irina V Ilyina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Oksana S Patrusheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Victoria V Goltsova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Kimberley M Christopher
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yuri V Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Alexander Yu Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna Str, 36, Minsk 220141, Belarus
| | - Vladimir E Agabekov
- Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna Str, 36, Minsk 220141, Belarus
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Konstantin P Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 9, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Ma W, Schmidt A, Strohmann C, Loh CCJ. Stereoselective Entry into α,α'-C-Oxepane Scaffolds through a Chalcogen Bonding Catalyzed Strain-Release C-Septanosylation Strategy. Angew Chem Int Ed Engl 2024; 63:e202405706. [PMID: 38687567 DOI: 10.1002/anie.202405706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
The utility of unconventional noncovalent interactions (NCIs) such as chalcogen bonding has lately emerged as a robust platform to access synthetically difficult glycosides stereoselectively. Herein, we disclose the versatility of a phosphonochalcogenide (PCH) catalyst to facilitate access into the challenging, but biologically interesting 7-membered ring α,α'-C-disubstituted oxepane core through an α-selective strain-release C-glycosylation. Methodically, this strategy represents a switch from more common but entropically less desired macrocyclizations to a thermodynamically favored ring-expansion approach. In light of the general lack of stereoselective methods to access C-septanosides, a remarkable palette of silyl-based nucleophiles can be reliably employed in our method. This include a broad variety of useful synthons, such as easily available silyl-allyl, silyl-enol ether, silyl-ketene acetal, vinylogous silyl-ketene acetal, silyl-alkyne and silylazide reagents. Mechanistic investigations suggest that a mechanistic shift towards an intramolecular aglycone transposition involving a pentacoordinate silicon intermediate is likely responsible in steering the stereoselectivity.
Collapse
Affiliation(s)
- Wenpeng Ma
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Annika Schmidt
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Hashimoto Y, Kong WY, Tantillo DJ. Discovery of a Formal Dyotropic Rearrangement during Acid-Mediated Dioxabicyclo[4.2.1]nonanone Formation. Org Lett 2024; 26:5441-5446. [PMID: 38900922 DOI: 10.1021/acs.orglett.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A new reaction mechanism for the construction of dioxabicyclo[4.2.1]nonanone skeletons via a cation cascade has been proposed and examined by DFT and ab initio computations. This mechanism features the following steps: (1) intramolecular Friedel-Crafts-type cyclization with a methyl oxocarbenium cation formed by carboxylate disconnection, (2) electron-rich aromatic ring assisted methoxide loss followed by lactone formation, and (3) stepwise dyotropic rearrangement resulting in skeletal isomerization from a dioxabicyclo[3.2.2]nonanone to the dioxabicyclo[4.2.1]nonanone product observed experimentally. The high regioselectivity and driving force for the overall rearrangement were rationalized, and Lewis and Brønsted acid mediated reactivities were compared.
Collapse
Affiliation(s)
- Yoshimitsu Hashimoto
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
11
|
Matamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem 2024; 89:7877-7898. [PMID: 38752850 PMCID: PMC11165589 DOI: 10.1021/acs.joc.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
The reverse anomeric effect is usually associated with the equatorial preference of nitrogen substituents at the anomeric center. Once postulated as another anomeric effect with explanations ranging from electrostatic interactions to delocalization effects, it is now firmly considered to be essentially steric in nature. Through an extensive research on aryl imines from 2-amino-2-deoxyaldoses, spanning nearly two decades, we realized that such substances often show an anomalous anomeric behavior that cannot easily be rationalized on the basis of purely steric grounds. The apparent preference, or stabilization, of the β-anomer takes place to an extent that not only neutralizes but also overcomes the normal anomeric effect. Calculations indicate that there is no stereoelectronic effect opposing the anomeric effect, resulting from the repulsion between electron lone pairs on the imine nitrogen and the endocyclic oxygen. Such data and compelling structural evidence unravel why the exoanomeric effect is largely inhibited. We are now confident, as witnessed by 2-iminoaldoses, that elimination of the exo-anomeric effect in the α-anomer is due to the formation of an intramolecular hydrogen bond between the anomeric hydroxyl and the iminic nitrogen, thereby accounting for a true electronic effect. In addition, discrete solvation may help justify the observed preference for the β-anomer.
Collapse
Affiliation(s)
- Esther Matamoros
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus
Teatinos s/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina − IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Esther M. S. Pérez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Pedro Cintas
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - R. Fernando Martínez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan C. Palacios
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
12
|
Mousavi M, Di Mola A, Pierri G, Tedesco C, Hensinger MJ, Sun A, Wang Y, Mayer P, Ofial AR, Massa A. Lactone Enolates of Isochroman-3-ones and 2-Coumaranones: Quantification of Their Nucleophilicity in DMSO and Conjugate Additions to Chalcones. J Org Chem 2024; 89:6915-6928. [PMID: 38687827 PMCID: PMC11110064 DOI: 10.1021/acs.joc.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Owing to stereoelectronic effects, lactones often deviate in reactivity from their open-chain ester analogues as demonstrated by the CH acidity (in DMSO) of 3-isochromanone (pKa = 18.8) and 2-coumaranone (pKa = 13.5), which is higher than that of ethyl phenylacetate (pKa = 22.6). We have now characterized the reactivity of the lactone enolates derived from 3-isochromanone and 2-coumaranone by following the kinetics of their Michael reactions with p-quinone methides and arylidenemalonates (reference electrophiles) in DMSO at 20 °C. Evaluation of the experimentally determined second-order rate constants k2 by the Mayr-Patz equation, lg k2 = sN(N + E), furnished the nucleophilicity parameters N (and sN) of the lactone enolates. By localizing their position on the Mayr nucleophilicity scale, the scope of their electrophilic reaction partners becomes predictable, and we demonstrate a novel catalytic methodology for a series of carbon-carbon bond-forming reactions of lactone enolates with chalcones under phase transfer conditions in toluene.
Collapse
Affiliation(s)
- Mohammad
Sadeq Mousavi
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Antonia Di Mola
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Giovanni Pierri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Consiglia Tedesco
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Magenta J. Hensinger
- Department
Chemie, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 München, Germany
| | - Aijia Sun
- Department
Chemie, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 München, Germany
| | - Yilan Wang
- Department
Chemie, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 München, Germany
| | - Peter Mayer
- Department
Chemie, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 München, Germany
| | - Armin R. Ofial
- Department
Chemie, Ludwig-Maximilians-Universität
München, Butenandtstr. 5-13, 81377 München, Germany
| | - Antonio Massa
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| |
Collapse
|
13
|
Navazeni M, Zolfigol MA, Ahmadi H, Sepehrmansourie H, Khazaei A, Hosseinifard M. Design, synthesis and application of a magnetic H-bond catalyst in the preparation of new nicotinonitriles via cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:16607-16616. [PMID: 38779389 PMCID: PMC11110150 DOI: 10.1039/d4ra01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Herein, we designed and synthesized a new H-bond magnetic catalyst with 2-tosyl-N-(3-(triethoxysilyl)propyl)hydrazine-1-carboxamide as a sensitive H-bond donor/acceptor. We created an organic structure with a urea moiety on the magnetic nanoparticles, which can function as a hydrogen bond catalyst. Hydrogen bond catalysts serve as multi-donor/-acceptor sites. Additionally, we utilized magnetic nanoparticles in the production of the target catalyst, giving it the ability to be recycled and easily separated from the reaction medium with an external magnet. We evaluated the catalytic application of Fe3O4@SiO2@tosyl-carboxamide as a new magnetic H-bond catalyst in the synthesis of new nicotinonitrile compounds through a multicomponent reaction under solvent-free and green conditions with high yields (50-73%). We confirmed the structure of Fe3O4@SiO2@tosyl-carboxamide using various techniques. In addition, the structures of the desired nicotinonitriles were confirmed using melting point, 1H-NMR, 13C-NMR and HR-mass spectrometry analysis. The final step of the reaction mechanism was preceded via cooperative vinylogous anomeric-based oxidation (CVABO).
Collapse
Affiliation(s)
- Mahdiyeh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hossein Ahmadi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P. O. Box 31787-316 Karaj 401602 Iran
| |
Collapse
|
14
|
Yaremenko IA, Fomenkov DI, Budekhin RA, Radulov PS, Medvedev MG, Krivoshchapov NV, He LN, Alabugin IV, Terent'ev AO. Interrupted Dance of Five Heteroatoms: Reinventing Ozonolysis to Make Geminal Alkoxyhydroperoxides from C═N Bonds. J Org Chem 2024; 89:5699-5714. [PMID: 38564503 DOI: 10.1021/acs.joc.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Four heteroatoms dance in the cascade of four pericyclic reactions initiated by ozonolysis of C═N bonds. Switching from imines to semicarbazones introduces the fifth heteroatom that slows this dance, delays reaching the thermodynamically favorable escape path, and allows efficient interception of carbonyl oxides (Criegee intermediates, CIs) by an external nucleophile. The new three-component reaction of alcohols, ozone, and oximes/semicarbazones greatly facilitates synthetic access to monoperoxyacetals (alkoxyhydroperoxides).
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Dmitri I Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Roman A Budekhin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
15
|
Francisco CB, Fernandes CDS, Franco Dourado F, Gauze GDF, Rittner R, Prosser RS, Basso EA. Conformational Landscape of α-Halopropiophenones Determined by nJC-H NMR Reveals Unexpected Patterns and Geometric Constraints. J Phys Chem A 2024; 128:1566-1575. [PMID: 38412415 DOI: 10.1021/acs.jpca.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The conformational features of α-halopropiophenones were investigated to understand the influence of α-halogens on conformation through hyperconjugative interactions, electrostatics, and steric factors. Using NMR, C-H scalar coupling constants were measured in different solvents, revealing a pattern in the conformational equilibria, which we validated by computational means. This behavior arises largely from hyperconjugative effects with the exception of the fluoro-derivatives, which are also influenced by steric and electrostatic interactions. In all cases, the contribution to hyperconjugation of the α-halo ketones is driven by the oxygen lone pair (rather than the C-X bond), which donates electron density to the adjacent C-C bonds. Additionally, C-Cα bond rotation generates distortions in the side chain, responsible for destabilization, thus affecting system conjugation. These structural features identified for the α-halo ketones are also reflected in their reactivity, which is distinct from that expected for nucleophilic addition.
Collapse
Affiliation(s)
- Camila Botin Francisco
- Department of Chemistry, State University of Maringá, 5790, Maringá 87020-900, Brazil
- Department of Chemistry, University of Toronto, 3359, Mississauga L5L-1C6, Canada
| | | | | | | | - Roberto Rittner
- Chemistry Institute, University of Campinas, 6154, Campinas 13083-970, Brazil
| | - Robert Scott Prosser
- Department of Chemistry, University of Toronto, 3359, Mississauga L5L-1C6, Canada
| | - Ernani Abicht Basso
- Department of Chemistry, State University of Maringá, 5790, Maringá 87020-900, Brazil
| |
Collapse
|
16
|
Hu C, Kuhn L, Makurvet FD, Knorr ES, Lin X, Kawade RK, Mentink-Vigier F, Hanson K, Alabugin IV. Tethering Three Radical Cascades for Controlled Termination of Radical Alkyne peri-Annulations: Making Phenalenyl Ketones without Oxidants. J Am Chem Soc 2024; 146:4187-4211. [PMID: 38316011 DOI: 10.1021/jacs.3c13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Although Bu3Sn-mediated radical alkyne peri-annulations allow access to phenalenyl ring systems, the oxidative termination of these cascades provides only a limited selection of the possible isomeric phenalenone products with product selectivity controlled by the intrinsic properties of the new cyclic systems. In this work, we report an oxidant-free termination strategy that can overcome this limitation and enable selective access to the full set of isomerically functionalized phenalenones. The key to preferential termination is the preinstallation of a "weak link" that undergoes C-O fragmentation in the final cascade step. Breaking a C-O bond is assisted by entropy, gain of conjugation in the product, and release of stabilized radical fragments. This strategy is expanded to radical exo-dig cyclization cascades of oligoalkynes, which provide access to isomeric π-extended phenalenones. Conveniently, these cascades introduce functionalities (i.e., Bu3Sn and iodide moieties) amenable to further cross-coupling reactions. Consequently, a variety of polyaromatic diones, which could serve as phenalenyl-based open-shell precursors, can be synthesized.
Collapse
Affiliation(s)
- Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Favour D Makurvet
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Erica S Knorr
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
17
|
Das E, Feliciano MAM, Yamanushkin P, Lin X, Gold B. Oxa-azabenzobenzocyclooctynes (O-ABCs): heterobiarylcyclooctynes bearing an endocyclic heteroatom. Org Biomol Chem 2023; 21:8857-8862. [PMID: 37881858 DOI: 10.1039/d3ob01559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We report the synthesis of heterobiarylcyclooctynes bearing an endocyclic heteroatom, oxa-azabenzobenzocyclooctynes (O-ABCs). The integration of design strategies for accelerating strain-promoted azide-alkyne cycloadditions results in reactivity with organic azides that surpasses all cyclooctyne reagents reported to date. O-ABCs and related compounds provide insights into the effects of structural modifications on reactivity that can aid in the design of new reagents for click and bioorthogonal chemistry.
Collapse
Affiliation(s)
- Eshani Das
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| | - Mark Aldren M Feliciano
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, 88003, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| | - Pavel Yamanushkin
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry Florida State University, Tallahassee, FL, 32306, USA
| | - Brian Gold
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, 88003, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, New Mexico, 87131, USA
| |
Collapse
|
18
|
Laze L, Quevedo-Flores B, Bosque I, Gonzalez-Gomez JC. Alkanes in Minisci-Type Reaction under Photocatalytic Conditions with Hydrogen Evolution. Org Lett 2023. [PMID: 37819209 DOI: 10.1021/acs.orglett.3c02619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We report herein a protocol for the selective activation of C(sp3)-H bonds based on the interplay of two readily available organic catalysts and their successful implementation in cross-coupling azaarenes with alkanes. This Minisci-like reaction is promoted by visible light at room temperature and is free from chemical oxidants, metals, and chlorinated solvents. A wide range of substrates are compatible, including some bioactive molecules. Mechanistic studies support a dual catalytic cycle with H2 evolution.
Collapse
Affiliation(s)
- Loris Laze
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Beatriz Quevedo-Flores
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Irene Bosque
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| | - Jose C Gonzalez-Gomez
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, 03080 Alacant, Spain
| |
Collapse
|
19
|
Yaremenko IA, Belyakova YY, Radulov PS, Medvedev MG, Krivoshchapov NV, Alabugin IV, Terent'ev AO. Two-Component versus Three-Component Condensations in the Race between Hydrazide, Triketone, and Hydrogen Peroxide-How do All Six Reactive Centers Cooperate to Incorporate the Most Diverse Set of Heteroatomic Bridges in a Tricyclic Frame? J Org Chem 2023; 88:13782-13795. [PMID: 37724879 DOI: 10.1021/acs.joc.3c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Relief of stereoelectronic frustration drives the acid-catalyzed three-component condensation of β,δ'-triketones with hydrazides and H2O2 to the direction where both nucleophiles and all three electrophilic carbons are involved in the formation of a tricyclic sp3-rich ring system that includes four heteroatoms. The otherwise inaccessible tricyclic N-substituted aminoperoxides are prepared rapidly and selectively from relatively simple substrates in good to high yields.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
- HSE University, Myasnitskaya Street 20, Moscow 101000, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| |
Collapse
|
20
|
Chabuka BK, Alabugin IV. Hole Catalysis of Cycloaddition Reactions: How to Activate and Control Oxidant Upconversion in Radical-Cationic Diels-Alder Reactions. J Am Chem Soc 2023; 145:19354-19367. [PMID: 37625247 DOI: 10.1021/jacs.3c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In order to use holes as catalysts, the oxidized product should be able to transfer the hole to a fresh reactant. For that, the hole-catalyzed reaction must increase the oxidation potential along the reaction path, i.e., lead to "hole upconversion." If this thermodynamic requirement is satisfied, a hole injected via one-electron oxidation can persist through multiple propagation cycles and serve as a true catalyst. This work provides guidelines for the rational design of hole-catalyzed Diels-Alder (DA) reactions, the prototypical cycloaddition. After revealing the crucial role of hyperconjugation in the absence of hole upconversion in the parent DA reaction, we show how upconversion can be reactivated by proper substitution. For this purpose, we computationally evaluate the contrasting effects of substituents at the three possible positions in the two reactants. The occurrence and magnitude of hole upconversion depend strongly on the placement and nature of substituents. For example, donors at C1 in 1,3-butadiene shift the reaction to the hole-upconverted regime with an increased oxidation potential of up to 1.0 V. In contrast, hole upconversion in C2-substituted 1,3-butadienes is activated by acceptors with the oxidation potential increase up to 0.54 V. Dienophile substitution results in complex trends because the radical cation can be formed at either the dienophile or the diene. Hole upconversion is always present in the former scenario (up to 0.65 V). Finally, we report interesting stereoelectronic effects that can activate or deactivate upconversion via a conformational change.
Collapse
Affiliation(s)
- Beauty K Chabuka
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
21
|
Kawamura S, Sodeoka M. Understanding and Controlling Fluorinated Diacyl Peroxides and Fluoroalkyl Radicals in Alkene Fluoroalkylations. CHEM REC 2023; 23:e202300202. [PMID: 37522613 DOI: 10.1002/tcr.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The demand for practical methods for the synthesis of novel fluoroalkyl molecules is increasing owing to their diverse applications. Our group has achieved efficient difunctionalizing fluoroalkylations of alkenes using fluorinated carboxylic anhydrides as user-friendly fluoroalkyl sources. Fluorinated diacyl peroxide, prepared in situ from carboxylic anhydrides, enables the development of novel reactions when used as a radical fluoroalkylating reagent. In this account, we aim to provide an in-depth understanding of the structure, bonding, and reactivity of fluorinated diacyl peroxides and radicals as well as their control in fluoroalkylation reactions. In the first part of this account, the physical properties and reactivity of diacyl peroxides and fluoroalkyl radicals are described. In the subsequent part, we categorize the reactions into copper-catalyzed and metal-free methods utilizing the oxidizing properties of fluorinated diacyl peroxides. We also outline examples and mechanisms.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
22
|
Amado PSM, Lopes S, Brás EM, Paixão JA, Takano MA, Abe M, Fausto R, Cristiano MLS. Molecular and Crystal Structure, Spectroscopy, and Photochemistry of a Dispiro Compound Bearing the Tetraoxane Pharmacophore. Chemistry 2023; 29:e202301315. [PMID: 37343198 DOI: 10.1002/chem.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
The molecular structure and photochemistry of dispiro[cyclohexane-1,3'-[1,2,4,5]tetraoxane-6',2''-tricyclo[3.3.1.13,7 ]decan]-4-one (TX), an antiparasitic 1,2,4,5-tetraoxane was investigated using matrix isolation IR and EPR spectroscopies, together with quantum chemical calculations undertaken at the DFT(B3LYP)/6-311++G(3df,3pd) level of theory, with and without Grimme's dispersion correction. Photolysis of the matrix-isolated TX, induced by in situ broadband (λ>235 nm) or narrowband (λ in the range 220-263 nm) irradiation, led to new bands in the infrared spectrum that could be ascribed to two distinct photoproducts, oxepane-2,5-dione, and 4-oxohomoadamantan-5-one. Our studies show that these photoproducts result from initial photoinduced cleavage of an O-O bond, with the formation of an oxygen-centered diradical that regioselectivity rearranges to a more stable (secondary carbon-centered)/(oxygen-centered) diradical, yielding the final products. Formation of the diradical species was confirmed by EPR measurements, upon photolysis of the compound at λ=266 nm, in acetonitrile ice (T=10-80 K). Single-crystal X-ray diffraction (XRD) studies demonstrated that the TX molecule adopts nearly the same conformation in the crystal and matrix-isolation conditions, revealing that the intermolecular interactions in the TX crystal are weak. This result is in keeping with observed similarities between the infrared spectrum of the crystalline material and that of matrix-isolated TX. The detailed structural, vibrational, and photochemical data reported here appear relevant to the practical uses of TX in medicinal chemistry, considering its efficient and broad parasiticidal properties.
Collapse
Affiliation(s)
- Patrícia S M Amado
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy Faculty of Sciences and Technology, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
| | - Susy Lopes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Elisa M Brás
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - José A Paixão
- CFisUC, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal
| | - Ma-Aya Takano
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2) Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Manabu Abe
- Department of Chemistry Graduate School of Advanced Science and Engineering, Hiroshima University Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2) Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University Ataköy Campus, Bakirköy, 34156, Istanbul, Turkey
| | - Maria L S Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy Faculty of Sciences and Technology, Gambelas Campus, University of Algarve UAlg, 8005-139, Faro, Portugal
| |
Collapse
|
23
|
Dinda TK, Kabir SR, Mal P. Stereoselective Synthesis of Z-Styryl Sulfides from Nucleophilic Addition of Arylacetylenes and Benzyl Thiols. J Org Chem 2023; 88:10070-10085. [PMID: 37406245 DOI: 10.1021/acs.joc.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The stereoselective synthesis of Z-anti-Markovnikov styryl sulfides via an anionic thiolate-alkyne addition reaction was achieved when the terminal alkynes and benzyl mercaptans were reacted using tBuOLi (0.5 equiv) in EtOH under ambient conditions. Exclusive stereoselectivity (ca. 100%) was achieved by stereoelectronic control via anti-periplanar and anti-Markovnikov addition of benzylthiolates to phenylacetylenes. Solvolysis of lithium thiolate ion pairs in ethanol significantly suppresses the competing formation of the E-isomer. A remarkable enhancement of the Z-selectivity under a longer reaction time was observed.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Syed Ramizul Kabir
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
24
|
Babaee S, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M. Synthesis of picolinates via a cooperative vinylogous anomeric-based oxidation using UiO-66(Zr)-N(CH 2PO 3H 2) 2 as a catalyst. RSC Adv 2023; 13:22503-22511. [PMID: 37497088 PMCID: PMC10368083 DOI: 10.1039/d3ra03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The anomeric effect highlights the significant influence of the functional group and reaction conditions on oxidation-reduction. This article successfully investigates the anomeric effect in the synthesis of picolinate and picolinic acid derivatives through a multi-component reaction involving 2-oxopropanoic acid or ethyl 2-oxopropanoate, ammonium acetate, malononitrile, and various aldehydes. To facilitate this process, we employed UiO-66(Zr)-N(CH2PO3H2)2 as a novel nanoporous heterogeneous catalyst. The inclusion of phosphorous acid tags on the UiO-66(Zr)-N(CH2PO3H2)2 offers the potential for synthesizing picolinates at ambient temperature.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom Qom 37185-359 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P.O. Box 31787-316 Karaj Iran
| |
Collapse
|
25
|
Guan C, Yin J, Ji J, Liu J, Wu X, Zhu T, Liu S. Regioselectively Electrochemical Synthesis of N2-Selective C-H Amination of Ethers with N-Tosyl 1,2,3-Triazole via Triazole Radical Cation. Org Lett 2023. [PMID: 37418313 DOI: 10.1021/acs.orglett.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A regioselective electrochemical C-H amination method to synthesize N2-substituted 1,2,3-triazole using easily accessible ethers has been developed. Various substituents, including heterocycles, have a good tolerance, and 24 examples were obtained in moderate to good yields. Control experiments and DFT calculation investigations demonstrate that the electrochemical synthesis undergoes a N-tosyl 1,2,3-triazole radical cation process promoted by the single-electron transfer of the lone pair electrons of the aromatic N-heterocycle, and the desulfonation is responsible for the high N2-regioselectivity.
Collapse
Affiliation(s)
- Cong Guan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jiabin Yin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jian Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinhua Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
26
|
Zarei N, Zolfigol MA, Torabi M, Yarie M. Synthesis of new hybrid pyridines catalyzed by Fe 3O 4@SiO 2@urea-riched ligand/Ch-Cl. Sci Rep 2023; 13:9486. [PMID: 37301889 DOI: 10.1038/s41598-023-35849-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Herein, a new heterogeneous catalytic system through modification of urea functionalized magnetic nanoparticles with choline chloride [Fe3O4@SiO2@urea-riched ligand/Ch-Cl] was designed and synthesized. Then, the synthesized Fe3O4@SiO2@urea-riched ligand/Ch-Cl was characterized by using FT-IR spectroscopy, FESEM, TEM, EDS-Mapping, TGA/DTG and VSM techniques. After that, the catalytic usage of Fe3O4@SiO2@urea-riched ligand/Ch-Cl was investigated for the synthesis of hybrid pyridines with sulfonate and/or indole moieties. Delightfully, the outcome was satisfactory and the applied strategy represents several advantages such as short reaction times, convenience of operation and relatively good yields of obtained products. Moreover, the catalytic behavior of several formal homogeneous DESs was investigated for the synthesis of target product. In addition, a cooperative vinylogous anomeric-based oxidation pathway was suggested as rational mechanism for the synthesis of new hybrid pyridines.
Collapse
Affiliation(s)
- Narges Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
27
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, As'Habi MA. Application of Zr-MOFs based copper complex in synthesis of pyrazolo[3, 4-b]pyridine-5-carbonitriles via anomeric-based oxidation. Sci Rep 2023; 13:9388. [PMID: 37296128 PMCID: PMC10256735 DOI: 10.1038/s41598-023-34172-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
In this research article, Zr-MOFs based copper complex as a novel heterogeneous and porous catalyst was designed and prepared. The structure of catalyst has verified by various techniques such as FT-IR, XRD, SEM, N2 adsorption-desorption isotherms (BET), EDS, SEM-elemental mapping, TG and DTG analysis. UiO-66-NH2/TCT/2-amino-Py@Cu(OAc)2 was used as an efficient catalyst in the synthesis of pyrazolo[3,4-b]pyridine-5-carbonitrile derivatives. The aromatization of titled molecules is performed via a cooperative vinylogous anomeric-based oxidation both under air and inert atmospheres. The unique properties of the presented method are short reaction time, high yield, reusability of catalyst, synthesis of desired product under mild and green condition.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran.
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali-Sina University, Hamedan, 6517838965, Iran.
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, 1983963113, Iran
| |
Collapse
|
28
|
Sepehrmansourie H, Mohammadi Rasooll M, Zarei M, Zolfigol MA, Gu Y. Application of Metal-Organic Frameworks with Sulfonic Acid Tags in the Synthesis of Pyrazolo[3,4- b]pyridines via a Cooperative Vinylogous Anomeric-Based Oxidation. Inorg Chem 2023. [PMID: 37262344 DOI: 10.1021/acs.inorgchem.3c01131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Herein, we report the design and synthesis of Co-MOF-71/imidazole/SO3H as a novel porous catalyst with sulfonic acid tags. The structure and morphology of the catalyst were investigated using various techniques such as Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscopy (SEM), SEM elemental mapping, energy-dispersive X-ray spectroscopy, Barret-Joyner-Halenda, and N2 adsorption-desorption isotherms. Co-MOF-71/imidazole/SO3H was studied in the preparation of novel pyrazolo[3,4-b]pyridines under mild and green conditions via a cooperative vinylogous anomeric-based oxidation. A wide range of mono and bis pyrazolo[3,4-b]pyridines were synthesized with good to excellent yields (65-82%). A hot filtration test for the heterogeneous nature of the catalyst indicated the high stability of the prepared catalyst. The recyclability of Co-MOF-71/imidazole/SO3H is another advantage of the present methodology. The structures of the final products were confirmed using FT-IR, 1H-NMR, and 13C-NMR spectroscopic techniques.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Milad Mohammadi Rasooll
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185359, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
29
|
Danishyar B, Sepehrmansourie H, Ahmadi H, Zarei M, Zolfigol MA, Hosseinifard M. Application of Nanomagnetic Metal-Organic Frameworks in the Green Synthesis of Nicotinonitriles via Cooperative Vinylogous Anomeric-Based Oxidation. ACS OMEGA 2023; 8:18479-18490. [PMID: 37273641 PMCID: PMC10233831 DOI: 10.1021/acsomega.2c06651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023]
Abstract
In the current study, we synthesized a new nanomagnetic metal-organic framework Fe3O4@MIL-53(Al)-N(CH2PO3)2 and characterized it using various techniques. This nanomagnetic metal-organic framework was used for the synthesis of a wide range of nicotinonitrile derivatives as suitable drug candidates by a four-component reaction of 3-oxo-3-phenylpropanenitrile or 3-(4-chlorophenyl)-3-oxopropanenitrile, ammonium acetate (NH4OAc), acetophenone derivatives, and various aldehydes including those bearing electron-donating, electron-withdrawing, and halogen groups, which afforded desired products (27 samples) via a cooperative vinylogous anomeric-based oxidation (CVABO) mechanism under solvent-free conditions in excellent yields (68-90%) and short reaction times (40-60 min). Increasing the surface-to-volume ratio, easy separation of the catalyst using an external magnet, and high chemical and temperature stability are the advantages of the described nanomagnetic metal-organic frameworks.
Collapse
Affiliation(s)
- Bashirullah Danishyar
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Hossein Ahmadi
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65178-38683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 31648-19712, Iran
| |
Collapse
|
30
|
Gazizov AS, Smolobochkin AV, Rizbayeva TS, Vatsadze SZ, Burilov AR, Sinyashin OG, Alabugin IV. "Stereoelectronic Deprotection of Nitrogen": Recovering Nucleophilicity with a Conformational Change. J Org Chem 2023. [PMID: 37216317 DOI: 10.1021/acs.joc.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ureas are often thought of as "double amides" due to the obvious structural similarity of these functional groups. The main structural feature of an amide is its planarity, which is responsible for the conjugation between the nitrogen atom and carbonyl moiety and the decrease of amide nucleophilicity. Consequently, since amides are poor nucleophiles, ureas are often thought of as poor nucleophiles as well. Herein, we demonstrate that ureas can be distinctly different from amides. These differences can be amplified by rotation around one of the ureas' C-N bonds, which switches off the amide resonance and recovers the nucleophilicity of one of the nitrogen atoms. This conformational change can be further facilitated by the judicious introduction of steric bulk to disfavor the planar conformation. This change in reactivity is an example of "stereoelectronic deprotection," a concept when the desired reactivity of a functional group is produced by a conformational change rather than a chemical modification. This concept may be used complementarily to the traditional protecting groups. We also demonstrate both the viability and the utility of this concept by the synthesis of unusual 2-oxoimidazolium salts possessing quaternary nitrogen atoms at the urea moiety.
Collapse
Affiliation(s)
- Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Tanzilya S Rizbayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
| | - Igor V Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Science, Arbuzova Str., 8, Kazan 420088, Russian Federation
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee Fl 32306, United States
| |
Collapse
|
31
|
Saltiel J, Krishnan SB, Gupta S, Chakraborty A, Hilinski EF, Lin X. Photochemistry and Photophysics of Cholesta-5,7,9(11)-trien-3β-ol in Ethanol. Molecules 2023; 28:molecules28104086. [PMID: 37241827 DOI: 10.3390/molecules28104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cholesta-5,7,9(11)-trien-3β-ol (9,11-dehydroprovitamin D3, CTL) is used as a fluorescent probe to track the presence and migration of cholesterol in vivo. We recently described the photochemistry and photophysics of CTL in degassed and air-saturated tetrahydrofuran (THF) solution, an aprotic solvent. The zwitterionic nature of the singlet excited state, 1CTL* is revealed in ethanol, a protic solvent. In ethanol, the products observed in THF are accompanied by ether photoadducts and by photoreduction of the triene moiety to four dienes, including provitamin D3. The major diene retains the conjugated s-trans-diene chromophore and the minor is unconjugated, involving 1,4-addition of H at the 7 and 11 positions. In the presence of air, peroxide formation is a major reaction channel as in THF. X-ray crystallography confirmed the identification of two of the new diene products as well as of a peroxide rearrangement product.
Collapse
Affiliation(s)
- Jack Saltiel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Sumesh B Krishnan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Shipra Gupta
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Anjan Chakraborty
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Edwin F Hilinski
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| |
Collapse
|
32
|
Abstract
Cyclopropanes that carry an electron-accepting group react as electrophiles in polar, ring-opening reactions. Analogous reactions at cyclopropanes with additional C2 substituents allow one to access difunctionalized products. Consequently, functionalized cyclopropanes are frequently used building blocks in organic synthesis. The polarization of the C1-C2 bond in 1-acceptor-2-donor-substituted cyclopropanes not only favorably enhances reactivity toward nucleophiles but also directs the nucleophilic attack toward the already substituted C2 position. Monitoring the kinetics of non-catalytic ring-opening reactions with a series of thiophenolates and other strong nucleophiles, such as azide ions, in DMSO provided the inherent SN2 reactivity of electrophilic cyclopropanes. The experimentally determined second-order rate constants k 2 for cyclopropane ring-opening reactions were then compared to those of related Michael additions. Interestingly, cyclopropanes with aryl substituents at the C2 position reacted faster than their unsubstituted analogues. Variation of the electronic properties of the aryl groups at C2 gave rise to parabolic Hammett relationships.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377München, Germany
| | - Armin R. Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377München, Germany
| |
Collapse
|
33
|
Vil’ VA, Barsegyan YA, Kuhn L, Terent’ev AO, Alabugin IV. Creating, Preserving, and Directing Carboxylate Radicals in Ni-Catalyzed C(sp 3)–H Acyloxylation of Ethers, Ketones, and Alkanes with Diacyl Peroxides. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Yana A. Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| |
Collapse
|
34
|
Losev TV, Gerasimov IS, Panova MV, Lisov AA, Abdyusheva YR, Rusina PV, Zaletskaya E, Stroganov OV, Medvedev MG, Novikov FN. Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design. J Chem Inf Model 2023; 63:1239-1248. [PMID: 36763797 DOI: 10.1021/acs.jcim.2c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bioisosteres are molecules that differ in substituents but still have very similar shapes. Bioisosteric replacements are ubiquitous in modern drug design, where they are used to alter metabolism, change bioavailability, or modify activity of the lead compound. Prediction of relative affinities of bioisosteres with computational methods is a long-standing task; however, the very shape closeness makes bioisosteric substitutions almost intractable for computational methods, which use standard force fields. Here, we design a quantum mechanical (QM)-cluster approach based on the GFN2-xTB semi-empirical quantum-chemical method and apply it to a set of H → F bioisosteric replacements. The proposed methodology enables advanced prediction of biological activity change upon bioisosteric substitution of -H with -F, with the standard deviation of 0.60 kcal/mol, surpassing the ChemPLP scoring function (0.83 kcal/mol), and making QM-based ΔΔG estimation comparable to ∼0.42 kcal/mol standard deviation of in vitro experiment. The speed of the method and lack of tunable parameters makes it affordable in current drug research.
Collapse
Affiliation(s)
- Timofey V Losev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.,A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor S Gerasimov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Maria V Panova
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Alexey A Lisov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Yana R Abdyusheva
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Polina V Rusina
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Eugenia Zaletskaya
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Oleg V Stroganov
- BioMolTech Corp., 226 York Mills Rd, Toronto, Ontario M2L 1L1, Canada
| | - Michael G Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Fedor N Novikov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| |
Collapse
|
35
|
Theoretical Study on the Origin of Abnormal Regioselectivity in Ring-Opening Reaction of Hexafluoropropylene Oxide. Molecules 2023; 28:molecules28041669. [PMID: 36838653 PMCID: PMC9962681 DOI: 10.3390/molecules28041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
That nucleophiles preferentially attack at the less sterically hindered carbon of epoxides under neutral and basic conditions has been generally accepted as a fundamental rule for predicting the regioselectivity of this type of reaction. However, this rule does not hold for perfluorinated epoxides, such as hexafluoropropylene oxide (HFPO), in which nucleophiles were found to attack at the more hindered CF3 substituted β-C rather than the fluorine substituted α-C. In this contribution, we aim to shed light on the nature of this intriguing regioselectivity by density functional theory methods. Our calculations well reproduced the observed abnormal regioselectivities and revealed that the unusual regiochemical preference for the sterically hindered β-C of HFPO mainly arises from the lower destabilizing distortion energy needed to reach the corresponding ring-opening transition state. The higher distortion energy required for the attack of the less sterically hindered α-C results from a significant strengthening of the C(α)-O bond by the negative hyperconjugation between the lone pair of epoxide O atom and the antibonding C-F orbital.
Collapse
|
36
|
Wu YB, Ma CY, Zhang Y, Zeng YY, Chang WW, Xu D, Wu J. An approach for the synthesis of carboxylic acid via phenacyl bromides and diethylamine by oxidative C–C bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
37
|
Tsou PK, Huynh HT, Phan HT, Kuo JL. A self-adapting first-principles exploration on the dissociation mechanism in sodiated aldohexose pyranoses assisted with neural network potentials. Phys Chem Chem Phys 2023; 25:3332-3342. [PMID: 36633012 DOI: 10.1039/d2cp04421h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the mechanism of collision-induced dissociation (CID) in mono-saccharides with density functional theory (DFT) is challenging because of many possible reaction paths that originate from their high structural diversity. To search for the transition state (TS) from the huge number of conformers, we propose a three-step search scheme with the assistance of neural network potential (NNP). The search starts from a cross-checking of sugars, to a global search of all possible channels, and in the end, an exhaustive exploration around the low-lying channels. The cross-checking step quickly adapts the NNP from the studied molecules to the target ones. The other two steps utilize the adapted NNP to find the available pathways via random sampling of the structures. The study of the CID reactions in all eight types of aldohexose pyranoses was applied using the search scheme. The DFT calculations on AH-0 (Glc, Gal, and Man) in the previous study were utilized to construct an NNP and provide the TS structure database for searching AH-1 (All, Alt, Gul, Ido, and Tal). In total, we identified around 5200 TSs in AH-0 and AH-1, and the final NNP covers an energy range of more than 500 kJ mol-1 with a mean absolute error of energy less than 4 kJ mol-1. The search scheme is useful not only for saccharides but also for highly flexible bio-molecules.
Collapse
Affiliation(s)
- Pei-Kang Tsou
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| | - Hai Thi Huynh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huu Trong Phan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan. .,Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
38
|
Holzmann MJ, Khanal N, Yamanushkin P, Gold B. Remote Strain Activation in a Sulfate-Linked Dibenzocycloalkyne. Org Lett 2023; 25:309-313. [PMID: 36455206 DOI: 10.1021/acs.orglett.2c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cycloalkynes and their utilization in cycloaddition reactions enable modular strategies spanning the molecular sciences. Strain─imparted by deviation from linearity─enables sufficient alkyne reactivity without the need for a catalyst (e.g., copper); however, the design and synthesis of stable reagents with suitable reactivity remains an ongoing challenge. We report the incorporation of an endocyclic sulfate within a dibenzocyclononyne scaffold to generate a cyclononyne displaying remarkable reactivity and stability. Through computational analyses, we revealed that the endocyclic sulfate group shares nearly half the total strain energy, providing an activation strategy that reduces alkyne bending. Rehybridization of alkyne carbons in the formation of the heterocyclic product relieves strain both at the reactive site and in the transannular sulfate group. This mode of remote activation enables rapid reactivity while minimizing distortion─and strain─at the reactive site (the alkyne). The result: a design strategy for a new class of cycloalkynes with increased stability and reactivity.
Collapse
Affiliation(s)
- Michael J Holzmann
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Namrata Khanal
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Pavel Yamanushkin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
39
|
Tavassoli AM, Zolfigol MA, Yarie M. Application of new multi-H-bond catalyst for the preparation of substituted pyridines via a cooperative vinylogous anomeric-based oxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Anizadeh MR, Torabi M, Zolfigol MA, Yarie M. Catalytic application Fe3O4@SiO2@(CH2)3-urea-dithiocarbamic acid for the synthesis of triazole-linked pyridone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Shlian DG, Pelaez J, Vaccaro DA, Parkin G. Structural Characterization of N-(4-carboxybenzyl)pyridinium Bromide: Hydrogen Bonding between Bromide and a Carboxylic Acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
42
|
Sepehrmansourie H, Kalhor S, Zarei M, Zolfigol MA, Hosseinifard M. A convenient catalytic method for preparation of new tetrahydropyrido[2,3- d]pyrimidines via a cooperative vinylogous anomeric based oxidation. RSC Adv 2022; 12:34282-34292. [PMID: 36545580 PMCID: PMC9709663 DOI: 10.1039/d2ra05655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel functionalized metal-organic frameworks MIL-125(Ti)-N(CH2PO3H2)2 was designed and synthesized via post-modification methodology. Then, MIL-125(Ti)-N(CH2PO3H2)2 as a mesoporous catalyst was applied for the synthesis of a wide range of novel tetrahydropyrido[2,3-d]pyrimidines as bioactive candidate compounds by one-pot condensation reaction of 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile, 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione and aromatic aldehydes at 100 °C under solvent-free condition. Interestingly, the preparation of tetrahydropyrido[2,3-d]pyrimidine was achieved via vinylogous anomeric based oxidation mechanism with a high yield and short reaction time.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of QomQom37185-359Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research CenterP.O. Box 31787-316KarajIran
| |
Collapse
|
43
|
4,4′-(Butane-1,4-diyl)bis(4-methyl-1,2-dioxolane-3,5-dione). MOLBANK 2022. [DOI: 10.3390/m1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over the past decades, studies of cyclic diacyl peroxides have shown superior or even fundamentally new reactivity compared to their acyclic counterparts in various reactions. Previously, the scope of cyclic diacyl peroxides was limited to the mono peroxy compounds. The first doubled cyclic diacyl peroxide is presented herein. The diperoxide was characterized by NMR spectroscopy, mass spectrometry, and IR spectroscopy. The structure of 4,4′-(butane-1,4-diyl)bis(4-methyl-1,2-dioxolane-3,5-dione) was confirmed by X-ray diffraction analysis. The novel diperoxide was prepared in a 55% overall yield in three steps from dibromobutane and diethyl methylmalonate.
Collapse
|
44
|
Synthesis of pyrimidine-6-carbonitriles, pyrimidin-5-ones, and tetrahydroquinoline-3-carbonitriles by new superb oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) catalyst via anomeric based oxidation. Sci Rep 2022; 12:19537. [PMID: 36376379 PMCID: PMC9663709 DOI: 10.1038/s41598-022-23956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Oxovanadium(V)-[5,10,15,20-tetrakis(pyridinium)-porphyrinato]-tetra(tricyanomethanide) [(VO)TPP][(TCM)4] was designed, synthesized and characterized by various techniques such as FT-IR, EDX, SEM equipped with EDX mappings, CHN elemental analysis, ICP-OES, XRD, SEM, TEM, TGA, DTA, DRS, Kubelka-Munk function (Tauc's plot), and UV-Vis analyses. Then, [(VO)TPP][(TCM)4] was used as a benign and expedient catalyst for the synthesis of numerous heterocyclic compounds such as 5-amino-7-(aryl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 5-amino-7-(aryl)-[1,2,4]triazolo[1,5-a]pyrimidine-6-carbonitriles, 7-(aryl)-7,12-dihydro-5H-isochromeno[4,3-d][1,2,4]triazolo[1,5-a]pyrimidin-5-ones, and 4-(aryl)-2-(1H-indol-3-yl)-5,6,7,8-tetrahydroquinoline-3-carbonitriles under solvent-free conditions at 100 °C via a cooperative geminal-vinylogous anomeric based oxidation.
Collapse
|
45
|
Vil' VA, Gorlov ES, Shuingalieva DV, Kunitsyn AY, Krivoshchapov NV, Medvedev MG, Alabugin IV, Terent'ev AO. Activation of O-Electrophiles via Structural and Solvent Effects: S N2@O Reaction of Cyclic Diacyl Peroxides with Enol Acetates. J Org Chem 2022; 87:13980-13989. [PMID: 36223346 DOI: 10.1021/acs.joc.2c01634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The reactions of O-electrophiles, such as organic peroxides, with carbon nucleophiles are an umpolung alternative to the common approaches to C-O bond formation. Nucleophilic substitution at the oxygen atom of cyclic diacyl peroxides by enol acetates with the following deacylation leads to α-acyloxyketones with an appended carboxylic acid in 28-87% yields. The effect of fluorinated alcohols on the oxidative functionalization of enol acetates by cyclic diacyl peroxides was studied experimentally and computationally. Computational analysis reveals that the key step proceeds as a direct substitution nucleophilic bimolecular (SN2) reaction at oxygen (SN2@O). CF3CH2OH has a dual role in assisting in both steps of the reaction cascade: it lowers the energy of the SN2@O activation step by hydrogen bonding to a remote carbonyl and promotes the deacylation of the cationic intermediate.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Evgenii S Gorlov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Diana V Shuingalieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation.,D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Artem Yu Kunitsyn
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
46
|
Eckhardt P, Elliot Q, Alabugin IV, Opatz T. Two Paths to Oxidative C-H Amination Under Basic Conditions: A Theoretical Case Study Reveals Hidden Opportunities Provided by Electron Upconversion. Chemistry 2022; 28:e202201637. [PMID: 35880945 PMCID: PMC9804812 DOI: 10.1002/chem.202201637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Traditionally, cross-dehydrogenative coupling (CDC) leads to C-N bond formation under basic and oxidative conditions and is proposed to proceed via a two-electron bond formation mediated by carbenium ions. However, the formation of such high-energy intermediates is only possible in the presence of strong oxidants, which may lead to undesired side reactions and poor functional group tolerance. In this work we explore if oxidation under basic conditions allows the formation of three-electron bonds (resulting in "upconverted" highly-reducing radical-anions). The benefit of this "upconversion" process is in the ability to use milder oxidants (e. g., O2 ) and to avoid high-energy intermediates. Comparison of the two- and three-electron pathways using quantum mechanical calculations reveals that not only does the absence of a strong oxidant shut down two-electron pathways in favor of a three-electron path but, paradoxically, weaker oxidants react faster with the upconverted reductants by avoiding the inverted Marcus region for electron transfer.
Collapse
Affiliation(s)
- Paul Eckhardt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Quintin Elliot
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida 32306USA
| | - Igor V. Alabugin
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida 32306USA
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
47
|
Lu Z, Li Y, Xiang S, Zuo M, Sun Y, Jiang X, Jiao R, Wang Y, Fu Y. Acid Catalyzed Stereocontrolled Ferrier-Type Glycosylation Assisted by Perfluorinated Solvent. Molecules 2022; 27:7234. [PMID: 36364059 PMCID: PMC9656285 DOI: 10.3390/molecules27217234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Described herein is the first application of perfluorinated solvent in the stereoselective formation of O-/S-glycosidic linkages that occurs via a Ferrier rearrangement of acetylated glycals. In this system, the weak interactions between perfluoro-n-hexane and substrates could augment the reactivity and stereocontrol. The initiation of transformation requires only an extremely low loading of resin-H+ and the mild conditions enable the accommodation of a broad spectrum of glycal donors and acceptors. The 'green' feature of this chemistry is demonstrated by low toxicity and easy recovery of the medium, as well as operational simplicity in product isolation.
Collapse
Affiliation(s)
- Zhiqiang Lu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yanzhi Li
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shaohua Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengke Zuo
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yangxing Sun
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xingxing Jiang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Rongkai Jiao
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yinghong Wang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Yuqin Fu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
48
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Gu Y. A New Approach for the Synthesis of Bis(3-Indolyl)Pyridines via a Cooperative Vinylogous Anomeric Based Oxidation Using Ammonium Acetate as a Dual Reagent-Catalyst Role under Mild and Green Condition. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2128830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Dashteh M, Baghery S, Zolfigol MA, Khazaei A, Khajevand M. Application of New Magnetic Graphene Oxide‐Porphyrin Nanoparticles for Synthesis of Pyridines and Pyrimidines
via
Anomeric‐Based Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Dashteh
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Saeed Baghery
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Masuood Khajevand
- Department of Physical Chemistry Faculty of Chemistry Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
50
|
Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis JM, Bietti M, Costas M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C-H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J Am Chem Soc 2022; 144:19542-19558. [PMID: 36228322 DOI: 10.1021/jacs.2c08620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.
Collapse
Affiliation(s)
- Arnau Call
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Andrea Palone
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.,Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|