1
|
Samantaray KS, Kumar S, P M, Sasmal D, Baral SC, Krupa BRV, Dasgupta A, Mekki A, Harrabi K, Sen S. Contribution of piezoelectric effect on piezo-phototronic coupling in ferroelectrics: A theory assisted experimental approach on NBT. J Chem Phys 2024; 161:184711. [PMID: 39530374 DOI: 10.1063/5.0227731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
A new study explores the distinct roles of spontaneous polarization and piezoelectric polarization in piezo-phototronic coupling. This investigation focuses on differences in photocatalytic and piezo-photocatalytic performance using sodium bismuth titanate, a key ferroelectric material. The research aims to identify which type of polarization has a greater influence on piezo-phototronic effects. A theoretical assessment complements the experimental findings, providing additional insights. This study explores the enhanced piezo-phototronic performance of electrospun nanofibers compared to sol-gel particles under different illumination conditions (11 W UV, 250 W UV, and natural sunlight). Electrospun nanofibers exhibited a rate constant (k) improvement of 2.5 to 3.75 times, whereas sol-gel particles showed only 1.3 to 1.4 times higher performance when ultrasonication was added to photocatalysis. Analysis using first-principle methods revealed that nanofibers had an elastic modulus (C33) about 2.15 times lower than sol-gel particles, indicating greater flexibility. The elongation of the lattice along the z axis in the case of nanofibers reduced the covalency in the Bi-O and Ti-O bonds. These structural differences reduced spontaneous polarization and piezoelectric stress coefficients (e31 and e33). Despite having lower piezoelectric stress coefficients, higher flexibility in nanofibers led to a higher piezoelectric strain coefficient, 2.66 and 1.97 times greater than sol-gel particles, respectively. This improved the piezo-phototronic coupling for nanofibers.
Collapse
Affiliation(s)
| | - Sourabh Kumar
- Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
| | - Maneesha P
- Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
| | - Dilip Sasmal
- Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
| | - Suresh Chandra Baral
- Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
| | - B R Vaishnavi Krupa
- Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu 603102 India
| | - Arup Dasgupta
- Physical Metallurgy Division, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu 603102 India
| | - A Mekki
- Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center for Advanced Material, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - K Harrabi
- Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center (RC) for Intelligent Secure Systems, KFUPM, Dhahran 31261, Saudi Arabia
| | - Somaditya Sen
- Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
2
|
Chen Y, Ji Y, Fang J, Wei H, Wang D, Dong R, Dai B. Construction of Dual Electric Field Synergistic and Magnetic Recyclable SnFe 2O 4/ZnO Photocatalyst. Inorg Chem 2024. [PMID: 39492122 DOI: 10.1021/acs.inorgchem.4c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The recombination of photoinduced carriers hampers the photocatalysis process. Construction of the heterojunction and built-in piezoelectric field boosts the separation of electrons and holes. Herein, a novel magnetic recyclable SnFe2O4(SFO)/ZnO composite with enhanced photocatalytic performance based on the dual electric field synergism was proposed for the first time. This composite apparently alleviates the carrier recombination in SFO and extends the absorption spectrum of ZnO to the full spectrum. Consequently, 20%SFO/ZnO exhibits an excellent efficiency, which is 2.45 times that of ZnO and 4.61 times that of SFO, respectively. The differences in size and morphology between the SFO nanoparticles and the ZnO nanorods provide more contact areas, thus enlarging the deformation and enhancing the piezoelectric effect. The heterojunction and the piezoelectric field work together to modulate the transferring of carriers and elevate the photocatalytic activity. This design offers a plausible avenue for preparing efficient recyclable photocatalysts for application.
Collapse
Affiliation(s)
- Yukai Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yiyi Ji
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Huimin Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Rulin Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information, Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Deng Y, Liu J, Zhou Z, Li L, Shi Y, Tang R, Li W, Huang Y. Recent Advances in Piezoelectric Coupled with Photocatalytic Reaction System: Synergistic Mechanism, Enhancement Factors, and Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50071-50095. [PMID: 39258709 DOI: 10.1021/acsami.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The field of photocatalysis has demonstrated numerous advantages in the domains of environmental protection, energy, and materials science. However, conventional modification methods fail to simultaneously enhance carrier separation efficiency, redox capacity, and visible light absorption solely through light activation due to the intrinsic band structure limitations of photocatalysts. In addition to modification methods, the introduction of an external field, such as a piezoelectric field, can effectively address deficiencies in each step of the photocatalytic process and enhance the overall performance. The assistance of a piezoelectric field overcomes the limitations inherent in traditional photocatalytic systems. Hence, this review provides a comprehensive overview of recent advancements in piezoelectric-assisted photocatalysis and thoroughly investigates the interaction between the alternating piezoelectric field and photocatalytic processes. Various ideas for synergistic enhancement of the piezoelectric and photocatalytic properties are also explored. This multifield catalytic system shows remarkable performance in stability, pollutant degradation, and energy conversion, distinguishing it from single catalytic systems. Finally, an in-depth analysis is conducted to address the challenges and prospects associated with piezoelectric photocatalysis technology.
Collapse
Affiliation(s)
- Yaocheng Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jiawei Liu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhanpeng Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yu Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenbo Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Ying Huang
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Li B, Lv M, Zhang Y, Gong X, Lou Z, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Huang B, Zheng Z. Single-Particle Imaging Photoinduced Charge Transfer of Ferroelectric Polarized Heterostructures for Photocatalysis. ACS NANO 2024; 18:25522-25534. [PMID: 39228064 DOI: 10.1021/acsnano.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Piezoelectric-assisted photocatalysis has a huge potential in solving the energy shortage and environmental pollution problems, and imaging their detailed charge-transfer process can provide in-depth understanding for the development of high-active piezo-photocatalysts; however, it is still challenging. Herein, topotactic heterostructures of TiO2@BaTiO3 (TO@BTO-S) were constructed by the epitaxial growth of ferroelectric BaTiO3 mesocrystals on TiO2-{001} facets, resulting in a ferroelectric photocatalyst with a polarization orientation on the surface. Notably, the photoinduced charge transfer in ferroelectric TiO2@BaTiO3 was accurately monitored and directly visualized at the single-particle level by the advanced photoluminescence (PL) imaging microscopy systems. The longer PL lifetime of TO@BTO-S demonstrated the efficient charge separation caused by a built-in electric field, which is constructed by the polarization orientation of BaTiO3 mesocrystals. Therefore, the TO@BTO-S heterostructure exhibits efficient piezoelectric-assisted photocatalytic pure water splitting, which is 290 times higher than photocatalysis. This work revealed time/spatial-resolved photoinduced charge transfer in piezoelectric assistance photocatalysts at the single-particle level and demonstrated the great role of polarization orientation in promoting charge transfer for photocatalysis.
Collapse
Affiliation(s)
- Bei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yujia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xueqin Gong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Chouprik A, Spiridonov M. Unravelling the nanoscale mechanism of polarization reversal in a Hf 0.5Zr 0.5O 2-based ferroelectric capacitor by vector piezoresponse force microscopy. NANOSCALE 2024; 16:13079-13088. [PMID: 38904426 DOI: 10.1039/d4nr01124d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Ferroelectricity is in demand in many device concepts in electronics, energy and microsystem engineering. The performance of ferroelectrics-based devices is determined by either out-of-plane or in-plane polarization, or out-of-plane or in-plane piezoelectric strain. Real prospects for the practical implementation of innovative devices opened up after the discovery of ferroelectricity in ultrathin hafnium oxide films, due to their perfect compatibility with silicon technology. Ferroelectric properties of this material have been assigned to an orthorhombic structural phase with a single polar axis, but the spatial orientation of the polarization vector and the tensorial piezoelectric behaviour, which are inextricably coupled, still remain unknown. Herein, the rotation of the polarization vector in a Hf0.5Zr0.5O2 (10 nm) capacitor during polarization switching and the spatial distribution of longitudinal and shear piezoelectric coefficients are elucidated at the nanoscale using operando vector piezoresponse force microscopy. In most of the capacitor, a 180°-flipping of the polarization vector is observed, which is consistent with the orthorhombic phase structure. However, a rather large fraction of the capacitor is also occupied by nanoregions of ferroelastic (non-180°) switching, which is explained by the effect of the local mechanical stress. To quantify the three-dimensional piezoresponse, a novel approach exploiting the Poisson effect in artificially created non-ferroelectric regions is proposed and it shows that the shear piezoelectric coefficient is twice the longitudinal coefficient. The experimental insights entail an important step in fundamental understanding of the ferroelectric and piezoelectric properties of hafnium oxide and have great potential to trigger new versions of ferroelectric-based devices.
Collapse
Affiliation(s)
- Anastasia Chouprik
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| | - Maxim Spiridonov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| |
Collapse
|
6
|
Shao X, Wang C, Wang C, Bai M, Hou T, Wang X, Yan C, Guan P, Hu X. Novel photocatalytic carbon dots: efficiently inhibiting amyloid aggregation and quickly disaggregating amyloid aggregates. NANOSCALE 2024; 16:8074-8089. [PMID: 38563405 DOI: 10.1039/d3nr06165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Amyloid aggregation is implicated in the pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). It is critical to develop high-performance drugs to combat amyloid-related diseases. Most identified nanomaterials exhibit limited biocompatibility and therapeutic efficacy. In this work, we used a solvent-free carbonization process to prepare new photo-responsive carbon nanodots (CNDs). The surface of the CNDs is densely packed with chemical groups. CNDs with large, conjugated domains can interact with proteins through π-π stacking and hydrophobic interactions. Furthermore, CNDs possess the ability to generate singlet oxygen species (1O2) and can be used to oxidize amyloid. The hydrophobic interaction and photo-oxidation can both influence amyloid aggregation and disaggregation. Thioflavin T (ThT) fluorescence analysis and circular dichroism (CD) spectroscopy indicate that CNDs can block the transition of amyloid from an α-helix structure to a β-sheet structure. CNDs demonstrate efficacy in alleviating cytotoxicity induced by Aβ42 and exhibit promising blood-brain barrier (BBB) permeability. CNDs have small size, low biotoxicity, good fluorescence and photocatalytic properties, and provide new ideas for the diagnosis and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Mengyao Bai
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi 712082, China.
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 127 Youyi Road, Xi'an 710072, China.
| |
Collapse
|
7
|
Dai B, Gao C, Guo J, Ding M, Xu Q, He S, Mou Y, Dong H, Hu M, Dai Z, Zhang Y, Xie Y, Lin Z. A Robust Pyro-phototronic Route to Markedly Enhanced Photocatalytic Disinfection. NANO LETTERS 2024. [PMID: 38606881 DOI: 10.1021/acs.nanolett.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Qinglin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoxiong He
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Mingao Hu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| |
Collapse
|
8
|
Wang W, Wang S, Gu Y, Zhou J, Zhang J. Contact-separation-induced self-recoverable mechanoluminescence of CaF 2:Tb 3+/PDMS elastomer. Nat Commun 2024; 15:2014. [PMID: 38443411 PMCID: PMC10914845 DOI: 10.1038/s41467-024-46432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Centrosymmetric-oxide/polydimethylsiloxane elastomers emit ultra-strong non-pre-irradiation mechanoluminescence under stress and are considered one of the most ideal mechanoluminescence materials. However, previous centrosymmetric-oxide/polydimethylsiloxane elastomers show severe mechanoluminescence degradation under stretching, which limits their use in applications. Here we show an elastomer based on centrosymmetric fluoride CaF2:Tb3+ and polydimethylsiloxane, with mechanoluminescence that can self-recover after each stretching. Experimentation indicates that the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer occurs essentially due to contact electrification arising from contact-separation interactions between the centrosymmetric phosphors and the polydimethylsiloxane. Accordingly, a contact-separation cycle model of the phosphor-polydimethylsiloxane couple is established, and first-principles calculations are performed to model state energies in the contact-separation cycle. The results reveal that the fluoride-polydimethylsiloxane couple helps to induce contact electrification and maintain the contact-separation cycle at the interface, resulting in the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer. Therefore, it would be a good strategy to develop self-recoverable mechanoluminescence elastomers based on centrosymmetric fluoride phosphors and polydimethylsiloxane.
Collapse
Affiliation(s)
- Wenxiang Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Shanwen Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Yan Gu
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jinyu Zhou
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jiachi Zhang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
9
|
Zhang R, Yang D, Zang P, He F, Gai S, Kuang Y, Yang G, Yang P. Structure Engineered High Piezo-Photoelectronic Performance for Boosted Sono-Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308355. [PMID: 37934805 DOI: 10.1002/adma.202308355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Sono-photodynamic therapy is hindered by the limited tissue penetration depth of the external light source and the quick recombination of electron-hole owing to the random movement of charge carriers. In this study, orthorhombic ZnSnO3 quantum dots (QDs) with piezo-photoelectronic effects are successfully encapsulated in hexagonal upconversion nanoparticles (UCNPs) using a one-pot thermal decomposition method to form an all-in-one watermelon-like structured sono-photosensitizer (ZnSnO3 @UCNPs). The excited near-infrared light has high penetration depth, and the watermelon-like structure allows for full contact between the UCNPs and ZnSnO3 QDs, achieving ultrahigh Förster resonance energy transfer efficiency of up to 80.30%. Upon ultrasonic and near-infrared laser co-activation, the high temperature and pressure generated lead to the deformation of the UCNPs, thereby driving the deformation of all ZnSnO3 QDs inside the UCNPs, forming many small internal electric fields similar to isotropic electric domains. This piezoelectric effect not only increases the internal electric field intensity of the entire material but also prevents random movement and rapid recombination of charge carriers, thereby achieving satisfactory piezocatalytic performance. By combining the photodynamic effect arising from the energy transfer from UCNPs to ZnSnO3 , synergistic efficacy is realized. This study proposes a novel strategy for designing highly efficient sono-photosensitizers through structural design.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ye Kuang
- College of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Guixin Yang
- College of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Yuan X, Hu X, Lin Q, Zhang S. Progress of charge carrier dynamics and regulation strategies in 2D C xN y-based heterojunctions. Chem Commun (Camb) 2024; 60:2283-2300. [PMID: 38321964 DOI: 10.1039/d3cc05976f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Two-dimensional carbon nitrides (CxNy) have gained significant attention in various fields including hydrogen energy development, environmental remediation, optoelectronic devices, and energy storage owing to their extensive surface area, abundant raw materials, high chemical stability, and distinctive physical and chemical characteristics. One effective approach to address the challenges of limited visible light utilization and elevated carrier recombination rates is to establish heterojunctions for CxNy-based single materials (e.g. C2N3, g-C3N4, C3N4, C4N3, C2N, and C3N). The carrier generation, migration, and recombination of heterojunctions with different band alignments have been analyzed starting from the application of CxNy with metal oxides, transition metal sulfides (selenides), conductive carbon, and Cx'Ny' heterojunctions. Additionally, we have explored diverse strategies to enhance heterojunction performance from the perspective of carrier dynamics. In conclusion, we present some overarching observations and insights into the challenges and opportunities associated with the development of advanced CxNy-based heterojunctions.
Collapse
Affiliation(s)
- Xiaojia Yuan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xuemin Hu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Qiuhan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
11
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
12
|
Ali B, Siddique SA, Ahmed Siddique MB, Ullah S, Ali MA, Rauf A, Kamran MA, Arshad M. Insight on the structural, electronic and optical properties of Zn, Ga-doped/dual-doped graphitic carbon nitride for visible-light applications. J Mol Graph Model 2023; 125:108603. [PMID: 37633020 DOI: 10.1016/j.jmgm.2023.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
The density functional theory (DFT) was applied for the first time to study the doping and co-doping of Ga and Zn metals on graphitic carbon nitride (g-C3N4). The doping of these metal impurities into g-C3N4 leads to a significant decrease in the bandgap energy. Moreover, the co-doping leads to even lower bandgap energy than either individual Zn or Ga-doped g-C3N4. The theoretical electronic and optical properties including the density of state (DOS), energy levels of the frontier orbital, excited state lifetime, and molecular electrostatic potential of the doped and co-doped g-C3N4 support their application in UV-visible light-based technologies. The quantum mechanical parameters (energy band gap, binding energy, exciton energy, softness, hardness) and dipole moment exhibit higher values (ranging from 1.36 to 4.94 D) compared to the bare g-C3N4 (0.29 D), indicating better solubility in the water solvent. The time-dependent DFT (TD-DFT) calculations showed absorption maxima in between the UV-Vis region (309-878 nm). Additionally, charge transfer characteristics, transition density matrix (TDM), excited state lifetime and light harvesting efficiency (LHE) were investigated. Overall, these theoretical studies suggest that doped and co-doped g-C3N4 are excellent candidates for electronic semiconductor devices, light-emitting diodes (LEDs), solar cells, and photodetectors.
Collapse
Affiliation(s)
- Babar Ali
- Department of Physics, University of Okara, Okara, Pakistan
| | - Sabir Ali Siddique
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | | | - Sami Ullah
- Department of Physics, University of Okara, Okara, Pakistan
| | - Muhammad Arif Ali
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Arshad
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
13
|
Liu L, Feng Q, Zhang Y, Zhu X, Chen L, Xiong Z. Efficiency enhancement mechanism of piezoelectric effect in long wavelength InGaN-based LED. Phys Chem Chem Phys 2023; 25:27774-27782. [PMID: 37814799 DOI: 10.1039/d3cp02934d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Improving the luminescence efficiency of InGaN-based long wavelength LEDs for use in micro-LED full-colour displays remains a huge challenge. The strain-induced piezoelectric effect is an effective measure for modulating the carrier redistribution at the InGaN/GaN heterointerfaces. Our theoretical results reveal that the hole injection is significantly improved by the diminution of the valence band offset (VBO) of the InGaN/GaN heterointerfaces along the [0001] direction, and inversely, the VBO increases along the [0001] direction. The energy band structures showed that the tensile strain of the GaN film grown on a silicon (Si) substrate could weaken the internal electric field of the InGaN well layer leading to a flattening of the energy band, which increases the overlap of electron and hole wave functions. In addition, the strain-induced piezoelectric polarisation of the InGaN layer on the Si substrate generates opposite sheet-bound charges at the heterointerfaces, which causes a reduction in the depletion region of the InGaN/GaN quantum wells (QWs). A systematic analysis illustrates that the control of the piezoelectric polarisation of the InGaN QW layer is available improve the internal quantum efficiency of the InGaN-based LEDs.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330038, China.
| | - Qingqing Feng
- Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330038, China.
| | - Yu Zhang
- Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330038, China.
| | - Xiaolu Zhu
- Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330038, China.
| | - Lanli Chen
- School of Mathematics and Physics, Hubei Polytechnic University Huangshi, Hubei 435003, China.
| | - Zhihua Xiong
- Key Laboratory for Optoelectronics and Communication of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330038, China.
| |
Collapse
|
14
|
Chfii H, Bouich A, Andrio A, Torres JC, Soucase BM, Palacios P, Lefdil MA, Compañ V. The Structural and Electrochemical Properties of CuCoO 2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2312. [PMID: 37630896 PMCID: PMC10459735 DOI: 10.3390/nano13162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.
Collapse
Affiliation(s)
- Hasnae Chfii
- Escuela Técnica Superior de Ingeniería del Diseño, Universitat Politècnica de València, 46022 València, Spain (B.M.S.)
| | - Amal Bouich
- Escuela Técnica Superior de Ingeniería del Diseño, Universitat Politècnica de València, 46022 València, Spain (B.M.S.)
- Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain (P.P.)
| | - Andreu Andrio
- Departamento de Física, Universitat Jaume I, 12080 Castellón de la Plana, Spain;
| | - Joeluis Cerutti Torres
- Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain (P.P.)
- Departamento Física Aplicada a las Ingenierías Aeronáutica y Naval, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid, Spain
| | - Bernabé Mari Soucase
- Escuela Técnica Superior de Ingeniería del Diseño, Universitat Politècnica de València, 46022 València, Spain (B.M.S.)
| | - Pablo Palacios
- Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain (P.P.)
- Departamento Física Aplicada a las Ingenierías Aeronáutica y Naval, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid, Spain
| | | | - Vicente Compañ
- Departamento de Termodinámica Aplicada, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
15
|
Liu X, Li F, Peng W, Zhu Q, Li Y, Zheng G, Tian H, He Y. Piezotronic and Piezo-Phototronic Effects-Enhanced Core-Shell Structure-Based Nanowire Field-Effect Transistors. MICROMACHINES 2023; 14:1335. [PMID: 37512645 PMCID: PMC10385595 DOI: 10.3390/mi14071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Piezotronic and piezo-phototronic effects have been extensively applied to modulate the performance of advanced electronics and optoelectronics. In this study, to systematically investigate the piezotronic and piezo-phototronic effects in field-effect transistors (FETs), a core-shell structure-based Si/ZnO nanowire heterojunction FET (HJFET) model was established using the finite element method. We performed a sweep analysis of several parameters of the model. The results show that the channel current increases with the channel radial thickness and channel doping concentration, while it decreases with the channel length, gate doping concentration, and gate voltage. Under a tensile strain of 0.39‱, the saturation current change rate can reach 38%. Finally, another core-shell structure-based ZnO/Si nanowire HJFET model with the same parameters was established. The simulation results show that at a compressive strain of -0.39‱, the saturation current change rate is about 18%, which is smaller than that of the Si/ZnO case. Piezoelectric potential and photogenerated electromotive force jointly regulate the carrier distribution in the channel, change the width of the channel depletion layer and the channel conductivity, and thus regulate the channel current. The research results provide a certain degree of reference for the subsequent experimental design of Zn-based HJFETs and are applicable to other kinds of FETs.
Collapse
Affiliation(s)
- Xiang Liu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Fangpei Li
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenbo Peng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Quanzhe Zhu
- Shaanxi Advanced Semiconductor Technology Center Co., Ltd., Xi'an 710077, China
| | - Yangshan Li
- Shaanxi Advanced Semiconductor Technology Center Co., Ltd., Xi'an 710077, China
| | - Guodong Zheng
- Shaanxi Advanced Semiconductor Technology Center Co., Ltd., Xi'an 710077, China
| | - Hongyang Tian
- Shaanxi Advanced Semiconductor Technology Center Co., Ltd., Xi'an 710077, China
| | - Yongning He
- School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| |
Collapse
|
16
|
Dai B, Guo J, Gao C, Yin H, Xie Y, Lin Z. Recent Advances in Efficient Photocatalysis via Modulation of Electric and Magnetic Fields and Reactive Phase Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210914. [PMID: 36638334 DOI: 10.1002/adma.202210914] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The past several years has witnessed significant progress in enhancing photocatalytic performance via robust electric and magnetic fields' modulation to promote the separation and transfer of photoexcited carriers, and phase control at reactive interface to lower photocatalytic reaction energy barrier and facilitate mass transfer. These three research directions have received soaring attention in photocatalytic field. Herein, recent advances in photocatalysis modulated by electric field (i.e., piezoelectric, pyroelectric, and triboelectric fields, as well as their coupling) with specific examples and mechanisms discussion are first examined. Subsequently, the strategy via magnetic field manipulation for enhancing photocatalytic performance is scrutinized, including the spin polarization, Lorentz force, and magnetoresistance effect. Afterward, materials with tailored structure and composition design enabled by reactive phase control and their applications in photocatalytic hydrogen evolution and carbon dioxide reduction are reviewed. Finally, the challenges and potential opportunities to further boost photocatalytic efficiency are presented, aiming at providing crucial theoretical and experimental guidance for those working in photocatalysis, ferroelectrics, triboelectrics, piezo-/pyro-/tribo-phototronics, and electromagnetics, among other related areas.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hang Yin
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 118425, Singapore
| |
Collapse
|
17
|
Deng M, Xu X, Duan Y, Yu L, Li R, Peng Q. Y-Type Non-Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210760. [PMID: 36599710 DOI: 10.1002/adma.202210760] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Raising the lowest unoccupied molecular orbital (LUMO) energy level of Y-type non-fullerene acceptors can increase the open-circuit voltage (Voc ) and thus the photovoltaic performance of the current top performing polymer solar cells (PSCs). One of the viable routes is demonstrated by the successful Y6 derivative of L8-BO with the branched alkyl chains at the outer side. This will introduce steric hindrance and reduce intermolecular aggregation, thus open up the bandgap and raise the LUMO energy level. To take further advantages of the steric hindrance influence on optoelectronic properties of Y6 derivatives, two Y-type non-fullerene acceptors of BTP-Cy-4F and BTP-Cy-4Cl are designed and synthesized by adopting outer branched side chains and inner cyclohexane side chains. An outstanding Voc of 0.937 V is achieved in the D18:BTP-Cy-4F binary blend devices along with a power conversion efficiency (PCE) of 18.52%. With the addition of BTP-eC9 to extend the absorption spectral coverage, a remarkable PCE of 19.36% is realized finally in the related ternary blend devices, which is one of the highest values for single-junction PSCs at present. The results illustrate the great potential of cyclohexane side chains in constructing high-performance non-fullerene acceptors and their PSCs.
Collapse
Affiliation(s)
- Min Deng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liyang Yu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Lab, Suffolk, Upton, NY, 11 973, USA
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
18
|
The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Liu J, Qi W, Xu M, Thomas T, Liu S, Yang M. Piezocatalytic Techniques in Environmental Remediation. Angew Chem Int Ed Engl 2023; 62:e202213927. [PMID: 36316280 DOI: 10.1002/anie.202213927] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weiliang Qi
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Mengmeng Xu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036, Tamil Nadu, India
| | - Siqi Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
20
|
Wang Y, Xie W, Peng W, Li F, He Y. Fundamentals and Applications of ZnO-Nanowire-Based Piezotronics and Piezo-Phototronics. MICROMACHINES 2022; 14:mi14010047. [PMID: 36677109 PMCID: PMC9860666 DOI: 10.3390/mi14010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/02/2023]
Abstract
The piezotronic effect is a coupling effect of semiconductor and piezoelectric properties. The piezoelectric potential is used to adjust the p-n junction barrier width and Schottky barrier height to control carrier transportation. At present, it has been applied in the fields of sensors, human-machine interaction, and active flexible electronic devices. The piezo-phototronic effect is a three-field coupling effect of semiconductor, photoexcitation, and piezoelectric properties. The piezoelectric potential generated by the applied strain in the piezoelectric semiconductor controls the generation, transport, separation, and recombination of carriers at the metal-semiconductor contact or p-n junction interface, thereby improving optoelectronic devices performance, such as photodetectors, solar cells, and light-emitting diodes (LED). Since then, the piezotronics and piezo-phototronic effects have attracted vast research interest due to their ability to remarkably enhance the performance of electronic and optoelectronic devices. Meanwhile, ZnO has become an ideal material for studying the piezotronic and piezo-phototronic effects due to its simple preparation process and better biocompatibility. In this review, first, the preparation methods and structural characteristics of ZnO nanowires (NWs) with different doping types were summarized. Then, the theoretical basis of the piezotronic effect and its application in the fields of sensors, biochemistry, energy harvesting, and logic operations (based on piezoelectric transistors) were reviewed. Next, the piezo-phototronic effect in the performance of photodetectors, solar cells, and LEDs was also summarized and analyzed. In addition, modulation of the piezotronic and piezo-phototronic effects was compared and summarized for different materials, structural designs, performance characteristics, and working mechanisms' analysis. This comprehensive review provides fundamental theoretical and applied guidance for future research directions in piezotronics and piezo-phototronics for optoelectronic devices and energy harvesting.
Collapse
Affiliation(s)
- Yitong Wang
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wanli Xie
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
21
|
Fu B, Li J, Jiang H, He X, Ma Y, Wang J, Shi C, Hu C. Enhanced piezotronics by single-crystalline ferroelectrics for uniformly strengthening the piezo-photocatalysis of electrospun BaTiO 3@TiO 2 nanofibers. NANOSCALE 2022; 14:14073-14081. [PMID: 35993416 DOI: 10.1039/d2nr03828e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Turning the built-in electric field by modulating the morphology and microstructure of ferroelectric materials is considered a viable approach to enhancing the piezo-photocatalytic activity of the ferroelectric/oxide semiconductor heterojunctions. Here, hydrothermally synthesized single-crystalline BaTiO3 nanoparticles are employed to construct BaTiO3@TiO2 hybrid nanofibers by sol-gel assisted electrospinning of TiO2 nanofibers and annealing. Because of the obvious enhancement of the synergetic piezo-photocatalytic effect under both ultrasonic and ultraviolet (UV) light irradiation, the piezo-photocatalytic degradation rate constant (k) of BaTiO3@TiO2 hybrid nanofibers on methyl orange (MO) reaches 14.84 × 10-2 min-1, which is approximately seven fold that for piezocatalysis and six fold that for photocatalysis. Moreover, BaTiO3@TiO2 core-shell nanoparticles are also synthesized for comparison purposes to assess the influence of microstructure on the piezo-photocatalysis by a wet-chemical coating of TiO2 on BaTiO3 nanoparticles. Such a high piezo-photocatalytic activity is attributed to the enhancement of the piezotronic effect by the single-crystalline ferroelectric nanoparticles and the nanoconfinement effect caused by the one-dimensional boundary of nanofibers with high specific surface areas. The mechanically induced uniform local built-in electric fields originated from the single-crystalline ferroelectric nanoparticles can enhance the separation of photogenerated electron and hole pairs and promote the formation of free hydroxyl radicals, resulting in a strong piezotronic effect boosted photochemical degradation of organic dye. This work introduces the single-crystalline ferroelectrics to construct ferroelectric/oxide semiconductor heterojunctions, and the enhanced local piezotronic effect uniformly strengthens the photochemical reactivity, which offers a new option to design high-efficiency piezo-photocatalysts for pollutant treatment.
Collapse
Affiliation(s)
- Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jingke Wang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chaoyang Shi
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China.
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
22
|
Dai B, Zhou Y, Xiao X, Chen Y, Guo J, Gao C, Xie Y, Chen J. Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203057. [PMID: 35957518 PMCID: PMC9534979 DOI: 10.1002/advs.202203057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Indexed: 05/19/2023]
Abstract
Mass transfer is an essential factor determining photocatalytic performance, which can be modulated by fluid field via manipulating the kinetic characteristics of photocatalysts and photocatalytic intermediates. Past decades have witnessed the efforts and achievements made in manipulating mass transfer based on photocatalyst structure and composition design, and thus, a critical survey that scrutinizes the recent progress in this topic is urgently necessitated. This review examines the basic principles of how mass transfer behavior impacts photocatalytic activity accompanying with the discussion on theoretical simulation calculation including fluid flow speed and pattern. Meanwhile, newly emerged viable photocatalytic micro/nanomotors with self-thermophoresis, self-diffusiophoresis, and bubble-propulsion mechanisms as well as magnet-actuated photocatalytic artificial cilia for facilitating mass transfer will be covered. Furthermore, their applications in photocatalytic hydrogen evolution, carbon dioxide reduction, organic pollution degradation, bacteria disinfection and so forth are scrutinized. Finally, a brief summary and future outlook are presented, providing a viable guideline to those working in photocatalysis, mass transfer, and other related fields.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Yihao Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xiao Xiao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yukai Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Materials Science and EngineeringNanjing Tech UniversityNanjing210009China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Jiangsu Key Laboratory for BiosensorsJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
23
|
Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field. Catalysts 2022. [DOI: 10.3390/catal12090987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Revealing the charge transfer path is very important for studying the photocatalytic mechanism and improving photocatalytic performance. In this work, the charge transfer path turned by the piezoelectricity in Ag-BaTiO3 nanofibers is discussed through degrading methyl orange. The piezo-photocatalytic degradation rate of Ag-BaTiO3 is much higher than the photocatalysis of Ag-BaTiO3 and piezo-photocatalysis of BaTiO3, implying the coupling effect between Ag nanoparticle-induced localized surface plasmon resonance (LSPR), photoexcited electron-hole pairs, and deformation-induced piezoelectric field. With the distribution density of Ag nanoparticles doubling, the LSPR field increases by one order of magnitude. Combined with charge separation driven by the piezoelectric field, more electrons in BaTiO3 nanofibers are excited by plasmon-induced resonance energy transfer to improve the photocatalytic property.
Collapse
|
24
|
Jiang F, Lee PS. Performance optimization strategies of halide perovskite-based mechanical energy harvesters. NANOSCALE HORIZONS 2022; 7:1029-1046. [PMID: 35775970 DOI: 10.1039/d2nh00229a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halide perovskites, possessing unique electronic and photovoltaic properties, have been intensively investigated over the past decade. The excellent polarization, piezoelectricity, dielectricity and photoelectricity of halide perovskites provide new opportunities for the applications of mechanical energy harvesting. Although various studies have been conducted to develop halide perovskite-based triboelectric and piezoelectric nanogenerators, strategies for their electrical performance optimization are rarely mentioned. In this review, we systematically introduce the recent research progress of halide perovskite-based mechanical energy harvesters and summarize the different optimization strategies for improving both the piezoelectric and triboelectric output of the devices, bringing some inspiration to guide future material and structure design for halide perovskite-based energy devices. A summary of the current challenges and future perspectives is also presented, offering some possible directions for development in this emerging field.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Flexible Electronics Technology of THU, Zhejiang, Jiaxing 314000, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
25
|
Zhang Y, Luo N, Zeng D, Xu C, Ma L, Luo G, Qian Y, Feng Q, Chen X, Hu C, Liu L, Fujita T, Wei Y. Ferroelectricity and Schottky Heterojunction Engineering in AgNbO 3: A Simultaneous Way of Boosting Piezo-photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22313-22323. [PMID: 35503741 DOI: 10.1021/acsami.2c04408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an efficient and economical way of dealing with organic pollutants, piezo-photocatalysis has attracted great interest. In this work, we demonstrated that ferroelectricity and Schottky heterojunction engineering could significantly enhance the piezo-photocatalytic activity of AgNbO3. The poled 20 mol % K+ doped AgNbO3 disclosed its superior piezo-photocatalytic activity of 0.131 min-1 for 10 mg·L-1 RhB, which is 7.8 times of the pristine one under the condition of illumination only. The designed piezo-photocatalyst also exhibited good piezo-photocatalytic stability after four cycles. These merits are attributed to the built-in electric field associated with the large spontaneous polarization and low coercive field originated from the stable ferroelectric state after ferroelectricity engineering, plus with the electron trapper effect of the in situ precipitated metal Ag particles. Our work not only provides a promising piezo-photocatalyst for degrading organic contaminants but also paves a good way for developing high piezo-photocatalytic activity catalysts.
Collapse
Affiliation(s)
- Yang Zhang
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nengneng Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Deqian Zeng
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chao Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Li Ma
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Center on Nanoenergy Research, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Gengguang Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yixin Qian
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qin Feng
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiyong Chen
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Changzheng Hu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Laijun Liu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yuezhou Wei
- Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
26
|
Wu H, Miao T, Deng Q, Xu Y, Shi H, Huang Y, Fu X. Accelerating Nickel-Based Molecular Construction via DFT Guidance for Advanced Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17486-17499. [PMID: 35389211 DOI: 10.1021/acsami.2c02107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the nickel-based molecular catalyst structure and functional relationship is crucial for catalytic hydrogen production in aqueous solutions. Density functional theory (DFT) provides mature theoretical knowledge for efficient catalyst design, significantly reducing catalyst synthesis time and energy consumption. In the present work, three molecular catalysts, Ni(qbz)(pys)2 (qbz = 2-quinoline benzimidazole) (NQP 1), Ni(qbo)(pys)2 (qbo = 2-quinoline benzothiazole) (NQP 2), and Ni(pbz)(pys)2 (pbz = 4-chloro-2,2-pyridylbenzimidazole) (NQP 3) (pys = 2-mercaptopyridine), were designed and synthesized and exhibit a high performance for H2 generation in aqueous solution with a lamp (λ ≥ 400 nm) under visible light irradiation. Under the optimal conditions, a H2 evolution rate as high as 1190 μmol h-1 can be obtained over 25 mg of NQP 1 with the best catalytic performance. DFT has been adopted in this study to unveil the relationship between the ligand qbz and catalyst NQP 1─an efficient step in the design of catalysts with an excellent catalytic performance. We show that, in addition to the presence of the triphenyl ring increasing the overall electron density, rapid electron transfer (ET) from excited fluorescein (Fl) to NQP 1 significantly improves the chance of photogenerated electrons transferring to the active site, ultimately increasing the catalytic activity for H2 production. This work on understanding the correlation between structures and properties of complexes provides a new idea for manufacturing high-performance photocatalysts.
Collapse
Affiliation(s)
- Haisu Wu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Tifang Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yun Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Haixia Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ying Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xianliang Fu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| |
Collapse
|