1
|
Ben-Haim AE, Shalev N, Amalraj AJJ, Zelinger E, Mani KA, Belausov E, Shoval I, Nativ-Roth E, Maria R, Atkins A, Sadashiva R, Koltai H, Mechrez G. Nanocarriers for cancer-targeted delivery based on Pickering emulsions stabilized by casein nanoparticles. Int J Biol Macromol 2025; 298:140822. [PMID: 39929470 DOI: 10.1016/j.ijbiomac.2025.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This study demonstrates the development of stimuli-responsive Pickering emulsions stabilized by casein nanoparticles (CNPs) for targeted drug delivery to colorectal cancer cells (CRC). Encapsulation of a fluorescent dye simulates therapeutic delivery, demonstrating biomedical potential. The oil-in-water nanoemulsions stabilized by CNPs function as nanocarriers sensitive to matrix metalloproteinase-7 (MMP-7), an enzyme overexpressed in CRC cells, enabling precise drug release. Emulsions exhibited strong stability due CNPs forming a robust layer at the oil-water interface, enhancing bioavailability and controlled release. Covalent modifications of CNPs with polyethyleneimine (PEI) or polyacrylic acid (PAA), and pH adjustments optimize the zeta potential, improving surface charge and delivery efficiency. Maximal CNP uptake occurred with PAA-modified CNPs (-20 mV), showing superior interaction with CRC cells compared to pristine (-6.7 mV) and PEI-modified (+30.5, +42.1 mV) CNPs. Confocal microscopy and imaging flow cytometry confirmed that CNP-stabilized emulsions enhance CRC inter-localization compared to dispersed CNPs. Nanoemulsions with the highest CNP uptake showed selective interaction with tumor cells, while minimizing oil droplet uptake, driven by nanoscale dimensions and targeted surface interactions. Enzymatic degradation of CNPs by MMP-7 induces phase separation and targeted release. This dual-functional system, leveraging charge modification and enzymatic responsiveness, highlights CNP-stabilized nanoemulsions as a promising CRC-targeted drug delivery platform.
Collapse
Affiliation(s)
- Avital Ella Ben-Haim
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Nurit Shalev
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Antolin Jesila Jesu Amalraj
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Einat Zelinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Irit Shoval
- The Kanbar core facility unit, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Einat Nativ-Roth
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Raquel Maria
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Israel
| | - Ayelet Atkins
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rajitha Sadashiva
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Institute, PO Box 6, Beit Dagan 50250, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel.
| |
Collapse
|
2
|
Sun S, Zhang K, Xu S, Shi X, Wang J. Diffusion of Nanosheets in Unentangled Polymer Melts. ACS Macro Lett 2025; 14:284-291. [PMID: 39965139 DOI: 10.1021/acsmacrolett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size lc, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes l < lc, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of l and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For l > lc, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.
Collapse
Affiliation(s)
- Shiwei Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, People's Republic of China
| | - Sai Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiuling Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, People's Republic of China
| |
Collapse
|
3
|
Ezsias B, Wolkenstein F, Goessweiner-Mohr N, Yadav R, Siligan C, Posch S, Horner A, Vargas C, Keller S, Pohl P. Enhanced Site-Specific Fluorescent Labeling of Membrane Proteins Using Native Nanodiscs. Biomolecules 2025; 15:254. [PMID: 40001557 PMCID: PMC11852578 DOI: 10.3390/biom15020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Fluorescent labeling of membrane proteins is essential for exploring their functions, signaling pathways, interaction partners, and structural dynamics. Organic fluorophores are commonly used for this purpose due to their favorable photophysical properties and photostability. However, a persistent challenge is the inaccessibility of the surface-exposed cysteine residues required for site-specific labeling, as these residues often become sequestered within detergent micelles during protein extraction. To address this limitation, we developed an approach based on polymer-encapsulated nanodiscs that preserves the protein's native-like lipid-bilayer environment while ensuring the accessibility of surface-exposed cysteine residues. In this method, His-tagged proteins embedded in native nanodiscs are retained on a nickel affinity column, allowing for simultaneous purification and labeling by adding fluorescent dyes. This versatile technique was demonstrated with two challenging-to-label membrane proteins, the potassium channel KvAP and the urea channel HpUreI, for which detergent-based labeling had failed. This opens new possibilities for studying a wide range of fluorescently labeled membrane proteins in near-native states, advancing applications in biophysics, structural biology, and drug discovery.
Collapse
Affiliation(s)
- Bence Ezsias
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Felix Wolkenstein
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Nikolaus Goessweiner-Mohr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Rohit Yadav
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Sandra Posch
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| | - Carolyn Vargas
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria; (C.V.)
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria; (C.V.)
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (B.E.); (N.G.-M.); (R.Y.); (C.S.); (S.P.); (A.H.)
| |
Collapse
|
4
|
Lu Y, Li Z, Zhu X, Zeng Q, Liu S, Guan W. Novel Modifications and Delivery Modes of Cyclic Dinucleotides for STING Activation in Cancer Treatment. Int J Nanomedicine 2025; 20:181-197. [PMID: 39802380 PMCID: PMC11721825 DOI: 10.2147/ijn.s503780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons. Cyclic dinucleotides (CDNs), produced by cGAS sensing cytoplasmic abnormal DNA, are major intermediate activating molecules in the STING pathway. Nowadays, CDNs and their derivatives have widely worked as powerful STING agonists in tumor immunotherapy. However, their clinical translation is hindered by the negative electrical properties, sensitivity to hydrolytic enzymes, and systemic toxicity. Recently, various CDN delivery systems have made significant progress in addressing these issues, either through monotherapy or in combination with other treatment modalities. This review details recent advances in CDNs-based pharmaceutical development or delivery strategies for enriching CDNs at tumor sites and activating the STING pathway.
Collapse
Affiliation(s)
- Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Zhiyan Li
- Division of Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qingwei Zeng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Pires IS, Hostetler A, Covarrubias G, Carlo IS, Suggs JR, Kim B, Pickering AJ, Gordon E, Irvine DJ, Hammond PT. Charge-Stabilized Nanodiscs as a New Class of Lipid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408307. [PMID: 39543433 PMCID: PMC11681300 DOI: 10.1002/adma.202408307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Nanoparticles have the potential to improve disease treatment and diagnosis due to their ability to incorporate drugs, alter pharmacokinetics, and enable tissue targeting. While considerable effort is placed on developing spherical lipid-based nanocarriers, recent evidence suggests that high aspect ratio lipid nanocarriers can exhibit enhanced disease site targeting and altered cellular interactions. However, the assembly of lipid-based nanoparticles into non-spherical morphologies has typically required incorporating additional agents such as synthetic polymers, proteins, lipid-polymer conjugates, or detergents. Here, charged lipid headgroups are used to generate stable discoidal lipid nanoparticles from mixed micelles, which are termed charge-stabilized nanodiscs (CNDs). The ability to generate CNDs in buffers with physiological ionic strength is restricted to lipids with more than one anionic group, whereas monovalent lipids only generate small nanoliposomal assemblies. In mice, the smaller size and anisotropic shape of CNDs promote higher accumulation in subcutaneous tumors than spherical liposomes. Further, the surface chemistry of CNDs can be modified via layer-by-layer (LbL) assembly to improve their tumor-targeting properties over state-of-the-art LbL-liposomes when tested using a metastatic model of ovarian cancer. The application of charge-mediated anisotropy in lipid-based assemblies can aid in the future design of biomaterials and cell-membrane mimetic structures.
Collapse
Affiliation(s)
- Ivan S. Pires
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of Technology21 Ames StreetCambridgeMA02139USA
| | - Alexander Hostetler
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of Technology25 Ames StreetCambridgeMA02139USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
| | - Isabella S. Carlo
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
| | - Jack R. Suggs
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
| | - B.J. Kim
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
| | - Andrew J. Pickering
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of Technology21 Ames StreetCambridgeMA02139USA
| | - Ezra Gordon
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of Technology25 Ames StreetCambridgeMA02139USA
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Ragon Institute of Massachusetts General HospitalMassachusetts Institute of Technology and Harvard UniversityCambridgeMA02139USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of Technology500 Main StreetCambridgeMA02139USA
- Department of Chemical EngineeringMassachusetts Institute of Technology21 Ames StreetCambridgeMA02139USA
| |
Collapse
|
6
|
Yan J, Wang H, Zhao X, Tao L, Wang X, Yin J. Polymorphic Supramolecular Therapeutic Platforms with Precise Dye/Drug Ratio to Perform Synergistic Chemo-Photo Anti-Tumor Therapy and Long-Term Immune Protection. Adv Healthc Mater 2024; 13:e2402907. [PMID: 39375970 DOI: 10.1002/adhm.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Malignant tumor has become one of the hellish killers threatening the health of people around the world, its diagnosis and treatment has become the concerns of public. However, the optimal therapeutic dose, undesired side-effect, and long-term immune activation were key and bottleneck problems in tumor treatment. Herein, different batches of supramolecular therapeutic platforms, including vesicles, spherical nanoparticles, and cylindrical nanorods, with precise ratios of dye to drug (1:2) and multiple stimulus responsiveness were constructed by host-guest complexation between cyanine-camptothecin conjugates (IR780-CPT2) and β-cyclodextrin (β-CD) pendent hydrophilic copolymers. The reduction responsiveness, near-infrared photothermal conversion and singlet oxygen (1O2) generation performances endowed these platforms excellent cancer cells killing effect in both of in vitro cellular experiments and in vivo mice models. More importantly, without affecting the weight of mice, the maturation of dendritic cells, proliferation of T cells, up-regulation of high mobility group protein B1, and reduction of immunosuppressive regulatory T cells were detected after employing a synergistic chemo-photo therapy, demonstrating the body's immune effect was successfully activated. Thus, during the treatment of primary tumor, the distal tumor was also inhibited. We believe this work could provide a distinctive way to fabricate supramolecular theranostic platforms with different morphologies and improve antitumor and antimetastasis capabilities.
Collapse
Affiliation(s)
- Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key of Value-Added Catalytic Conversion and Reaction Engineering and Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui, 230009, P. R. China
| | - Haoqi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xueqin Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Longxiang Tao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Xuefu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key of Value-Added Catalytic Conversion and Reaction Engineering and Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui, 230009, P. R. China
| |
Collapse
|
7
|
Huang Y, Chen C, Yu Z, Cao W, Peng S, Zhang G, Zhang Q, Zhang G, Jiang J, Yuan Y. A Simple Binary Supramolecular Co-Assembly Platform for Enhanced Tumor Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402763. [PMID: 39183531 DOI: 10.1002/smll.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/10/2024] [Indexed: 08/27/2024]
Abstract
The primary challenges in tumor imaging and therapy revolve around improving targeting efficiency, enhancing probe/drug delivery efficacy, and minimizing off-target signals and toxicity. Although various carriers have been developed, many are difficult to synthesize, costly, and not universally applicable. Furthermore, numerous carriers exhibit limited delivery rates in solid tumors, particularly larger nanocarriers. To address these challenges, a simple binary co-assembly drug delivery platform has been designed using the readily synthesized small molecule Cys(SEt)-Lys-CBT (CKCBT) as the self-assembly building block. CKCBT can effectively penetrate tumor cells due to its positively charged Lys side chain and small size. Upon glutathione reduction, CKCBT co-assembles with Nile red or Chlorin e6 to form nanofibers inside tumor cells. This enables their specific accumulation in tumor cells rather than normal cells and extends their exposure time, resulting in precise and enhanced tumor imaging and treatment. Hence, this uncomplicated and highly efficient binary co-assembly drug delivery platform can be easily adapted to a broad spectrum of probes and drugs, presenting a novel approach for advancing clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zian Yu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230088, China
| | - Guangtao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Qianzijing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Yuan
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
8
|
Llewellyn TR, Pimentel ORC, Lenz KD, Montoya MM, Kubicek-Sutherland JZ. Nanodisc assembly from bacterial total lipid extracts. Chem Phys Lipids 2024; 264:105425. [PMID: 39111725 DOI: 10.1016/j.chemphyslip.2024.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Nanodiscs are discoidal lipoproteins that have often been used as vehicles to study membrane proteins in their native configuration. Nanodiscs have been primarily made from synthetic lipids. However, nanodiscs also offer a format by which native lipids can be studied in their natural configuration. Here, we present a method to synthesize nanodiscs from bacterial total lipid extracts using the biothreat agent, Yersinia pestis, as a proof-of-concept. The creation of nanoparticles entirely composed of bacterial lipids supports membrane characterization and vaccine antigen discovery without the inherent safety concerns associated with live bacterial cells of this Tier 1 select agent pathogen.
Collapse
Affiliation(s)
- Trent R Llewellyn
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 United States
| | - Olivia R C Pimentel
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 United States
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 United States
| | - Makaela M Montoya
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 United States
| | - Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 United States.
| |
Collapse
|
9
|
Cao Z, Liu J, Yang X. Deformable nanocarriers for enhanced drug delivery and cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230037. [PMID: 39439489 PMCID: PMC11491306 DOI: 10.1002/exp.20230037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/28/2024] [Indexed: 10/25/2024]
Abstract
Recently, the field of nanomedicine has witnessed substantial advancements in the development of nanocarriers for targeted drug delivery, emerges as promising platforms to enhance therapeutic efficacy and minimize adverse effects associated with conventional chemotherapy. Notably, deformable nanocarriers have garnered considerable attention due to their unique capabilities of size changeable, tumor-specific aggregation, stimuli-triggered disintegration, and morphological transformations. These deformable nanocarriers present significant opportunities for revolutionizing drug delivery strategies, by responding to specific stimuli or environmental cues, enabling achieved various functions at the tumor site, including size-shrinkage nanocarriers enhance drug penetration, aggregative nanocarriers enhance retention effect, disintegrating nanocarriers enable controlled drug release, and shape-changing nanocarriers improve cellular uptake, allowing for personalized treatment approaches and combination therapies. This review provides an overview of recent developments and applications of deformable nanocarriers for enhancing tumor therapy, underscores the diverse design strategies employed to create deformable nanocarriers and elucidates their remarkable potential in targeted tumor therapy.
Collapse
Affiliation(s)
- Ziyang Cao
- Department of General SurgeryGuangzhou First People's Hospitalthe Second Affiliated HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
- Center for Medical Research on Innovation and TranslationInstitute of Clinical MedicineSchool of MedicineGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
| | - Jing Liu
- School of ChemistryChemical Engineering and Biotechnology Nanyang Technological UniversitySingaporeSingapore
| | - Xianzhu Yang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
10
|
Dong Y, Tang H, Dai H, Zhao H, Wang J. The application of nanodiscs in membrane protein drug discovery & development and drug delivery. Front Chem 2024; 12:1444801. [PMID: 39359422 PMCID: PMC11445163 DOI: 10.3389/fchem.2024.1444801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
The phospholipid bilayer nanodiscs (LNDs), as a rapidly-developing tool in recent years, provide a natural bio-memebrane environment to maintain the native conformation and functions of membrane proteins as well as a versatile delivery vehicle for a variety of hydrophobic and hydrophilic drugs. We have seen unprecedented advantages of phospholipid bilayer nanodiscs in membrane protein structure characterization, biochemical and physiological studies of membrane proteins, membrane environment studies, drug discovery & development, and drug delivery. Many previous reviews have been mainly focused on the advantages of nanodiscs in membrane protein researches, but few have touched upon the importance and potential application of nanodiscs in pharmaceutical industries. This review will provide general description of the structural characteristics, advantages, classification, and applications of phospholipid nanodiscs, with particular focus on nanodisc-enabled membrane protein drug discovery & development as well as drug delivery.
Collapse
Affiliation(s)
- Yingkui Dong
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Huan Tang
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Han Dai
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei China Science Longwood Biological Technology Co., Ltd, Hefei, Anhui, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
11
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Chu X, Xiong Y, Lu L, Wang Y, Wang J, Zeng R, Hu L, Yan C, Zhao Z, Lin S, Mi B, Liu G. Research progress of gene therapy combined with tissue engineering to promote bone regeneration. APL Bioeng 2024; 8:031502. [PMID: 39301183 PMCID: PMC11412735 DOI: 10.1063/5.0200551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy has emerged as a highly promising strategy for the clinical treatment of large segmental bone defects and non-union fractures, which is a common clinical need. Meanwhile, many preclinical data have demonstrated that gene and cell therapies combined with optimal scaffold biomaterials could be used to solve these tough issues. Bone tissue engineering, an interdisciplinary field combining cells, biomaterials, and molecules with stimulatory capability, provides promising alternatives to enhance bone regeneration. To deliver and localize growth factors and associated intracellular signaling components into the defect site, gene therapy strategies combined with bioengineering could achieve a uniform distribution and sustained release to ensure mesenchymal stem cell osteogenesis. In this review, we will describe the process and cell molecular changes during normal fracture healing, followed by the advantages and disadvantages of various gene therapy vectors combined with bone tissue engineering. The growth factors and other bioactive peptides in bone regeneration will be particularly discussed. Finally, gene-activated biomaterials for bone regeneration will be illustrated through a description of characteristics and synthetic methods.
Collapse
Affiliation(s)
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | | | - Yiqing Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Wang
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
13
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
14
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
15
|
Chen T, Wei Y, Yin S, Li W, Wang Y, Pi C, Zeng M, Wang X, Chen L, Liu F, Fu S, Zhao L. Construction and Evaluation of BAL-PTX Co-Loaded Lipid Nanosystem for Promoting the Anti-Lung Cancer Efficacy of Paclitaxel and Reducing the Toxicity of Chemotherapeutic Drugs. Int J Nanomedicine 2024; 19:7775-7797. [PMID: 39099795 PMCID: PMC11297572 DOI: 10.2147/ijn.s474158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose The present study aimed to develop a lipid nanoplatform, denoted as "BAL-PTX-LN", co-loaded with chiral baicalin derivatives (BAL) and paclitaxel (PTX) to promote the anti-lung cancer efficacy of paclitaxel and reduce the toxicity of chemotherapeutic drugs. Methods BAL-PTX-LN was optimized through central composite design based on a single-factor experiments. BAL-PTX-LN was evaluated by TEM, particle size, encapsulation efficiency, hemolysis rate, release kinetics and stability. And was evaluated by pharmacokinetics and the antitumor efficacy studied both in vitro and in vivo. The in vivo safety profile of the formulation was assessed using hematoxylin and eosin (HE) staining. Results BAL-PTX-LN exhibited spherical morphology with a particle size of 134.36 ± 3.18 nm, PDI of 0.24 ± 0.02, and with an encapsulation efficiency exceeding 90%, BAL-PTX-LN remained stable after 180 days storage. In vitro release studies revealed a zero-order kinetic model of PTX from the liposomal formulation. No hemolysis was observed in the preparation group. Pharmacokinetic analysis of PTX in the BAL-PTX-LN group revealed an approximately three-fold higher bioavailability and twice longer t1/2 compared to the bulk drug group. Furthermore, the IC50 of BAL-PTX-LN decreased by 2.35 times (13.48 μg/mL vs 31.722 μg/mL) and the apoptosis rate increased by 1.82 times (29.38% vs 16.13%) at 24 h compared to the PTX group. In tumor-bearing nude mice, the BAL-PTX-LN formulation exhibited a two-fold higher tumor inhibition rate compared to the PTX group (62.83% vs 29.95%), accompanied by a ten-fold decrease in Ki67 expression (4.26% vs 45.88%). Interestingly, HE staining revealed no pathological changes in tissues from the BAL-PTX-LN group, whereas tissues from the PTX group exhibited pathological changes and tumor cell infiltration. Conclusion BAL-PTX-LN improves the therapeutic effect of poorly soluble chemotherapeutic drugs on lung cancer, which is anticipated to emerge as a viable therapeutic agent for lung cancer in clinical applications.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Wen Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yuxiang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Mingtang Zeng
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xiaodong Wang
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ligang Chen
- Department of neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University; Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
16
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Zeng H, Liang X, Roberts DA, Gillies ER, Müllner M. Self-Assembly of Rod-Coil Bottlebrush Copolymers into Degradable Nanodiscs with a UV-Triggered Self-Immolation Process. Angew Chem Int Ed Engl 2024; 63:e202318881. [PMID: 38320963 DOI: 10.1002/anie.202318881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Polymer nanodiscs, especially with stimuli-responsive features, represent an unexplored frontier in the nanomaterial landscape. Such 2D nanomaterials are considered highly promising for advanced biomedicine applications. Herein, we designed a rod-coil copolymer architecture based on an amphiphilic, tadpole-like bottlebrush copolymer, which can directly self-assemble into core-shell nanodiscs in an aqueous environment. As the bottlebrush side chains are made of amorphous, UV-responsive poly(ethyl glyoxylate) (PEtG) chains, they can undergo rapid end-to-end self-immolation upon light irradiation. This triggered nanodisc disassembly can be used to boost small molecule release from the nanodisc core, which is further aided by a morphological change from discs to spheres.
Collapse
Affiliation(s)
- Haoxiang Zeng
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Xiaoli Liang
- Department of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | - Derrick A Roberts
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, 2006, Sydney, NSW, Australia
| | - Elizabeth R Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering, The University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, 2006, Sydney, NSW, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, 2006, Sydney, NSW, Australia
| |
Collapse
|
18
|
Zhu Y, Arkin G, Zeng W, Huang Y, Su L, Guo F, Ye J, Wen G, Xu J, Liu Y. Ultrasound image-guided cancer gene therapy using iRGD dual-targeted magnetic cationic microbubbles. Biomed Pharmacother 2024; 172:116221. [PMID: 38306843 DOI: 10.1016/j.biopha.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
The gene therapy attracted more and more attention for the tumor therapy. To obtain a safe gene therapy system, the new gene vectors beyond the virus were developed for a high gene therapy efficiency. The ultrasound mediated gene therapy was safer and the plasmid DNA could be delivered by the microbubbles and combined with the ultrasound to increase the gene transfection efficiency. In this work, the cationic microbubbles decorated with Cyclo(Cys-Arg-Gly-Asp-Lys-Gly-Pro-AspCys) (iRGD peptides) and magnetic Fe3O4 nanoparticles (MBiM) was designed for targeted ultrasound contrast imaging guided gene therapy of tumors. The ultrasound image intensity was dramatically enhanced at the tumor site that received MBiM with the magnet applied, compared to those administrated the non-targeted microbubbles (MBb) or the microbubbles with only one target material on the surface (MBM and MBbi). The pGPU6/GFP/Neo-shAKT2 was used as a sample gene, which down regulate the AKT2 protein expression for the cancer therapy. It illustrated that MBiM/AKT2 had the highest gene transfection efficiency in the studied microbubbles mediated by the ultrasound, leading to the AKT2 protein expression downregulation and the strongest tumor killing effect in vitro and in vivo. In summary, a novel and biocompatible gene delivery platform via MBiM with both the endogenous and external targeting effects for breast cancer theranostics was developed.
Collapse
Affiliation(s)
- Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wei Zeng
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Yalan Huang
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Lili Su
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Fengjuan Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jiayu Ye
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guanxi Wen
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| | - Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
19
|
Li Y, Xu W, Wang X, Lai R, Qiu X, Zeng Z, Wang Z, Wang J. Molecular Dynamics and In Vitro Studies Elucidating the Tunable Features of Reconfigurable Nanodiscs for Guiding the Optimal Design of Curcumin Formulation. Bioengineering (Basel) 2024; 11:245. [PMID: 38534519 DOI: 10.3390/bioengineering11030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, we advance our exploration of Apolipoprotein A-I (apoA-I) peptide analogs (APAs) for their application in nanodisc (ND) assembly, focusing on the dynamic conformational characteristics and the potential for drug delivery. We explore APA-ND interactions with an emphasis on curcumin encapsulation, utilizing molecular dynamic simulations and in vitro assessments to evaluate the efficacy of various APA-ND formulations as drug carriers. The methodological approach involved the generation of three unique apoA-I α-11/3 helical mimics, resulting in fifteen distinct APAs. Their structural integrity was rigorously assessed using ColabFold-AF2, with particular attention to pLDDT and pTM scores. Extensive molecular dynamics simulations, covering 1.7 μs across 17 ND systems, were conducted to investigate the influence of APA sequence variations on ND stability and interactions. This study reveals that the composition of APAs, notably the presence of Proline, Serine, and Tryptophan, significantly impacts ND stability and morphology. Oligomeric APAs, in particular, demonstrated superior stability and distinct interaction patterns compared to their monomeric counterparts. Additionally, hydrodynamic diameter measurements over eight weeks indicated sequence-dependent stability, highlighting the potential of specific APA configurations for sustained colloidal stability. In vitro study successfully encapsulated curcumin in [AA]3/DMPC ND formulations, revealing concentration-dependent stability and interaction dynamics. The findings underscore the remarkable capability of APA-NDs to maintain structural integrity and efficient drug encapsulation, positioning them as a promising platform for drug delivery. The study concludes by emphasizing the tunability and versatility of APA-NDs in drug formulation, potentially revolutionizing nanomedicine by enabling customized APA sequences and ND properties for targeted drug delivery.
Collapse
Affiliation(s)
- Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zekai Zeng
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
20
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
21
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
22
|
Hao J, Ishihara M, Rapenne G, Yasuhara K. Lipid nanodiscs spontaneously formed by an amphiphilic polymethacrylate derivative as an efficient nanocarrier for molecular delivery to intact cells. RSC Adv 2024; 14:6127-6134. [PMID: 38375006 PMCID: PMC10875731 DOI: 10.1039/d3ra07481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
There is a great demand for the technology of molecular delivery into living cells using nanocarriers to realise molecular therapies such as gene delivery and drug delivery systems. Lipid-based nanocarriers offer several advantages for molecular delivery in biological systems, such as easy preparation, high encapsulation efficiency of water-insoluble drug molecules, and excellent biocompatibility. In this paper, we first report the interaction of lipid nanodiscs spontaneously formed by the complexation of an amphiphilic polymethacrylate derivative and phospholipid with intact cells. We evaluated the internalisation of polymethacrylate-based lipid nanodiscs by intact HeLa cells and applied them to the delivery of paclitaxel (PTX), an anticancer drug. The lipid nanodisc showed excellent uptake efficiency compared to conventional liposomes at a concentration where nanodiscs do not show cytotoxicity. In addition, the nanodisc encapsulating PTX showed significantly higher anticancer activity than PTX-loaded liposomes against HeLa cells, reflecting their excellent activity in delivering payloads to intact cells. This study demonstrated the potential of a polymethacrylate-based lipid nanodisc as a novel nanocarrier for molecular delivery to intact cells.
Collapse
Affiliation(s)
- Jinyu Hao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Mika Ishihara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Gwénaël Rapenne
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
- CEMES-CNRS, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
- Centre for Digital Green-innovation, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
23
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
24
|
Xiong K, Lin X, Kou J, Wei F, Shen J, Chen Y, Ji L, Chao H. Apoferritin-Cu(II) Nanoparticles Induce Oncosis in Multidrug-Resistant Colon Cancer Cells. Adv Healthc Mater 2024; 13:e2302564. [PMID: 38073257 DOI: 10.1002/adhm.202302564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Multidrug resistance (MDR) limits the application of clinical chemotherapeutic drugs. There is an urgent need to develop non-apoptosis-inducing agents that circumvent drug resistance. Herein, four therapeutic copper complexes encapsulated in natural nanocarrier apoferritin (AFt-Cu1-4) are reported. Although they are isomers, they exhibit significantly different organelle distributions and cell death mechanisms. AFt-Cu1 and AFt-Cu3 accumulate in the cytoplasm and induce autophagy, whereas AFt-Cu2 and AFt-Cu4 can quickly enter the nucleus and trigger oncosis. Excitedly, AFt-Cu2 and AFt-Cu4 show a strong tumor growth inhibition effect in mice models bearing multidrug-resistant colon xenograft via intravenous injection. To the best of the authors' knowledge, this is the first example of metal-based nucleus-targeted oncosis inducers overcoming multidrug resistance in vivo.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xinlin Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Junfeng Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
25
|
Meng F, Zhai X, Ma J, Li A, Wang X, Bai J. Enzyme-Induced Shape-Shifting Peptide Nanocarrier Coloaded with Paclitaxel and Dipyridamole Inhibits Platelet Function and Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:166-177. [PMID: 38143309 DOI: 10.1021/acsami.3c13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Tumor-associated platelets can bind to tumor cells and protect circulating tumor cells from NK-mediated immune surveillance. Tumor-associated platelets secrete cytokines to induce the epithelial-mesenchymal transition (EMT) in tumor cells, which promotes tumor metastasis. Combining chemotherapeutic agents with antiplatelet drugs can reduce the occurrence of metastasis, but the systemic application of chemotherapeutic agents and antiplatelet drugs is prone to causing serious side effects. Therefore, delivering drugs to the tumor microthrombus site for long-lasting inhibition is a problem that needs to be addressed. Here, we show that small molecule peptide nanoparticles containing the Cys-Arg-Glu-Lys-Ala (CREKA) peptide can deliver the platelet inhibitor dipyridamole (DIP) and the chemotherapeutic drug paclitaxel (PTX) to tumor tissues, thereby inhibiting tumor-associated platelet function while killing tumor cells. The drug-loaded nanoparticles PD/Pep1 inhibited platelet-tumor cell interactions, were effectively taken up by tumor cells, and underwent morphological transformation induced by alkaline phosphatase (ALP) to prolong the retention time of the drugs. After intravenous injection, PD/Pep1 can target tumors and inhibit tumor metastasis. Thus, this small molecule peptide nanoformulation provides a simple strategy for efficient drug delivery and shows promise as a novel cancer therapy platform.
Collapse
Affiliation(s)
- Fanhu Meng
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiaoqing Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jihong Ma
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Aimei Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xizhen Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang 261053, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
26
|
Xia Z, Mu W, Yuan S, Fu S, Liu Y, Zhang N. Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy. Pharmaceutics 2023; 15:2770. [PMID: 38140108 PMCID: PMC10748133 DOI: 10.3390/pharmaceutics15122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within the body, such as immune evasion, prolonged circulation, and tumor-targeting, there has been a growing interest in developing cell membrane biomimetic nanomedicine delivery systems. Cell membrane modification on nanoparticle surfaces can prolong circulation time, activate tumor-targeting, and ultimately improve the efficacy of cancer treatment. It shows excellent development potential. This review will focus on the advancements in various cell membrane nano-drug delivery systems for cancer therapy and the obstacles encountered during clinical implementation. It is hoped that such discussions will inspire the development of cell membrane biomimetic nanomedical systems.
Collapse
Affiliation(s)
- Zhenxing Xia
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Shijun Yuan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| |
Collapse
|
27
|
Qin M, Xia H, Xu W, Chen B, Wang Y. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Adv Drug Deliv Rev 2023; 203:115137. [PMID: 37949414 DOI: 10.1016/j.addr.2023.115137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The rapid development of nanomedicines is revolutionizing the landscape of cancer treatment, while effectively delivering them into solid tumors remains a formidable challenge. Currently, there is a huge disconnect on therapeutic response between regulatory approved nanomedicines and laboratory reported nanoparticles. The discrepancy is mainly resulted from the failure of using the classic overall pharmacokinetics behaviors of nanomedicines in tumors to predict the antitumor efficacy. Increasing evidence has revealed that the therapeutic efficacy predominantly relies on the intratumoral spatiotemporal distribution of nanomedicines. This review focuses on the spatiotemporal distribution of systemically administered chemotherapeutic nanomedicines in solid tumor. Firstly, the intratumoral biological barriers that regulate the spatiotemporal distribution of nanomedicines are described in detail. Next, the influences on antitumor efficacy caused by the spatial distribution and temporal drug release of nanomedicines are emphatically analyzed. Then, current methodologies for evaluating the spatiotemporal distribution of nanomedicines are summarized. Finally, the advanced strategies to positively modulate the spatiotemporal distribution of nanomedicines for an optimal tumor therapy are comprehensively reviewed.
Collapse
Affiliation(s)
- Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenhao Xu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China; Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
28
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
29
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
30
|
Janata M, Gupta S, Čadová E, Angelisová P, Krishnarjuna B, Ramamoorthy A, Hořejší V, Raus V. Sulfonated polystyrenes: pH and Mg 2+-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur Polym J 2023; 198:112412. [PMID: 37780808 PMCID: PMC10538444 DOI: 10.1016/j.eurpolymj.2023.112412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups. To this end, we synthesized a library of amphiphilic poly[styrene-co-(sodium 4-styrene sulfonate)] copolymers (termed SSS), differing in their molecular weight and overall polarity. Using model cell membranes (Jurkat), we identified two copolymer compositions (SSS-L30 and SSS-L36) that solubilized membranes to an extent similar to SMA. Interestingly, the density gradient ultracentrifugation/SDS-PAGE/Western blotting analysis of cell lysates revealed a distribution of studied membrane proteins in the gradient fractions that was different than for SMA-solubilized membranes. Importantly, unlike SMA, the SSS copolymers remained soluble at low pH and in the presence of Mg2+ ions. Additionally, the solubilization of DMPC liposomes by the lead materials was studied by turbidimetry, DLS, SEC, and high-resolution NMR, revealing, for SSS-L36, the formation of stable particles (nanodiscs), facilitated by the direct hydrophobic interaction of the copolymer phenyls with lipid acyl chains.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Sachin Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
31
|
Duan X, Tian H, Zheng S, Zhu J, Li C, He B, Li L, Jiang H, Lu S, Feng Y, Bentley GT, Zhang W, Huang C, Gao W, Xie N, Xie K. Photothermal-Starvation Therapy Nanomodulator Capable of Inhibiting Colorectal Cancer Recurrence and Metastasis by Energy Metabolism Reduction. Adv Healthc Mater 2023; 12:e2300968. [PMID: 37543843 DOI: 10.1002/adhm.202300968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Indexed: 08/07/2023]
Abstract
The recurrence and metastasis of colorectal cancer (CRC) have been considered as a severe challenge in clinical treatment. Recent studies have demonstrated that matrix metalloproteinases (MMPs) and lactate can promote local tumor angiogenesis, recurrence, and metastasis. The expression of MMPs is highly dependent on energy metabolism, and lactate is considered an alternative energy source for tumor proliferation and metastasis. Therefore, using a rational approach, a photothermal-starvation therapy nanomodulator that can reduce energy metabolism to suppress CRC recurrence and metastasis is designed. To design a suitable nanomodulator, glucose oxidase (GOX), indocyanine green (IR820), and α-cyano-4-hydroxycinnamic acid (CHC) into nanoparticles by a coassembly method are combined. The photothermal properties of IR820 provide the appropriate temperature and oxygen supply for the enzymatic reaction of GOX to promote intracellular glucose consumption. CHC inhibits the expression of monocarboxylate transporter 1 (MCT1), the transporter of lactic acid into cells, and also reduces oxygen consumption and promotes the GOX reaction. Additionally, altering adenosine triphosphate synthesis to block heat shock proteins expression can be an effective means to prevent IR820-mediated photothermal therapy resistance. Thus, this dual photothermal-starvation therapy nanomodulator efficiently suppresses the recurrence and metastasis of CRC by depleting intracellular nutrients.
Collapse
Affiliation(s)
- Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610044, China
| | - Shuwen Zheng
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianmei Zhu
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chan Li
- Department of Oncology, Peoples Hospital of Xinjin, Chengdu, 611430, China
| | - Bo He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, University and Collaborative Innovation Center for Biotherapy, Chengdu, 610075, China
| | - Hao Jiang
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315010, China
| | - Shuaijun Lu
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, 315010, China
| | - Yumei Feng
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Gary T Bentley
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, 100215, USA
| | - Wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610044, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610044, China
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610106, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
32
|
Jiang X, Wu L, Zhang M, Zhang T, Chen C, Wu Y, Yin C, Gao J. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release 2023; 361:510-533. [PMID: 37567505 DOI: 10.1016/j.jconrel.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Chemotherapeutic drugs have been found to activate the immune response against tumors by inducing immunogenic cell death, in addition to their direct cytotoxic effects toward tumors, therefore broadening the application of chemotherapy in tumor immunotherapy. The combination of other therapeutic strategies, such as phototherapy or radiotherapy, could further strengthen the therapeutic effects of immunotherapy. Nanostructures can facilitate multimodal tumor therapy by integrating various active agents and combining multiple types of therapeutics in a single nanostructure. Biomembrane nanostructures (e.g., exosomes and cell membrane-derived nanostructures), characterized by superior biocompatibility, intrinsic targeting ability, intelligent responsiveness and immune-modulating properties, could realize superior chemoimmunotherapy and represent next-generation nanostructures for tumor immunotherapy. This review summarizes recent advances in biomembrane nanostructures in tumor chemoimmunotherapy and highlights different types of engineering approaches and therapeutic mechanisms. A series of engineering strategies for combining different biomembrane nanostructures, including liposomes, exosomes, cell membranes and bacterial membranes, are summarized. The combination strategy can greatly enhance the targeting, intelligence and functionality of biomembrane nanostructures for chemoimmunotherapy, thereby serving as a stronger tumor therapeutic method. The challenges associated with the clinical translation of biomembrane nanostructures for chemoimmunotherapy and their future perspectives are also discussed.
Collapse
Affiliation(s)
- Xianghe Jiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
33
|
Liang D, Kuang G, Chen X, Lu J, Shang L, Sun W. Near-infrared light-responsive Nitric oxide microcarrier for multimodal tumor therapy. SMART MEDICINE 2023; 2:e20230016. [PMID: 39188343 PMCID: PMC11236066 DOI: 10.1002/smmd.20230016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 08/28/2024]
Abstract
Nitric oxide (NO) has shown great potential in tumor therapy, and the development of a platform for precise and controllable NO release still needs to be explored. Herein, a microfluidic electrospray strategy is proposed for the fabrication of hydrogel microspheres encapsulating NO donors (S-nitrosoglutathione, GSNO) together with black phosphorus (BP) and chemotherapeutic doxorubicin (DOX) as microcarriers for tumor therapy. Based on the excellent photothermal property of BP and thermal sensitivity of GSNO, the microcarriers exhibit a near-infrared light (NIR)-responsive NO release behavior. Besides, the photothermal performance of the microcarriers accelerates the release of DOX. All these contribute to the excellent tumor-killing effect of the microcarriers by combining multiple therapeutic strategies including NO therapy, photothermal therapy, and chemotherapy. Moreover, it was demonstrated that the NIR-responsive NO delivery microcarriers could significantly inhibit tumor growth without apparent side effects in vivo. Therefore, it is believed that the novel NIR-responsive NO microcarriers are promising candidates in clinical tumor therapy applications.
Collapse
Affiliation(s)
- Danna Liang
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Gaizhen Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiang Chen
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jianhua Lu
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Luoran Shang
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
34
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
35
|
Wang Q, Zhang X, Tang Y, Xiong Y, Wang X, Li C, Xiao T, Lu F, Xu M. High-Performance Hybrid Phototheranostics for NIR-IIb Fluorescence Imaging and NIR-II-Excitable Photothermal Therapy. Pharmaceutics 2023; 15:2027. [PMID: 37631241 PMCID: PMC10457990 DOI: 10.3390/pharmaceutics15082027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Photothermal therapy operated in the second near-infrared (NIR-II, 1000-1700 nm) window and fluorescence imaging in the NIR-IIb (1500-1700 nm) region have become the most promising techniques in phototheranostics. Their combination enables simultaneous high-resolution optical imaging and deep-penetrating phototherapy, which is essential for high-performance phototheranostics. Herein, carboxyl-functionalized small organic photothermal molecules (Se-TC) and multi-layered NIR-IIb emissive rare-earth-doped nanoparticles (NaYF4:Yb,Er,Ce@NaYF4:Yb,Nd@NaYF4, RENP) were rationally designed and successfully synthesized. Then, high-performance hybrid phototheranostic nanoagents (Se-TC@RENP@F) were easily constructed through the coordination between Se-TC and RENP and followed by subsequent F127 encapsulation. The carboxyl groups of Se-TC can offer strong binding affinity towards rare-earth-doped nanoparticles, which help improving the stability of Se-TC@RENP@F. The multilayered structure of RENP largely enhance the NIR-IIb emission under 808 nm excitation. The obtained Se-TC@RENP@F exhibited high 1064 nm absorption (extinction coefficient: 24.7 L g-1 cm-1), large photothermal conversion efficiency (PCE, 36.9%), good NIR-IIb emission (peak: 1545 nm), as well as great photostability. Upon 1064 nm laser irradiation, high hyperthermia can be achieved to kill tumor cells efficiently. In addition, based on the excellent NIR-IIb emission of Se-TC@RENP@F, in vivo angiography and tumor detection can be realized. This work provides a distinguished paradigm for NIR-IIb-imaging-guided NIR-II photothermal therapy and establishes an artful strategy for high-performance phototheranostics.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinmin Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Youguang Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chunlai Li
- Department of Liver Surgery, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Feng Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
36
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
37
|
Lang W, Chen LZ, Chen Y, Cao QY. A GSH-activated AIE-based polymer photosensitizer for killing cancer cells. Talanta 2023; 258:124473. [PMID: 36989616 DOI: 10.1016/j.talanta.2023.124473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Developing efficient photosensitizers which are sensitive to therapeutic tumor signals, but non-toxic to normal cells has always been a tremendous challenge in photodynamic therapy (PDT) process. Herein, a novel copolymer P1 was developed by ring-opening metathesis polymerization (ROMP) with disulfide bond linked ferrocene-norbornene dyad NB-SS-PyFc and the aggregation-induced emission (AIE) fluorephore anchored norbornene NB-TPE, and its nanoparticles (NPs) were obtained by using the amphiphilic Pluronic F-127 as the surfactant via a nanoprecipitation method. The P1 NPs show a weak emission and a low 1O2 generation for the quenching effect from the ferrocene moiety to the AIE group. However, the addition of GSH can recover the AIE fluorephore emission and 1O2 generation for cleavage the disulfide bond. Importantly, P1 NPs have been used for image-guided cancer cells apoptosis for the GSH activated 1O2 generation.
Collapse
|
38
|
Yang R, Zhan M, Ouyang Z, Guo H, Qu J, Xia J, Shen M, Shi X. Microfluidic synthesis of fibronectin-coated polydopamine nanocomplexes for self-supplementing tumor microenvironment regulation and MR imaging-guided chemo-chemodynamic-immune therapy. Mater Today Bio 2023; 20:100670. [PMID: 37251416 PMCID: PMC10220494 DOI: 10.1016/j.mtbio.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Development of nanomedicines to overcome the hindrances of tumor microenvironment (TME) for tumor theranostics with alleviated side effects remains challenging. We report here a microfluidic synthesis of artesunate (ART)-loaded polydopamine (PDA)/iron (Fe) nanocomplexes (NCs) coated with fibronectin (FN). The created multifunctional Fe-PDA@ART/FN NCs (FDRF NCs) with a mean size of 161.0 nm exhibit desired colloidal stability, monodispersity, r1 relaxivity (4.96 mM-1s-1), and biocompatibility. The co-delivery of the Fe2+ and ART enables enhanced chemodynamic therapy (CDT) through improved intracellular reactive oxygen species generation via a cycling reaction between Fe3+ and Fe2+ caused by the Fe3+-mediated glutathione oxidation and Fe2+-mediated ART reduction/Fenton reaction for self-supplementing TME regulation. Likewise, the combination of ART-mediated chemotherapy and the Fe2+/ART-regulated enhanced CDT enables noticeable immunogenic cell death, which can be collaborated with antibody-mediated immune checkpoint blockade to exert immunotherapy having significant antitumor immunity. The combined therapy improves the efficacy of primary tumor therapy and tumor metastasis inhibition by virtue of FN-mediated specific targeting of FDRF NCs to tumors with highly expressed αvβ3 integrin and can be guided through the Fe(III)-rendered magnetic resonance (MR) imaging. The developed FDRF NCs may be regarded as an advanced nanomedicine formulation for chemo-chemodynamic-immune therapy of different tumor types under MR imaging guidance.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, PR China
| | - Jiao Qu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, PR China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, PR China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
39
|
Fang Y, Luo X, Xu Y, Liu Z, Mintz RL, Yu H, Yu X, Li K, Ju E, Wang H, Tang Z, Tao Y, Li M. Sandwich-Structured Implants to Obstruct Multipath Energy Supply and Trigger Self-Enhanced Hypoxia-Initiated Chemotherapy Against Postsurgical Tumor Recurrence and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300899. [PMID: 37156756 PMCID: PMC10401165 DOI: 10.1002/advs.202300899] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
As a currently common strategy to treat cancer, surgical resection may cause tumor recurrence and metastasis due to residual postoperative tumors. Herein, an implantable sandwich-structured dual-drug depot is developed to trigger a self-intensified starvation therapy and hypoxia-induced chemotherapy sequentially. The two outer layers are 3D-printed using a calcium-crosslinked mixture ink containing soy protein isolate, polyvinyl alcohol, sodium alginate, and combretastatin A4 phosphate (CA4P). The inner layer is one patch of poly (lactic-co-glycolic acid)-based electrospun fibers loaded with tirapazamine (TPZ). The preferentially released CA4P destroys the preexisting blood vessels and prevents neovascularization, which obstructs the external energy supply to cancer cells but aggravates hypoxic condition. The subsequently released TPZ is bioreduced to cytotoxic benzotriazinyl under hypoxia, further damaging DNA, generating reactive oxygen species, disrupting mitochondria, and downregulating hypoxia-inducible factor 1α, vascular endothelial growth factor, and matrix metalloproteinase 9. Together these processes induce apoptosis, block the intracellular energy supply, counteract the disadvantage of CA4P in favoring intratumor angiogenesis, and suppress tumor metastasis. The in vivo and in vitro results and the transcriptome analysis demonstrate that the postsurgical adjuvant treatment with the dual-drug-loaded sandwich-like implants efficiently inhibits tumor recurrence and metastasis, showing great potential for clinical translation.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuan Yu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
- Department of Ultrasound, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Kai Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
- Department of Ultrasound, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, P. R. China
| |
Collapse
|
40
|
He Y, Wu D, Zhang X. Bottom-up on-surface synthesis based on click-functionalized peptide bundles. NANOSCALE 2023; 15:8996-9002. [PMID: 37144607 DOI: 10.1039/d3nr01070h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On-surface synthesis is a modern technique for the preparation of atomically low-dimensional molecular nanostructures. However, most nanomaterials grow horizontally on the surface, and the step-by-step longitudinally controllable covalent bonding reaction on the surface is rarely reported. Here, we successfully achieved bottom-up on-surface synthesis by using coiled-coil homotetrameric peptide bundles called 'bundlemers' as building blocks. Rigid nano-cylindrical bundlemer with two click-reactive functionalities at each end can be grafted vertically onto the surface or another bundlemer with complementary clickable groups by click reaction at one end, thus enabling the longitudinal bottom-up synthesis of rigid rods with an exact number of bundlemers (up to 6) on the surface. Moreover, we can graft linear poly(ethylene glycol) (PEG) to one terminal of rigid rods to obtain rod-PEG hybrid nanostructures that can be released from the surface under specific conditions. Interestingly, rod-PEG nanostructures consisting of different numbers of bundles can self-assemble in water into different nano-hyperstructures. In general, the bottom-up on-surface synthesis strategy presented here can provide a simple and accurate method to manufacture a variety of nanomaterials.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Dongdong Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
- West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
41
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L, Liu Z. Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chem Rev 2023. [PMID: 36912061 DOI: 10.1021/acs.chemrev.2c00822] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.
Collapse
Affiliation(s)
- Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
42
|
Wang Z, You T, Cai C, Su Q, Cheng J, Xiao J, Duan X. Biomimetic Gold Nanostructure with a Virus-like Topological Surface for Enhanced Antigen Cross-Presentation and Antitumor Immune Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897565 DOI: 10.1021/acsami.2c21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The internalization of antigens by dendritic cells (DCs) is the initial critical step for vaccines to activate the immune response; however, the systemic delivery of antigens into DCs is hampered by various technical challenges. Here we show that a virus-like gold nanostructure (AuNV) can effectively bind to and be internalized by DCs due to its biomimetic topological morphology, thereby significantly promoting the maturation of DCs and the cross-presentation of the model antigen ovalbumin (OVA). In vivo experiments demonstrate that AuNV efficiently delivers OVA to draining lymph nodes and significantly inhibits the growth of MC38-OVA tumors, generating a ∼80% decrease in tumor volume. Mechanistic studies reveal that the AuNV-OVA vaccine induces a remarkable increase in the rate of maturation of DCs, OVA presentation, and CD4+ and CD8+ T lymphocyte populations in both lymph node and tumor and an obvious decrease in myeloid-derived suppressor cells and regulatory T cell populations in spleen. The good biocompatibility, strong adjuvant activity, enhanced uptake of DCs, and improved T cell activation make AuNV a promising antigen delivery platform for vaccine development.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tingting You
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengyuan Cai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianyi Su
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinmei Cheng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jisheng Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University; Department of Pharmacy, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Li W, Jiang Y, Lu J. Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int J Pharm 2023; 634:122655. [PMID: 36720448 PMCID: PMC9975075 DOI: 10.1016/j.ijpharm.2023.122655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tumor immunotherapy has revolutionized the field of oncology treatments in recent years. As one of the promising strategies of cancer immunotherapy, tumor immunogenic cell death (ICD) has shown significant potential for tumor therapy. Nanoparticles are widely used for drug delivery due to their versatile characteristics, such as stability, slow blood elimination, and tumor-targeting ability. To increase the specificity of ICD inducers and improve the efficiency of ICD induction, functionally specific nanoparticles, such as liposomes, nanostructured lipid carriers, micelles, nanodiscs, biomembrane-coated nanoparticles and inorganic nanoparticles have been widely reported as the vehicles to deliver ICD inducers in vivo. In this review, we summarized the strategies of different nanoparticles for ICD-induced cancer immunotherapy, and systematically discussed their advantages and disadvantages as well as provided feasible strategies for solving these problems. We believe that this review will offer some insights into the design of effective nanoparticulate systems for the therapeutic delivery of ICD inducers, thus, promoting the development of ICD-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States; NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, United States; BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States; Southwest Environmental Health Sciences Center, The University of Arizona, Tucson 85721, United States.
| |
Collapse
|
44
|
Tumor microenvironment double-responsive shrinkable nanoparticles fabricated via facile assembly of laponite with a bioactive oligosaccharide for anticancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
45
|
Tan X, Li S, Sheng R, Zhang Q, Li C, Liu L, Zhang Y, Ge L. Biointerfacial giant capsules with high paclitaxel loading and magnetic targeting for breast tumor therapy. J Colloid Interface Sci 2023; 633:1055-1068. [PMID: 36516681 DOI: 10.1016/j.jcis.2022.11.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
High drug loading, targeted delivery, prolonged drug release, and low systemic toxicity are effective weapons for hydrophobic drug delivery systems to solve serious concerns in poor water-solubility and toxicity of paclitaxel (PTX). Herein, we reported that biointerfacial giant multilayer microcapsules (BGMs) with the feature of high-density drug loading and high-efficiency magnetic delivery were fabricated templated by PTX-liposome-microbubble complex using the layer-by-layer self-assembly (LbL) technique. The drug loading capacity of BGMs was improved by optimizing the structure of microbubbles and capsules to increase the PTX-contained layers, and the resultant BGMs exhibited high drug loading content (50.56 ± 0.09 %) and sustained drug release properties. The BGMs with an average diameter of 74.1 ± 12.1 µm and an average thickness of 275.5 ± 48.4 nm contained abundant magnetic nanoparticles (MNPs) in their cavity, which endowed these capsules with outstanding magnetic properties and fast magnetophoretic velocity in the blood (∼0.3 mm/s, ▽B = 1 T/mm). Moreover, both in vitro and in vivo studies demonstrated that the biocompatible PTX-loaded magnetic BGMs (Capsule@PLMPPL) caused notable death (71.3 ± 2.9 %) of 4 T1 breast cancer cells through PTX diffusion, capsules degradation, and subsequent endocytosis by cancer cells, and ultimately effectively inhibited tumor growth. In general, the developed BGM with good deformability and degradation was the first reported giant polyelectrolyte capsule to be used in tumor therapy, which could notably improve the therapeutic efficacy of PTX while reducing its side effects.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Shiming Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chunyang Li
- Institute of Agroproducts Processing Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009 PR China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Liqin Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
46
|
Sun L, Wang D, Noh I, Fang RH, Gao W, Zhang L. Synthesis of Erythrocyte Nanodiscs for Bacterial Toxin Neutralization. Angew Chem Int Ed Engl 2023; 62:e202301566. [PMID: 36853913 DOI: 10.1002/anie.202301566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
Nanodiscs are a compelling nanomedicine platform due to their ultrasmall size and distinct disc shape. Current nanodisc formulations are made primarily with synthetic lipid bilayers and proteins. Here, we report a cellular nanodisc made with human red blood cell (RBC) membrane (denoted "RBC-ND") and show its effective neutralization against bacterial toxins. In vitro, RBC-ND neutralizes the hemolytic activity and cytotoxicity caused by purified α-toxin or complex whole secreted proteins (wSP) from methicillin-resistant Staphylococcus aureus bacteria. In vivo, RBC-ND confers significant survival benefits for mice intoxicated with α-toxin or wSP in both therapeutic and prevention regimens. Moreover, RBC-ND shows good biocompatibility and biosafety in vivo. Overall, RBC-ND distinguishes itself by inheriting the biological functions of the source cell membrane for bioactivity. The design strategy of RBC-ND can be generalized to other types of cell membranes for broad applications.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA-92093, USA
| |
Collapse
|
47
|
Xi H, Xu B, Fang A, Li X, Huang Z, Qin S, Xiao W, Li G, Tian M, Fan N, Song X. A cascade-responsive nanoplatform with tumor cell-specific drug burst release for chemotherapy. Acta Biomater 2023; 162:120-134. [PMID: 36828165 DOI: 10.1016/j.actbio.2023.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/22/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Most of the nanomedicines can reduce the side effects of anti-tumor chemical drugs but do not have good enough therapeutic efficacy, largely due to the sustained drug release profile. It might be a promising alternative strategy to develop a cascade-responsive nanoplatform against tumor with the burst release of chemotherapeutics based on the highly efficient tumor cell targeting delivery. In this work, we constructed innovative nanoparticles (PMP/WPH-NPs) consisting of two functional polymers. PMP contained the MMP-2 enzyme sensitive linker and disulfide bond, which could respond to the tumor-overexpressing enzyme MMP-2 and high-level glutathione. While WPH promoted tumor penetration and acid-responsive drug release by modifying cellular penetrating peptides and polymerizing L-histidine. PMP/WPH-NPs exhibited outstanding features including longer blood circulation time, promoted tumor-specific accumulation, enhanced tumor penetration and efficient escape from lysosomes. Subsequently, the model drug paclitaxel (PTX), widely used in the tumor chemotherapy, was encapsulated into PMP/WPH-NPs via an emulsion solvent evaporation method. Within a short period of time, PTX-PMP/WPH-NP in simulated tumor cellular microenvironment could release 8 times more PTX than that in the physiological environment, demonstrating a good potential in tumor cell-specific burst drug release. In addition, PTX-PMP/WPH-NPs exhibited stronger anti-tumor activity than PTX in vitro and in vivo, which also had good biocompatibility according to the hemolysis assay and H&E staining. In summary, our work has succeeded in designing an original polymeric nanoplatform for programmed burst drug release based on the tailored tumor targeting delivery system. This new approach would facilitate the clinical translation of more anti-tumor nanomedicines. STATEMENT OF SIGNIFICANCE: Biomaterials responsive to the tumor-specific stimulus has conventionally used in the targeted-delivery of anti-tumor drugs. However, the levels of common stimulus are not uniformly distributed and not high enough to effectively trigger drug release. In an effort to achieve a better specific drug release and promote the chemotherapeutic efficacy, we constructed a cascade responsive nanoplatform with tumor cell-specific drug burst release profile. The tailored biomaterial could overcome the bio-barriers in vivo and succeeded in the programmed burst drug release based on the tumor cell-specific delivery of chemotherapeutics.
Collapse
Affiliation(s)
- He Xi
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Xu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Aiping Fang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Li
- Department of Gastroenterology, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, Sichuan, China
| | - Zhiying Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao Tian
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Fan
- Sichuan University West China Hospital
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Chen L, Yu C, Xu W, Xiong Y, Cheng P, Lin Z, Zhang Z, Knoedler L, Panayi AC, Knoedler S, Wang J, Mi B, Liu G. Dual-Targeted Nanodiscs Revealing the Cross-Talk between Osteogenic Differentiation of Mesenchymal Stem Cells and Macrophages. ACS NANO 2023; 17:3153-3167. [PMID: 36715347 PMCID: PMC9933878 DOI: 10.1021/acsnano.2c12440] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Ongoing research has highlighted the significance of the cross-play of macrophages and mesenchymal stem cells (MSCs). Lysine-specific demethylase 6B (KDM6B) has been shown to control osteogenic differentiation of MSCs by depleting trimethylated histone 3 lysine 27 (H3K27me3). However, to date, the role of KDM6B in bone marrow-derived macrophages (BMDMs) remains controversial. Here, a chromatin immunoprecipitation assay (ChIP) proved that KDM6B derived from osteogenic-induced BMSCs could bind to the promoter region of BMDMs' brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) gene in a coculture system and activate BMAL1. Transcriptome sequencing and experiments in vitro showed that the overexpression of BMAL1 in BMDM could inhibit the TLR2/NF-κB signaling pathway, reduce pyroptosis, and decrease the M1/M2 ratio, thereby promoting osteogenic differentiation of BMSCs. Furthermore, bone and macrophage dual-targeted GSK-J4 (KDM6B inhibitor)-loaded nanodiscs were synthesized via binding SDSSD-apoA-1 peptide analogs (APA) peptide, which indirectly proved the critical role of KDM6B in osteogenesis in vivo. Overall, we demonstrated that KDM6B serves as a positive circulation trigger during osteogenic differentiation by decreasing the ratio of M1/M2 both in vitro and in vivo. Collectively, these results provide insight into basic research in the field of osteoporosis and bone repair.
Collapse
Affiliation(s)
- Lang Chen
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Chenyan Yu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Wanting Xu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School
of Pharmaceutical Sciences, Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518100, China
| | - Yuan Xiong
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Peng Cheng
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Ze Lin
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Zhenhe Zhang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Leonard Knoedler
- Department
of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg 93053, Germany
- Leibniz
Institute of Immunotherapy, University of
Regensburg, Regensburg 93053, Germany
| | - Adriana C. Panayi
- Department
of Plastic Surgery, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
- Department
of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center,
BG Trauma Center Ludwigshafen, University
of Heidelberg, Ludwig-Guttmann-Strasse
13, Ludwigshafen/Rhine 67071, Germany
| | - Samuel Knoedler
- Department
of Plastic Surgery, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02152, United States
- Institute
of Regenerative Biology and Medicine, Helmholtz
Zentrum München, Max-Lebsche-Platz 31, Munich 81377, Germany
| | - Junqing Wang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School
of Pharmaceutical Sciences, Shenzhen Campus
of Sun Yat-sen University, Shenzhen 518100, China
| | - Bobin Mi
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei
Province Key Laboratory of Oral and Maxillofacial Development and
Regeneration, Wuhan 430022, China
| |
Collapse
|
49
|
Xu D, Chen X, Li Y, Chen Z, Xu W, Wang X, Lv Y, Wang Z, Wu M, Liu G, Wang J. Reconfigurable Peptide Analogs of Apolipoprotein A-I Reveal Tunable Features of Nanodisc Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1262-1276. [PMID: 36626237 DOI: 10.1021/acs.langmuir.2c03082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Collapse
Affiliation(s)
- Daiyun Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen518033, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen361102, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
50
|
Lu S, Tian H, Li L, Li B, Yang M, Zhou L, Jiang H, Li Q, Wang W, Nice EC, Xie N, Huang C, Liu L. Nanoengineering a Zeolitic Imidazolate Framework-8 Capable of Manipulating Energy Metabolism against Cancer Chemo-Phototherapy Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204926. [PMID: 36260824 DOI: 10.1002/smll.202204926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Chemo-phototherapy has emerged as a promising approach to complement traditional cancer treatment and enhance therapeutic effects. However, it still faces the challenges of drug efflux transporter-mediated chemoresistance and heat shock proteins (HSPs)-mediated phototherapy tolerance, which both depend on an excessive supply of adenosine triphosphate. Therefore, manipulating energy metabolism to impair the expression or function of P-glycoprotein (P-gp) and HSPs may be a prospective strategy to reverse cancer therapeutic resistance. Herein, a chondroitin sulfate (CS)-functionalized zeolitic imidazolate framework-8 (ZIF-8) chemo-phototherapy nanoplatform (CS/ZIF-8@A780/DOX NPs) is rationally designed that is capable of manipulating energy metabolism against cancer therapeutic resistance by integrating the photosensitizer IR780 iodide (IR780)-conjugated atovaquone (ATO) (A780) and the chemotherapeutic agent doxorubicin (DOX). Mechanistically, ATO and zinc ions that are released in the acidic tumor microenvironment can lead to systematic energy exhaustion through disturbing mitochondrial electron transport and the glycolysis process, thus suppressing the activity of P-gp and HSP70, respectively. In addition, CS is used on the surface of ZIF-8@A780/DOX NPs to improve the targeting capability to tumor tissues. These data provide an efficient strategy for manipulating energy metabolism for cancer treatment, especially for overcoming cancer chemo-phototherapy resistance.
Collapse
Affiliation(s)
- Shuaijun Lu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hao Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Qiong Li
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Weihua Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
- State Key Laboratory of Biotherapy and Cancer Center, and Collaborative Innovation Center for Biotherapy, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| |
Collapse
|