1
|
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. MATERIALS HORIZONS 2024; 11:3764-3791. [PMID: 38895815 DOI: 10.1039/d4mh00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Conjugated materials have emerged as competitive photocatalysts for the production of sustainable hydrogen from water over the last decade. Interest in these polymer photocatalysts stems from the relative ease to tune their electronic properties through molecular engineering, and their potentially low cost. However, most polymer photocatalysts have only been utilised in rudimentary suspension-based photocatalytic reactors, which are not scalable as these systems can suffer from significant optical losses and often require constant agitation to maintain the suspension. Here, we will explore research performed to utilise polymeric photocatalysts in more sophisticated systems, such as films or as nanoparticulate suspensions, which can enhance photocatalytic performance or act as a demonstration of how the polymer can be scaled for real-world applications. We will also discuss how the systems were prepared and consider both the benefits and drawbacks of each system before concluding with an outlook on the field of processable polymer photocatalysts.
Collapse
Affiliation(s)
- Richard Jack Lyons
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | | |
Collapse
|
2
|
Liang W, Zhang X, Wang L, Wen C, Tian L, Li Z, Chen X, Wu W. Designing biomimetic two-dimensional channels for uranium separation from seawater. Chem Sci 2024; 15:10455-10463. [PMID: 38994416 PMCID: PMC11234859 DOI: 10.1039/d4sc02801e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Efficient separation of uranium from seawater stands as a pivotal challenge. This study unveils an approach focusing on the ingenious design of biomimetic two-dimensional (2D) membranes tailored explicitly for this purpose. Leveraging the unique interplay of DNA strands housing U aptamers, pH-responsive i-motifs, and poly A(10) segments ingeniously embedded within graphene oxide membranes, a distinctive biomimetic 2D channel is engineered. The strategic integration of these bio-inspired elements enables dynamic adjustment of interlayer spacing, augmenting both the permeability of the membrane and the selectivity of the aptamer for uranyl ions. During the separation process, the encounter between uranyl ions and the enhanced aptamer within the interlayers initiates a crucial interaction, triggering a specific concentration polarization mechanism. This mechanism stands as the cornerstone for achieving a highly selective separation of uranyl ions from the vast and complex matrix of seawater. The membrane exhibits excellent performance in real seawater, with a rejection rate of uranyl ions of ≈100% and sustained selectivity of uranyl ions over ten cycles. Importantly, the selectivity of uranium and vanadium can reach 14.66. The significance of this research lies not only in the effective separation of uranyl ions but also in showcasing the broader applicability of 2D membrane design in chemical engineering.
Collapse
Affiliation(s)
- Wenbin Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Liqin Wang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Chuanxi Wen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University Xining 810007 China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Wangsuo Wu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University Lanzhou 730000 China
- School of Nuclear Science and Technology, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
3
|
Castro-Muñoz R. Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review. Molecules 2024; 29:2829. [PMID: 38930894 PMCID: PMC11206894 DOI: 10.3390/molecules29122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Today, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation (PV), as a highly selective technology for liquid separation, benefits from using 2D materials to selectively transport water or other solvent molecules. Therefore, this review paper offers an interesting update in revising the ongoing progress of PV membranes using 2D materials in several applications, including solvent purification (the removal of water from organic systems), organics removal (the removal of organic molecules diluted in water systems), and desalination (selective water transport from seawater). In general, recent reports from the past 3 years have been discussed and analyzed. Attention has been devoted to the proposed strategies and fabrication of membranes for the inclusion of 2D materials into polymer phases. Finally, the future trends and current research gaps are declared for the scientists in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| |
Collapse
|
4
|
Afzal J, Zhang J, Wang H. Fabrication of -SO 3H-functionalized polyphosphazene-reinforced proton conductive matrix-mixed membranes. RSC Adv 2024; 14:14456-14464. [PMID: 38699689 PMCID: PMC11063683 DOI: 10.1039/d3ra07094h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Proton exchange membranes (PEMs) have emerged as very promising membranes for automotive applications because of their notable proton conductivity at low temperatures. These membranes find extensive utilization in fuel cells. Several polymeric materials have been used, but their application is constrained by their expense and intricate synthetic processes. Affordable and efficient synthetic methods for polymeric materials are necessary for the widespread commercial use of PEM technology. The polymeric combination of hexachlorocyclotriphosphazene (HCCP) and 4,4-diamino-2,2-biphenyldisulfonic acid facilitated the synthesis of PP-(PhSO3H)2, a polyphosphazene with built-in -SO3H moieties. Characterization revealed that it was a porous organic polymer with high stability. PP-(PhSO3H)2 exhibited a proton conductivity of up to 8.24 × 10-2 S cm-1 (SD = ±0.031) at 353 K under 98% relative humidity (RH), which was more than two orders of magnitude higher than that of its -SO3H-free analogue, PP-(Ph)2 (2.32 × 10-4 S cm-1) (SD = ±0.019) under identical conditions. Therefore, for application in a PEM fuel cell, PP-(PhSO3H)2-based matrix-mixed membranes (PP-(PhSO3H)2-MMMs) were fabricated by mixing them with polyacrylonitrile (PAN) in various ratios. The proton conductivity could reach up to 6.11 × 10-2 S cm-1 (SD = ±0.0048) at 353 K and 98%RH, when the weight ratio of PP-(PhSO3H)2 : PAN was 3 : 1, the value of which was comparable with those of commercially available electrolytes used in PEM fuel cells. PP-(PhSO3H)2-MMM (3 : 1) had an extended lifetime of reusability. Using phosphazene and bisulfonated multiple-amine modules as precursors, we demonstrated that a porous organic polymer with a highly effective proton-conductive matrix-mixed membrane for PEM fuel cells could be produced readily by an intuitive polymeric reaction.
Collapse
Affiliation(s)
- Jamal Afzal
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiashun Zhang
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Key Laboratory of Energy Conversion and Storage Technologies, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
5
|
Yang Y, Wang M, He Q, Zhai P, Zhang P, Gong Y. Ion Transport Behavior in van der Waals Gaps of 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310681. [PMID: 38462953 DOI: 10.1002/smll.202310681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Indexed: 03/12/2024]
Abstract
2D materials, with advantages of atomic thickness and novel physical/chemical characteristics, have emerged as the vital building blocks for advanced lamellar membranes which possess promising potential in energy storage, ion separation, and catalysis. When 2D materials are stacked together, the van der Waals (vdW) force generated between adjacent layered nanosheets induces the construction of an ordered lamellar membrane. By regulating the interlayer spacing down to the nanometer or even sub-nanometer scale, rapid and selective ion transport can be achieved through such vdW gaps. The further improvement and application of qualified 2D materials-based lamellar membranes (2DLMs) can be fulfilled by the rational design of nanochannels and the intelligent micro-environment regulation under different stimuli. Focusing on the newly emerging advances of 2DLMs, in this review, the common top-down and bottom-up synthesis approaches of 2D nanosheets and the design strategy of functional 2DLMs are briefly introduced. Two essential ion transport mechanisms within vdW gaps are also involved. Subsequently, the responsive 2DLMs based on different types of external stimuli and their unique applications in nanofluid transport, membrane-based filters, and energy storage are presented. Based on the above analysis, the existing challenges and future developing prospects of 2DLMs are further proposed.
Collapse
Affiliation(s)
- Yahan Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Moxuan Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Pengbo Zhai
- Tianmushan Laboratory, Xixi Octagon City, Yuhang, Hangzhou, 310023, China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang, Hangzhou, 310023, China
- Center for Micro-Nano Innovation, Beihang University, Beijing, 100029, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou, 310051, China
| |
Collapse
|
6
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
7
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
8
|
Liu Y, Zhang Z, Li Z, Wei X, Zhao F, Fan C, Jiang Z. Surface Segregation Methods toward Molecular Separation Membranes. SMALL METHODS 2023; 7:e2300737. [PMID: 37668447 DOI: 10.1002/smtd.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/06/2023]
Abstract
As a highly promising approach to solving the issues of energy and environment, membrane technology has gained increasing attention in various fields including water treatment, liquid separations, and gas separations, owing to its high energy efficiency and eco-friendliness. Surface segregation, a phenomenon widely found in nature, exhibits irreplaceable advantages in membrane fabrication since it is an in situ method for synchronous modification of membrane and pore surfaces during the membrane forming process. Meanwhile, combined with the development of synthesis chemistry and nanomaterial, the group has developed surface segregation as a versatile membrane fabrication method using diverse surface segregation agents. In this review, the recent breakthroughs in surface segregation methods and their applications in membrane fabrication are first briefly introduced. Then, the surface segregation phenomena and the classification of surface segregation agents are discussed. As the major part of this review, the authors focus on surface segregation methods including free surface segregation, forced surface segregation, synergistic surface segregation, and reaction-enhanced surface segregation. The strategies for regulating the physical and chemical microenvironments of membrane and pore surfaces through the surface segregation method are emphasized. The representative applications of surface segregation membranes are presented. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Yanan Liu
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhao Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zongmei Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Xiaocui Wei
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Fu Zhao
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Chunyang Fan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Ecological Civilization, Hainan University, 570228, Haikou, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
9
|
Zhang P, Tu Z, Yan Z, Zhang X, Hu X, Wu Y. Deep eutectic solvent-based blended membranes for ultra-super selective separation of SO 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132515. [PMID: 37703738 DOI: 10.1016/j.jhazmat.2023.132515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
SO2 is a major atmospheric pollutant leading to acid rain and smog. As a new generation of green solvents, deep eutectic solvents (DESs) have been widely investigated for gas capture. Nevertheless, studies on DES-based membranes for SO2 separation are yet minimal. Herein, we devised polymer/DES blended membranes comprising 1-butyl-3-methyl-imidazolium bromide ([Bmim]Br)/diethylene glycol (DEG) DES and poly (vinylidene fluoride) (PVDF), and these membranes were firstly used for selective separation of SO2 from N2 and CO2. The permeability of SO2 reaches up to 17480 Barrer (0.20 bar, 40 ºC) in PVDF/DES blended membrane containing 50 wt% of [Bmim]Br/DEG (2:1), with ultrahigh SO2/N2 and SO2/CO2 selectivity of 3690 and 211 obtained, respectively, far exceeding those in the state-of-the-art membranes reported in literature. The highly-reversible multi-site interaction between SO2 and [Bmim]Br/DEG DES was revealed by spectroscopic analysis. Furthermore, the PVDF/DES blended membrane was also able to efficiently and stably separate SO2/CO2/N2 (2.5/15/82.5%) mixed gas for at least 100 h. This work demonstrates for the first time that [Bmim]Br-based DESs are very efficient media for membrane separation of SO2. The easy preparation, low cost and high performance enable polymer/DES blended membranes to be promising candidates for flue gas desulfurization.
Collapse
Affiliation(s)
- Ping Zhang
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zhuoheng Tu
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Zhihao Yan
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaomin Zhang
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Institute of Green Chemistry and Engineering, Nanjing University, Suzhou 215163, PR China
| | - Xingbang Hu
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Institute of Green Chemistry and Engineering, Nanjing University, Suzhou 215163, PR China
| | - Youting Wu
- Separation Engineering Research Center, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Kim S, Choi H, Kim B, Lim G, Kim T, Lee M, Ra H, Yeom J, Kim M, Kim E, Hwang J, Lee JS, Shim W. Extreme Ion-Transport Inorganic 2D Membranes for Nanofluidic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206354. [PMID: 36112951 DOI: 10.1002/adma.202206354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Inorganic 2D materials offer a new approach to controlling mass diffusion at the nanoscale. Controlling ion transport in nanofluidics is key to energy conversion, energy storage, water purification, and numerous other applications wherein persistent challenges for efficient separation must be addressed. The recent development of 2D membranes in the emerging field of energy harvesting, water desalination, and proton/Li-ion production in the context of green energy and environmental technology is herein discussed. The fundamental mechanisms, 2D membrane fabrication, and challenges toward practical applications are highlighted. Finally, the fundamental issues of thermodynamics and kinetics are outlined along with potential membrane designs that must be resolved to bridge the gap between lab-scale experiments and production levels.
Collapse
Affiliation(s)
- Sungsoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geonwoo Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taehoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minwoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hansol Ra
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihun Yeom
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minjun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eohjin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiyoung Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- IT Materials Division, Advanced Materials Company, LG Chem R&D Campus, Daejeon, 34122, Republic of Korea
| | - Joo Sung Lee
- Separator Division, Advanced Materials Company, LG Chem R&D Campus, Daejeon, 34122, Republic of Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Republic of Korea
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Kong H, Yao H, Li Y, Wang Q, Qiu X, Yan J, Zhu J, Wang Y. Mixed-Dimensional van der Waals Heterostructures for Boosting Electricity Generation. ACS NANO 2023; 17:18456-18469. [PMID: 37698581 DOI: 10.1021/acsnano.3c06080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The emerging technology of harvesting environmental energy using hydrovoltaic devices enriches the conversion forms of renewable energy. It provides more concepts for power supply in micro/nano systems, and hydrovoltaic technology with high performance, usability, and integration is essential for achieving sustainable green energy. Comparing the discovery of multiscale nanomaterials, working layers with innovative microstructures have gradually become the dominant trend in the construction of graphene-based hydrovoltaic devices. However, reports on promoting ion/electron redistribution at the solid-liquid interface through the substrate effect of graphene are accompanied by tedious procedures, nondiverse substrates, and monolithic regulation of enhancement mechanisms. Here, the electrophoretic deposition (EPD)-driven SiC whiskers (SiCw)-assisted graphene transfer process is adopted to alleviate the complexity of the device fabrication caused by graphene transfer. The resulting output performance of the graphene/SiCw (GS) mesh films is significantly boosted. The high integrity of graphene and prominent negative surface charge near the graphene-droplet interface are derived from the overlayer and underlayer inside the graphene-based mixed-dimensional van der Waals (vdW) heterostructures, respectively. Additionally, a self-powered desalination-monitoring system is designed based on integrated hydrovoltaic devices. Electricity harvested from the ionic solutions is reused for deionization, representing an efficient strategy for energy conversion and utilization.
Collapse
Affiliation(s)
- Haoran Kong
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huiying Yao
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, P. R. China
| | - Yuting Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinhuan Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaopan Qiu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jin Yan
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yu Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
12
|
Ezazi M, Quazi MM. Recent Developments in Two-Dimensional Materials-Based Membranes for Oil-Water Separation. MEMBRANES 2023; 13:677. [PMID: 37505043 PMCID: PMC10386624 DOI: 10.3390/membranes13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The industrialization witnessed in the last century has resulted in an unprecedented increase in water pollution. In particular, the water pollution induced by oil contaminants from oil spill accidents, as well as discharges from pharmaceutical, oil/gas, and metal processing industries, have raised concerns due to their potential to pose irreversible threats to the ecosystems. Therefore, the effective treating of these large volumes of oily wastewater is an inevitable challenge to address. Separating oil-water mixtures by membranes has been an attractive technology due to the high oil removal efficiency and low energy consumption. However, conventional oil-water separation membranes may not meet the complex requirements for the sustainable treatment of wastewater due to their relatively shorter life cycle, lower chemical and thermal stability, and permeability/selectivity trade-off. Recent advancements in two-dimensional (2D) materials have provided opportunities to address these challenges. In this article, we provide a brief review of the most recent advancements in oil-water separation membranes modified with 2D materials, with a focus on MXenes, graphenes, metal-organic frameworks, and covalent organic frameworks. The review briefly covers the backgrounds, concepts, fabrication methods, and the most recent representative studies. Finally, the review concludes by describing the challenges and future research directions.
Collapse
Affiliation(s)
- Mohammadamin Ezazi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30460, USA
| | - M M Quazi
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia
| |
Collapse
|
13
|
Liu Z, Zhan Z, Shen T, Li N, Zhang C, Yu C, Li C, Si Y, Jiang L, Dong Z. Dual-bionic superwetting gears with liquid directional steering for oil-water separation. Nat Commun 2023; 14:4128. [PMID: 37438400 DOI: 10.1038/s41467-023-39851-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
Developing an effective and sustainable method for separating and purifying oily wastewater is a significant challenge. Conventional separation membrane and sponge systems are limited in their long-term usage due to weak antifouling abilities and poor processing capacity for systems with multiple oils. In this study, we present a dual-bionic superwetting gears overflow system with liquid steering abilities, which enables the separation of oil-in-water emulsions into pure phases. This is achieved through the synergistic effect of surface superwettability and complementary topological structures. By applying the surface energy matching principle, water and oil in the mixture rapidly and continuously spread on preferential gear surfaces, forming distinct liquid films that repel each other. The topological structures of the gears facilitate the overflow and rapid transfer of the liquid films, resulting in a high separation flux with the assistance of rotational motion. Importantly, this separation model mitigates the decrease in separation flux caused by fouling and maintains a consistently high separation efficiency for multiple oils with varying densities and surface tensions.
Collapse
Affiliation(s)
- Zhuoxing Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zidong Zhan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Shen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Ning Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chengqi Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, 100191, Beijing, China
| | - Cunlong Yu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chuxin Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong SAR, China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
14
|
Zhang Y, Sheng K, Wang Z, Wu W, Yin BH, Zhu J, Zhang Y. Rational Design of MXene Hollow Fiber Membranes for Gas Separations. NANO LETTERS 2023; 23:2710-2718. [PMID: 36926943 DOI: 10.1021/acs.nanolett.3c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One scalable and facile dip-coating approach was utilized to construct a thin CO2-selection layer of Pebax/PEGDA-MXene on a hollow fiber PVDF substrate. An interlayer spacing of 3.59 Å was rationally designed and precisely controlled for the MXene stacks in the coated layer, allowing efficient separation of the CO2 (3.3 Å) from N2 (3.6 Å) and CH4 (3.8 Å). In addition, CO2-philic nanodomains in the separation layer were constructed by grafting PEGDA into MXene interlayers, which enhanced the CO2 affinity through the MXene interlayers, while non-CO2-philic nanodomains could promote CO2 transport due to the low resistance. The membrane could exhibit optimal separation performance with a CO2 permeance of 765.5 GPU, a CO2/N2 selectivity of 54.5, and a CO2/CH4 selectivity of 66.2, overcoming the 2008 Robeson upper bounds limitation. Overall, this facile approach endows a precise controlled molecular sieving MXene membrane for superior CO2 separation, which could be applied for interlayer spacing control of other 2D materials during membrane construction.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Natural Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Kai Sheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zheng Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wenjia Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 5046, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5046, New Zealand
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- Engineering Research Centre of Advanced Manufacturing of Ministry of Education, Zhengzhou, 450001, PR China
| |
Collapse
|
15
|
Ge R, Huo T, Gao Z, Li J, Zhan X. GO-Based Membranes for Desalination. MEMBRANES 2023; 13:220. [PMID: 36837724 PMCID: PMC9961078 DOI: 10.3390/membranes13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO), owing to its atomic thickness and tunable physicochemical properties, exhibits fascinating properties in membrane separation fields, especially in water treatment applications (due to unimpeded permeation of water through graphene-based membranes). Particularly, GO-based membranes used for desalination via pervaporation or nanofiltration have been widely investigated with respect to membrane design and preparation. However, the precise construction of transport pathways, facile fabrication of large-area GO-based membranes (GOMs), and robust stability in desalination applications are the main challenges restricting the industrial application of GOMs. This review summarizes the challenges and recent research and development of GOMs with respect to preparation methods, the regulation of GOM mass transfer pathways, desalination performance, and mass transport mechanisms. The review aims to provide an overview of the precise regulation methods of the horizontal and longitudinal mass transfer channels of GOMs, including GO reduction, interlayer cross-linking, intercalation with cations, polymers, or inorganic particles, etc., to clarify the relationship between the microstructure and desalination performance, which may provide some new insight regarding the structural design of high-performance GOMs. Based on the above analysis, the future and development of GOMs are proposed.
Collapse
Affiliation(s)
- Rui Ge
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Teng Huo
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongyong Gao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jiding Li
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xia Zhan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
16
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
17
|
Xu Y, Zhu Y, Qiu Q, Qi Z, Liu S, Weng J, Shen J. Development of Mixed-Dimensional Membranes Comprising Halloysite Nanotubes and Kevlar Aramid Nanofiber for Enhanced Small-Molecule Dye/Salt Separation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Yuying Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Qite Qiu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Zhifu Qi
- Zhejiang Energy Group R & D Co., Ltd, Hangzhou311121, China
| | - Shenghui Liu
- Zhejiang Energy Group R & D Co., Ltd, Hangzhou311121, China
| | - Jianquan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
18
|
Lee S, Bayarkhuu B, Han Y, Kim HW, Jeong S, Boo C, Byun J. Multifunctional photo-Fenton-active membrane for solar-driven water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Isfahani AP, Arabi Shamsabadi A, Soroush M. MXenes and Other Two-Dimensional Materials for Membrane Gas Separation: Progress, Challenges, and Potential of MXene-Based Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Pournaghshband Isfahani
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ahmad Arabi Shamsabadi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
20
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conductive Matrix-Mixed Membrane Based on a -SO 3H-Functionalized Polyphosphazene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10503-10511. [PMID: 35976224 DOI: 10.1021/acs.langmuir.2c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A polyphosphazene with in-built -SO3H moieties (PP-PhSO3H) was facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and sulfonate p-phenylenediamine. Characterization reveals that it is a highly stable amorphous polymer. Proton conductivity investigations showed that the synthesized PP-PhSO3H exhibits a proton conductivity of up to 6.64 × 10-2 S cm-1 at 353 K and 98% relative humidity (RH). This value is almost 2 orders of magnitude higher than the corresponding value for its -SO3H-free analogue, PP-Ph, which is 1.72 × 10-4 S cm-1 when measured under the same condition. Consequently, matrix-mixed membranes (labeled PP-PhSO3H-PAN) were further prepared by mixing PP-PhSO3H with polyacrylonitrile (PAN) in different ratios to test its potential application in the proton-exchange membrane (PEM) fuel cell. The analysis results indicate that when the weight ratio of PP-PhSO3H/PAN is 3:1 [named PP-PhSO3H-PAN (3:1)], its proton conductivity can reach up to 5.05 × 10-2 S cm-1 at 353 K and 98% RH, which is even comparable with those of proton-conductive electrolytes currently used in PEM fuel cells. Furthermore, the continuous test demonstrates that the PP-PhSO3H-PAN (3:1) has long-life reusability. This research reveals that by using phosphazene and sulfonated multiple-amine modules as precursors, organic polymers with excellent proton conductivity for the assembly of matrix-mixed membranes in PEM fuel cells can be easily synthesized by a simple polymeric process.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No.27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
21
|
Wang S, Wei X, Li Z, Liu Y, Wang H, Zou L, Lu D, Hassan Akhtar F, Wang X, Wu C, Luo S. Recent advances in developing mixed matrix membranes based on covalent organic frameworks. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Lim YJ, Lai GS, Zhao Y, Ma Y, Torres J, Wang R. A scalable method to fabricate high-performance biomimetic membranes for seawater desalination: Incorporating pillar[5]arene water nanochannels into the polyamide selective layer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Afzal J, Fu Y, Luan TX, Zhang D, Li Y, Li H, Cheng K, Su Z, Li PZ. Facile construction of a highly proton-conductive matrix-mixed membrane based on a -SO 3H functionalized polyamide. SOFT MATTER 2022; 18:5518-5523. [PMID: 35848897 DOI: 10.1039/d2sm00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing a facile strategy to construct low-cost and efficient proton-conductive electrolytes is pivotal in the practical application of proton exchange membrane (PEM) fuel cells. Herein, a polyamide with in-built -SO3H moieties, PA(PhSO3H)2, was synthesized via a simple one-pot polymeric acylation process. Investigations via electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA(PhSO3H)2 displays a proton conductivity of up to 5.54 × 10-2 S cm-1 at 353 K under 98% relative humidity (RH), which is more than 2 orders of magnitude higher than that of its -SO3H-free analogue PA(Ph)2 (2.38 × 10-4 S cm-1) under the same conditions. Therefore, after mixing with polyacrylonitrile (PAN) at different ratios, PA(PhSO3H)2-based matrix-mixed membranes were subsequently made and the analysis results revealed that the proton conductivity can reach up to 5.82 × 10-2 S cm-1 at 353 K and 98% RH when the weight ratio of PA(PhSO3H)2 : PAN is in 3 : 1 (labeled as PA(PhSO3H)2-PAN(3 : 1)), the value of which is comparable even to those of commercially available electrolytes that are used in PEM fuel cells. In addition, continuous testing shows that PA(PhSO3H)2-PAN(3 : 1) possesses long-life reusability. This work demonstrates that, utilizing the simple reaction of polymeric acylation with a sulfonated module as a precursor, highly effective proton-conductive membranes for PEM fuel cells can be achieved in a facile manner.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Deshan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Yangyang Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Hailian Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong Province, People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin Province, People's Republic of China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, People's Republic of China.
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong Province, People's Republic of China
| |
Collapse
|
24
|
Zhang J, Ma Y, Sun Y, Zhu Y, Wang L, Lin F, Ma Y, Ji W, Li Y, Wang L. Enhancing deep mineralization of refractory benzotriazole via carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets activated peroxymonosulfate process: Mechanism, degradation pathway and toxicity. J Colloid Interface Sci 2022; 628:448-462. [DOI: 10.1016/j.jcis.2022.07.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
25
|
Afzal J, Fu Y, Luan TX, Su Z, Li PZ. Highly Effective Proton-Conduction Matrix-Mixed Membrane Derived from an -SO3H Functionalized Polyamide. Molecules 2022; 27:molecules27134110. [PMID: 35807357 PMCID: PMC9268481 DOI: 10.3390/molecules27134110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming “hydrogen economy” society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10−2 S·cm−1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10−4 S·cm−1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10−2 S·cm−1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.
Collapse
Affiliation(s)
- Jamal Afzal
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
| | - Zhongmin Su
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China; (Y.F.); (Z.S.)
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Jinan 250100, China; (J.A.); (T.-X.L.)
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
26
|
Kumar P, Meng AC, Jo K, Stach EA, Jariwala D. Interfacial Reaction and Diffusion at the One-Dimensional Interface of Two-Dimensional PtSe 2. NANO LETTERS 2022; 22:4733-4740. [PMID: 35675304 DOI: 10.1021/acs.nanolett.2c00874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) PtSe2 has potential applications in near-infrared optoelectronics because its band gap can be tuned by varying the layer thickness. There are several different platinum-selenide phases with different stoichiometries that result from high-temperature processing. In this report, we use in situ scanning/transmission electron microscopy (STEM) to investigate high-temperature phase transitions in 2D PtSe2 and observe interfacial reactions as well as the Kirkendall effect. The 2D nature of PtSe2 plays a key role in the unique one-dimensional interfaces that result during the formation of Se-poor phases (PtSe and PtSe1-x) at the edges of the PtSe2 crystals. The activation energy extracted for this formation suggests that the process is mediated by Se vacancies, as evidenced by the large strain variations in the material made via 4D STEM measurements. The observation of the Kirkendall effect in a 2D material suggests routes to engineer 1D edge chemistry for contact engineering in device applications.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
27
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
28
|
Lu T, Liang H, Cao W, Deng Y, Qu Q, Ma W, Xiong R, Huang C. Blow-spun nanofibrous composite Self-cleaning membrane for enhanced purification of oily wastewater. J Colloid Interface Sci 2022; 608:2860-2869. [PMID: 34802769 DOI: 10.1016/j.jcis.2021.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
Membrane separation is one of the most effective strategies for water treatment. However, problems such as poor emulsion separation performance, single function and easy membrane fouling limit its application in dealing with complex wastewater. The synergistic treatment technology of adsorption and visible light catalysis is an efficient and environment-friendly method to degrade organic pollutants. Here, we report a simple method to fabricate Zeolitic Imidazolate Framework-8/Graphene oxide/Polyacrylonitrile (ZIF-8/GO/PAN) nanofibrous membranes and their multifunctional treatment capacity for complex wastewater. The construction of superhydrophilic and underwater superoleophobic surface structure has achieved excellent emulsion separation performance (with a maximum flux of 6779.66 L m-2h-1), visible light photocatalytic degradation (with an efficiency of 96.5% in 90 min) and antibacterial properties. Moreover, the fibrous membrane also shows good biosafety, and will not have toxic effects on aquatic organisms. These excellent performances endow this membrane with great potential in complex wastewater purification.
Collapse
Affiliation(s)
- Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hebin Liang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenxuan Cao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
29
|
Ukai S, Takamatsu A, Nobuoka M, Tsutsui Y, Fukui N, Ogi S, Seki S, Yamaguchi S, Shinokubo H. A Supramolecular Polymer Constituted of Antiaromatic Ni
II
Norcorroles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Aiko Takamatsu
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Soichiro Ogi
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
30
|
Ukai S, Takamatsu A, Nobuoka M, Tsutsui Y, Fukui N, Ogi S, Seki S, Yamaguchi S, Shinokubo H. A Supramolecular Polymer Constituted of Antiaromatic Ni II Norcorroles. Angew Chem Int Ed Engl 2021; 61:e202114230. [PMID: 34862699 DOI: 10.1002/anie.202114230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/10/2022]
Abstract
For the creation of next-generation organic electronic materials, the integration of π-systems has recently become a central theme. Such functional materials can be assembled by supramolecular polymerization when aromatic π-systems are used as monomers, and the properties of the resulting supramolecular polymer strongly depend on the electronic structure of the monomers. Here, we demonstrate the construction of a supramolecular polymer consisting of an antiaromatic π-system as the monomer. An amide-functionalized NiII norcorrole derivative formed a one-dimensional supramolecular polymer through π-π stacking and hydrogen-bonding interactions, ensuring the persistency of the conducting pathway against thermal perturbation, which results in higher charge mobility along the tightly bound linear aggregates than that of the aromatic analogue composed of ZnII porphyrins.
Collapse
Affiliation(s)
- Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Takamatsu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|