1
|
Yan S, Liu Q, Wen Z, Liang B, Liu Z, Xing J, Li J, Zhang M, Liu X, Wang C, Xing D. An AIE-active Janus filter membrane for highly efficient detection and elimination of bioaerosols. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138116. [PMID: 40174455 DOI: 10.1016/j.jhazmat.2025.138116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/16/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Highly efficient detection and sterilization techniques for bioaerosol prevention and control are urgently needed. Herein, we present an AIE-active Janus air filter membrane (AIE-HAFM) that features water-dissolvable micro-nano porous network architecture and aggregation-induced emission (AIE) activity constructed by the asymmetrical surface modification with an amphiphilic AIE photosensitizer (MeOTTVP). The all-round AIE-HAFM can not only provide low pressure drop and high interception efficiency for bioaerosol sampling but also perfectly inherit the AIE functions of MeOTTVP, which allows for intensive near-infrared (NIR) emission and efficient production of reactive oxygen species. The airborne pathogens can be effectively captured, collected, transferred, and released by AIE-HAFM for subsequent quantitative detection with colony counting and ATP bioluminescence, as well as stained by the incorporated MeOTTVP for NIR fluorescence imaging-guided visual detection. Meanwhile, AIE-HAFM enables on-demand and surface-dependent photodynamic effects for reliable bacterial eradication under white light irradiation due to the surface-concentrated MeOTTVP, consequently achieving the smart prevention and control of bioaerosols both in the simulated and real-world bioaerosol environment. The versatility of AIE-HAFM in handling diverse airborne pathogens may bring about a transformative solution to address the bioaerosol contamination problems.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zishu Wen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhanjie Liu
- Qingdao Haier Biomedical Co., Ltd., Qingdao 266071, China
| | - Jiyao Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Jiyixuan Li
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Ning S, Yao Y, Feng X, Tian Y. Recent advances in developing bioorthogonally activatable photosensitizers for photodynamic therapy. Eur J Med Chem 2025; 291:117672. [PMID: 40286628 DOI: 10.1016/j.ejmech.2025.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Photodynamic therapy (PDT) is a promising and powerful cancer therapeutic modality, which can generate cytotoxic reactive oxygen species (ROS) from light-irradiated photosensitizers (PSs) to eradicate tumors. To overcome the drawbacks of currently used PSs, researchers have leveraged the advantages of bioorthogonal reactions to design diverse bioorthogonally activatable photosensitizers with excellent tumor selectivity, high ROS generation controllability, and low adverse effect for effective antitumor photodynamic therapy. In this review, we comprehensively summarize and highlight the recent advances in the development of bioorthogonally activatable photosensitizers, including the structure types, designing strategies, activation patterns, photophysical properties, ROS generation efficiency, in vitro and in vivo activities, biological applications, and limitations. We also provide directions and perspectives to address the therapeutic challenges of bioorthogonally activatable photosensitizers for promoting clinical applications. We believe that the principles summarized here will offer useful references for further development of next-generation advanced intelligent photosensitizers and related strategies to realize precise and efficient tumor treatment in the future.
Collapse
Affiliation(s)
- Shuyi Ning
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuanyuan Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
3
|
Ding Q, Rha H, Yoon C, Kim Y, Hong SJ, Kim HJ, Li Y, Lee MH, Kim JS. Regulated cell death mechanisms in mitochondria-targeted phototherapy. J Control Release 2025; 382:113720. [PMID: 40228665 DOI: 10.1016/j.jconrel.2025.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Phototherapy, comprising photodynamic therapy (PDT) and photothermal therapy (PTT), was first introduced over a century ago and has since evolved into a versatile cancer treatment modality. While numerous studies have explored regulated cell death (RCD) mechanisms induced by phototherapy, a comprehensive synthesis centered on mitochondria-targeted phototherapeutic strategies and agents as mediators of RCD is still lacking. This review provides a systematic and in-depth analysis of recent advances in mitochondria-centered mechanisms driving phototherapy-induced death pathways, including apoptosis, autophagy, pyroptosis, immunogenic cell death, ferroptosis, and cuproptosis. We highlight the critical role of mitochondria as central regulators of these death pathways in response to phototherapeutic interventions. Moreover, we discuss fundamental design strategies for developing precision-targeted phototherapeutic materials to enhance efficacy and minimize off-target effects. Finally, we identify prevailing challenges and propose future research directions to address these hurdles, paving the way for next-generation mitochondria-targeted phototherapy as a highly effective strategy for cancer management.
Collapse
Affiliation(s)
- Qihang Ding
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Changyu Yoon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hui Ju Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yang Li
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Peng S, Zhou X, Wang Q, Shen L, Wang ZY, Xu H, Yang X, Redshaw C, Zhang QL. Cationic AIEgens with large rigid π-planes: Specific bacterial imaging and treatment of drug-resistant bacterial infections. Bioorg Chem 2025; 159:108412. [PMID: 40168883 DOI: 10.1016/j.bioorg.2025.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
In this study, four D-π-A type cationic photosensitisers with aggregation-induced emission (AIE) properties were developed based on the electron-donating group triphenylamine and pyrene molecules acting as auxiliary electron donors and main π-bridges, as well as pyridinium salts of different charge numbers acting as electron acceptors: TPP1, MeOTPP1, TPP2 and MeOTPP2. The introduction of pyrene endowed the AIE photosensitizers with a high solid fluorescence quantum yield and long fluorescence lifetime. All four photosensitizer molecules were able to efficiently generate type I (·OH) and type II (1O2) under white light irradiation, achieving efficient inactivation of methicillin-resistant Staphylococcus aureus (MRSA) at low concentrations, and TPP1 and TPP2 successfully promoted wound healing in MRSA-infected mice. The introduction of a methoxy group effectively enhanced the intramolecular charge transfer effect, achieved longer wavelength absorption and fluorescence emission redshift, and effectively reduced ΔEst thereby promoting ROS (Reactive Oxygen Species) generation. However, after the introduction of the methoxy group, the CAC (Critical Aggregate Concentration) of MeOTPP1 and MeOTPP2 became smaller and the hydrophobicity was enhanced, which affected the interaction with bacteria. In fact, the photodynamic antimicrobial activity and imaging ability against bacteria were reduced. TPP2 achieves efficient killing of MRSA and MDR E.coli (Multidrug-resistant Escherichia coli) by disrupting the bacterial cell membrane due to its high photosensitization efficiency, two positive charges and very high CAC value. Under light (40 mW·cm-2), only 1 μM of TPP2 inactivated 87 % of MRSA, followed by TPP1, which inactivated 59 %, while MeOTPP1 and MeOTPP2 showed no significant antibacterial activity at this concentration. At a concentration of 10 μM, TPP2 deactivated more than 95 % of MDR E.coli, TPP1 deactivated about 41 %, and MeOTPP1 and MeOTPP2 had no antimicrobial activity against MDR E.coli at this concentration. In addition, TPP1, MeOTPP1 and TPP2 were able to rapidly identify MRSA and MDR E.coli under the irradiation of 365 nm UV light, which provides a visual method for the rapid identification of MRSA and MDR E.coli.
Collapse
Affiliation(s)
- Senlin Peng
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China
| | - Xu Zhou
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China
| | - Qian Wang
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China.; Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, PR China
| | - Lingyi Shen
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China
| | - Zhi-Yong Wang
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China
| | - Hong Xu
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China
| | - Xianjiong Yang
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK
| | - Qi-Long Zhang
- School of Basic Medicine, Guizhou Key Laboratory of Macrocyclic and Supramolecular Chemistry, Guizhou Medical University, Guiyang 550025, PR China..
| |
Collapse
|
5
|
Zheng P, Yan X, Zhu J, Liu Y, Wang L, Su H, Wang D, Tang BZ. Molecularly manipulating pyrazinoquinoxaline derivatives to construct NIR-II AIEgens for multimodal phototheranostics of breast cancer bone metastases. Biomaterials 2025; 317:123105. [PMID: 39818143 DOI: 10.1016/j.biomaterials.2025.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency. These extraordinary behaviors endowed 4TPQ nanoparticles with unprecedented performance on NIR-II fluorescence/photothermal imaging-navigated synergistic photodynamic/photothermal inhibition of tumors, as confirmed by the mice model of breast cancer bone metastases. This study thus brings significant insights into developing phototheranostic systems for clinical trials.
Collapse
Affiliation(s)
- Ping Zheng
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Liu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| |
Collapse
|
6
|
Luo Y, Liu Y, Chen W, Gao Y, Kan L, Chen H, Wang Y, Li M, Li S, Zhang XH. Regioisomerism in NIR-II-emissive semiconducting biradicals for high-performance bioimaging and phototheranostics of tumors. MATERIALS HORIZONS 2025; 12:3115-3126. [PMID: 39898369 DOI: 10.1039/d4mh01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Photothermal agents (PTAs) have received significant attention in medical therapeutic and diagnostic applications. Despite their tremendous development, developing PTAs is challenging when applied to a living body with deep tissue, as it usually leads to attenuated therapeutic efficiency and potential biosafety hazards. Here, we report a molecular isomerization strategy based on NIR-II semiconducting biradicals that boosts the performance of NIR-II phototheranostics. With a stereoisomeric design by precisely manipulating the substitution position of the alkyl side chain, the optimal isomer, α-TBTS, and its nanoparticles (NPs) provide enhanced NIR-II absorption and 63% photothermal conversion capabilities, resulting in efficient photoablation of tumor cells. Most importantly, the relationship between the molecular isomerism of these NIR-II theranostics enables enhanced NIR-II performance, which has been proven by theoretical and ultrafast spectroscopy studies. With all these advantages, the α-TBTS nanoplatform has simultaneously achieved high-resolution whole-body NIR-II angiography and trimodal tumor-targeted imaging in vivo. Moreover, α-TBTS NPs efficiently inhibited tumor growth without recurrence upon NIR-II light irradiation, providing good biosafety. This work demonstrates the feasibility of molecular isomerization in multimodal NIR-II biradical PTAs and thus provides a suitable theranostic agent for high-performance tumor phototheranostics.
Collapse
Affiliation(s)
- Yu Luo
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Ying Liu
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Yijian Gao
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Lijun Kan
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Huan Chen
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Yu Wang
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Mingde Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Shengliang Li
- College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, 215123, P. R. China.
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
7
|
Wang Z, Liu C, Zou X, Chi W, Zhang Y, Luo X, Xu Y, Liu J, Zhao N, Zhang W, Zu M, Yin W, Meng L, Dang D. Turning Lemons into Lemonade: One-Step Synthesized Dual-Acceptor Organic Photosensitizer to Boost the Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411643. [PMID: 40123250 DOI: 10.1002/smll.202411643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Reactive oxygen species (ROS) are crucial in photodynamic therapy (PDT), but their generation is highly dependent on the S-T bandgap (ΔEST), spin-orbit coupling (SOC), intersystem crossing rate (kISC), and also excited triplet-states lifetime (τTriplet) in organic photosensitizers (PSs). In contrast to the widely reported donor-acceptor-donor (D-A-D) type PSs, D-A-A-D typed PSs are seldomly developed for the time-consuming and complicated synthesis, but show great potential in enhancing ROS generation in phototheranostics. This work here presents a one-step synthetic procedure of D-A-A-D type 2DMeTPA-2BT with a high yield of 47%, which is significantly different from the previously reported dual-acceptor cases. In contrast to 2DMeTPA-BT, the dual-acceptor PSs of 2DMeTPA-2BT display a much smaller ΔEST value but large SOC constants. Also, the intersystem crossing (ISC) dynamics indicate that fast kISC, long τTriplet, and large triplet population are observed in 2DMeTPA-2BT-based nanoparticles (NPs), contributing to a superior generation of ROS. 2DMeTPA-2BT NPs are then finally utilized for the imaging-guided PDT in vivo with a tumor inhibition rate of 90%. This method offers an efficient way to produce dual-acceptor typed PSs via a one-step reaction, providing new avenues in high-performance phototheranostics.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Chunyan Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Xianshao Zou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| | - Weijie Chi
- Department of Chemistry, School of Science, Hainan University, Haikou, 570228, P. R. China
| | - Youming Zhang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xuwei Luo
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Jia Liu
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Meiyuan Zu
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| | - Wenping Yin
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, Shandong, 266000, P. R. China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| |
Collapse
|
8
|
Yilmaz EG, Küçük BN, Aslan Y, Erdem Ö, Saylan Y, Inci F, Denizli A. Theranostic advances and the role of molecular imprinting in disease management. iScience 2025; 28:112186. [PMID: 40224001 PMCID: PMC11986986 DOI: 10.1016/j.isci.2025.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Molecular imprinting has become an effective technology in the realm of diagnosing diseases, providing unparalleled specificity and sensitivity. This method is a promising trend in current medical research. This review examines the utilization of molecularly imprinted polymers (MIPs) in theranostic that integrates diagnostic functionalities for personalized medicine. The present work briefly discusses the fundamental concepts of molecular imprinting and how it has evolved into a versatile platform. Subsequently, the utilization of MIPs in the advancement of biosensors is focused, specifically emphasizing their contribution to the detection and diagnosis of diseases. The therapeutic potential of MIPs, focusing on targeted drug delivery and controlled release systems and the integration of MIPs into theranostic platforms is explored through case studies, showcasing the technology's ability to simultaneously diagnose and treat diseases. Finally, we address the current challenges facing MIPs and discuss future perspectives, emphasizing the potential of this technology to revolutionize the next generation.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Beyza Nur Küçük
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yusuf Aslan
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Yang C, Tang S, Liu Q, Fan M, Zhang W, Liu Y, Chen X, Xu G, Chen X, Xu Z. Wireless charging LED mediated type I photodynamic therapy of breast cancer using NIR AIE photosensitizer. iScience 2025; 28:112196. [PMID: 40230527 PMCID: PMC11995052 DOI: 10.1016/j.isci.2025.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Abstract
Due to limited light penetration and dependence on oxygen, photodynamic therapy (PDT) is typically restricted to treating shallow tissues. Developing strategies to overcome these limitations and effectively using PDT for tumor treatment is a significant yet unresolved challenge. In this study, we present a smart approach combining a wireless-charged LED (wLED) with a type I aggregation-induced emission photosensitizer, MeOTTMN, to address both light penetration and tumor hypoxia issues simultaneously. MeOTTMN, characterized by twisted molecular architecture and strong intramolecular electron donor-acceptor interaction, produces high levels of hydroxyl and superoxide radicals and emits near-infrared light in its aggregated state, thus facilitating fluorescence imaging-guided PDT once formulated into nanoparticles. The inhibition of breast cancer xenografts provides compelling evidence of the treatment efficacy of type I PDT irradiated through an implantable wLED. This strategy provides a conceptual and practical paradigm to overcome key clinical limitations of PDT, expanding possibilities for clinical translation.
Collapse
Affiliation(s)
- Chengbin Yang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shiqi Tang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiqi Liu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yingyu Liu
- Maternal-Fetal Medicine Institute, Department of Obstetics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen 518133, China
| | - Xin Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen 518133, China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
10
|
Kang Q, Liu F, Tan S, Wu F, Liu Y, Li Z, Yang S, Huang H, Xiong J, Chen G, Wu GL, Tan X, Yang Q. Molecular Engineering of NIR-II Excitable Phototheranostic for Mitochondria-Targeted Cancer Photoimmunotherapy. J Med Chem 2025; 68:7707-7719. [PMID: 40138524 DOI: 10.1021/acs.jmedchem.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The advancement of mitochondria-targeted near-infrared-II (NIR-II) excitable phototheranostics constitutes a promising strategy for improving fluorescence-image-guided cancer phototherapy. However, developing phototheranostic agents that simultaneously combine high-contrast NIR-II fluorescence imaging with effective multimodal therapeutic techniques remains a substantial challenge. Herein, we reported a shielding-donor-acceptor-donor-shielding structured NIR-II phototheranostic (FCD-T) by a molecular engineering strategy, followed by self-assembly with glutathione-responsive copolymer to form FCD-T nanoparticles. The introduction of functional bithiophene endows FCD-T with significant electron-donating properties and reduces intermolecular π-π stacking interactions. The robust π-conjugation of fluorene with good rigidity would enhance the intramolecular charge transfer capability. Therefore, FCD-T NPs exhibited an NIR-II absorption peak at 1075 nm and an emission peak at 1280 nm. Upon NIR-II light excitation, such nanoparticles could generate excellent photothermal and photodynamic performances with good biocompatibility. Moreover, the NIR-II mitochondria-targeted phototherapy further facilitated mitochondrial apoptosis-related pathways, activating antitumor immunity and inhibiting tumor growth with single irradiation at low doses.
Collapse
Affiliation(s)
- Qiang Kang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | | | - Fan Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | | | - Zelong Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sha Yang
- Pathology Research Group & Department of Pathology Institute of Basic Disease Sciences & School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Hejin Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Radiology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | | | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gui-Long Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science & NHC Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe, Cancer Research Institute & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
11
|
Yan D, Li X, Wang H, Li B, Wang W, Liao Y, Tang BZ, Wang D. NIR-II aggregation-induced emission nanoparticles camouflaged with preactivated macrophage membranes for phototheranostics of pulmonary tuberculosis. Nat Protoc 2025:10.1038/s41596-025-01146-8. [PMID: 40210746 DOI: 10.1038/s41596-025-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 04/12/2025]
Abstract
Phototheranostics, which allows simultaneous diagnosis and therapy, offers notable advantages in terms of noninvasiveness, controllability and negligible drug resistance, presenting a promising approach for disease treatment. By integrating second near-infrared (NIR-II, 1,000-1,700 nm) phototheranostic agents characterized by aggregation-induced emission (AIE) and cell membranes with specific targeting capacity, we have developed a versatile type of biomimetic nanoparticle (NP) for precise phototheranostics of pulmonary tuberculosis (TB). Coating the phototheranostic agents with preactivated macrophage membranes results in the formation of biomimetic NPs, which exhibit specific binding to TB through a lesion-pathogen dual-targeting strategy, allowing the accurate detection of Mycobacterium tuberculosis via NIR-II fluorescence imaging and precise photothermal therapy using the irradiation of a 1,064 nm laser. In comparison with traditional treatments, small individual granulomas (0.2 mm in diameter) in TB-infected mice are visualized, and improved antibacterial effects are achieved upon NP administration. Here we present a standardized workflow for the synthesis of the NIR-II AIE agents, their use for the fabrication of the biomimetic NPs and their in vitro and in vivo applications as phototheranostics against M. tuberculosis. The preparation and characterization of the NIR-II AIE agents requires ~8 d, the synthesis and characterization of the phototheranostic NPs requires ~8 d, the validation of in vitro targeting capacity and photothermal eradication requires ~26 d, and the in vivo NIR-II fluorescence imaging and imaging-guided photothermal therapy requires ~74 d. All procedures are straightforward and suitable for clinicians or researchers with prior training in organic synthesis and biomedical engineering.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Huanhuan Wang
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China
| | - Bin Li
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China
| | - Wei Wang
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China
| | - Yuhui Liao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China.
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Shen Q, Gao K, Zhang P, Zhao Z, Gao A, Xu Y, Chen C, Chen K, Meng L, Wang H, Zhang M, Dang D. Highly Emissive Platinum(II) Metallacage in the Near-Infrared Region for Synergistic Chemo-Photodynamic Therapy. J Med Chem 2025; 68:7780-7791. [PMID: 40169563 DOI: 10.1021/acs.jmedchem.5c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Highly emissive metallacages that generate reactive oxygen species (ROS) are important to synergistic cancer therapy, but it is still challenging to balance the emission and phototheranostic properties. Herein, a metallacage of DTPABT-Mc is prepared. It is observed that emission in the near-infrared region from 600 to 1000 nm with a high photoluminescence quantum yield value of 7.92% in solids is recorded for DTPABT-Mc. In addition, the ability to produce both type I and type II ROS under light irradiation is also observed, leading to potential application in photodynamic therapy (PDT) and chemotherapy. After that, 4T1@DTPABT-Mc-NPs, covering DTPABT-Mc nanoparticles with 4T1 cell membranes, are prepared to enhance their tumor-targeting ability. This finally results in effective therapeutic performance in vivo, effectively inhibiting tumor growth. These results suggest that DTPABT-Mc-NPs exhibit excellent synergistic therapeutic effects by combining PDT and chemotherapy, providing new ideas to design agents for diagnosis and therapy in the future.
Collapse
Affiliation(s)
- Qifei Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhiqin Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Anran Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chao Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kai Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Heng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
13
|
Wu K, Liu J, Zhang X, Chao Z, Fang Y, Zhu Y, Liu Y, Zhang X, Wang Q, Ju H, Liu Y. Bovine serum albumin framed activatable NIR AIE photosensitizer for targeted tumor therapy. Biomaterials 2025; 315:122918. [PMID: 39490062 DOI: 10.1016/j.biomaterials.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Organic near-infrared (NIR) photosensitizers (PS) largely facilitate photodynamic therapy (PDT). To overcome aggregation induced quenching and diminishment of reactive oxygen species (ROS) generation capability of NIR-PS, aggregation-induced emission (AIE) effect groups have been introduced to generate NIR AIE photosensitizers. However, currently reported NIR AIE photosensitizers all take "always-on" activity that may cause systemic phototoxic side effects. Tumor microenvironment activatable NIR AIE photosensitizers have not been reported. Here we develop an activatable NIR AIE PSnanoparticle (a-NA-PSNP) for near-infrared-II (NIR-II) fluorescence (FL) imaging-guided PDT under 808 nm excitation. NIR AIE photosensitizer (N-PS) is designed and frames with cysteine (Cys)/glutathione (GSH) responsive charge transfer complex (CTC) in bovine serum albumin (BSA) to obtain a-NA-PSNP. With the aggregated state in BSA, N-PS shows high quantum yield with good photostability. As an energy acceptor, CTC quenchs NIR-II fluorescence and ROS production capability of a-NA-PSNP in normal cells and tissues. CTC is decomposed in response to tumor microenvironment Cys/GSH, therefore recovers NIR-II fluorescence of a-NA-PSNP and efficiently generates ROS under 808 nm light irradiation. The depletion of Cys/GSH also regulates tumor intracellular reductive environment to further facilitate PDT. Both in vitro and in vivo results confirmed the tumor microenvironment selective and efficient activation of a-NA-PSNP, indicating its potential in cancer therapy.
Collapse
Affiliation(s)
- Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Jiawei Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xinmin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Yuan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Qi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing, 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing, 210023, China.
| |
Collapse
|
14
|
Samari M, Kashanian S, Zinadini S, Derakhshankhah H. Enhanced delivery of azithromycin using asymmetric polyethersulfone membrane modified with KIT-6 mesoporous material: Optimization and mechanistic studies. Eur J Pharm Sci 2025; 207:107038. [PMID: 39933630 DOI: 10.1016/j.ejps.2025.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
This study presents the development of a novel drug delivery system designed for improving the release profile and sustained delivery of azithromycin (AZI), particularly aimed at applications requiring localized infection control and improved tissue compatibility. The system employs an asymmetric polyethersulfone (PES) membrane modified with KIT-6 mesoporous material, offering improved drug release performance and biocompatibility over conventional delivery platforms. Membrane optimization was achieved by systematically varying parameters such as thickness (150-600 µm), drug concentration (500-1500 mg/L), polymer content (13-21 % PES), pore maker percentage (0-4 % polyvinylpyrrolidone), and KIT-6 modifier percentage (0.5-2 %). Characterization included scanning electron microscopy, water contact angle measurements, porosity, tensile strength evaluation, and comprehensive bioactivity testing (cytotoxicity, antimicrobial efficacy, blood compatibility, and a novel tissue integrity assay). The optimized formulation (17 % PES, 2 % PVP, 1 % KIT-6) achieved a controlled and sustained release profile with improved drug availability (464 mg/L) compared to unmodified membranes (252 mg/L), with a sustained release profile governed by the Higuchi model. Additionally, the membrane demonstrated superior biocompatibility (-90 % cell viability, low hemolysis at 1.2 %) and preserved tissue integrity better than unmodified counterparts, as evidenced by in vitro and ex vivo studies. Notably, the system showed robust reusability over prolonged use, indicating its potential as an effective, sustainable, and biocompatible solution for localized AZI delivery. These advantages position this system as a promising alternative for medical applications requiring precise drug release and minimal tissue disruption.
Collapse
Affiliation(s)
- Mahya Samari
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran; Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran.
| | - Sirus Zinadini
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran; Environmental Research Center (ERC), Razi University, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Han J, Yang M, Li K, Liu W, Fan J, Peng X. A Universal Single-Activated-Dual-Release Vehicle: Enabling Synergistic Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410925. [PMID: 40034012 DOI: 10.1002/smll.202410925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/11/2025] [Indexed: 03/05/2025]
Abstract
Activatable combined therapeutic strategy exhibits significant potential for the management of malignant tumors. Ensuring the timely and spatially effective release of different therapeutic agents is a great challenge for maximizing the efficacy of combination therapy. Herein, based on the 1,4-and 1,6-elimination behaviors, the study proposes a novel universal single-activated-dual-release platform that can be triggered by various stimulants of interest. As a proof-of-concept, the study develops an example of a synergistic therapy called CyI-Cbl-NTR, which can be selectively activated by nitroreductase (NTR) to release the photosensitizer (CyI-OH) and DNA alkylating agent chlorambucil (Cbl), thereby enabling a combination of chemo- and photodynamic therapy. Both in vitro and in vivo experiments fully demonstrate the remarkable combined therapeutic effect of Cyl-Cbl-NTR and the feasibility of this strategy. This work provides a promising platform for the future development of activatable synergistic therapy.
Collapse
Affiliation(s)
- Jinliang Han
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116023, China
| | - Mingwang Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116023, China
| | - Kang Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116023, China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116023, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116023, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
16
|
Li X, Ou X, Yang Z, Kang M, Xu W, Li D, Kwok RTK, Lam JWY, Zhang Z, Wang D, Tang BZ. Win-Win Integration of Genetically Engineered Cellular Nanovesicles with High-Absorbing Multimodal Phototheranostic Molecules for Boosted Cancer Photo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416590. [PMID: 40012411 DOI: 10.1002/adma.202416590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Photo-immunotherapy is one of the most promising cancer treatment strategies. As immunotherapeutic agents, immune checkpoint blockade antibodies against programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 (PD-L1) exhibit substantial potential, but have to face non-specific distribution and the subsequent immune-related adverse events. Meanwhile, high-performance phototheranostic agents concurrently possessing multiple phototheranostic modalities and high light-harvesting capacity are really attractive and highly desired as touching phototheranostic modules. Herein, a win-win strategy that integrates phototheranostic molecule design and targeted immunotherapeutic module preparation is developed to construct high-powered photo-immunotherapy systems. Specifically, the phototheranostic agent (AOTTIT) displaying typical aggregation-induced fluorescence extending to the second near-infrared II window, as well as outstanding reactive oxygen species and heat production capacity is first obtained via ingenious design. Notably, AOTTIT exhibits a record high molar extinction coefficient among the reported organic multimodal phototheranostic molecules. Meanwhile, PD-1 genetically engineered cancer cell membrane-derived nanovesicles (PD-1/CMNVs) are prepared as both nanocarriers and immunotherapeutic agents to camouflage AOTTIT nanoparticles, yielding a multifunctional photo-immunotherapeutic agent (CMNPs/PD-1) with tumor-specific active and homologous targeting ability. The distinct suppression of primary and metastatic lung tumors after only once treatment to the primary tumor substantiated the synergistically strengthened photo-immunotherapeutic efficiency of this win-win strategy.
Collapse
Affiliation(s)
- Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinwen Ou
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Zengming Yang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weilin Xu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Danxia Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
17
|
Fang Z, Zhang S, Wang W, Xu Y, Lu M, Qian Y, Xiao X, Li Y, Tang BZ, Zhang M. Aggregation-induced emission-based phototheranostics to combat bacterial infection at wound sites: A review. Biomaterials 2025; 315:122950. [PMID: 39522351 DOI: 10.1016/j.biomaterials.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The healing of chronic wounds infected by bacteria has attracted increasing global concerns. In the past decades, antibiotics have certainly brought hope to cure bacteria-infected chronic wounds. However, the misuse of antibiotics leads to the emergence of numerous multidrug-resistant bacteria, which aggravate the health threat to clinical patients. To address these increasing challenges, scientists are committed to creating novel non-antibiotic strategies to kill bacteria and promote bacteria-infected chronic wound healing. Fortunately, with the quick development of nanotechnology, the representatives of phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), exhibit promising possibilities in promoting bacteria-infected wound healing. Well-known, photothermal agents and photosensitizers largely determine the effects of PTT and PDT. A common problem for these molecules is the aggregation-induced quenching effect, which highly limits their further applicability in biomedical and clinical fields. Fortunately, the occurrence of aggregation-induced emission luminogens (AIEgens) efficiently overcomes the photobleaching and exhibit advantages, such as strongly aggregated emission, superior photostability, aggregation-enhanced reactive oxygen species (ROS), and heat generation, which makes great sense to the development of PTT and PDT. This article reviews various studies conducted on novel AIEgen-based materials that can mediate potent PDT, PTT, and a combination of PDT and PTT to promote bacteria-infected chronic wound healing.
Collapse
Affiliation(s)
- Zhurun Fang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Shixuan Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Wentao Wang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Xu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Mengmeng Lu
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Yuxin Qian
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Xiyan Xiao
- Department of Otolaryngology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuanyuan Li
- Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
18
|
Su X, Liu Y, Zhong Y, Shangguan P, Liu J, Luo Z, Qi C, Guo J, Li X, Lin D, Wang G, Wang D, Han T, Wang J, Shi B, Tang BZ. A Brain-Targeting NIR-II Polymeric Phototheranostic Nanoplatform toward Orthotopic Drug-Resistant Glioblastoma. NANO LETTERS 2025; 25:3445-3454. [PMID: 39992704 DOI: 10.1021/acs.nanolett.4c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Glioblastoma is the most common and devastating brain tumor owing to its high invasiveness and high-frequency drug resistance. Near infrared-II (NIR-II) imaging-guided phototherapy based on polymer luminogens provides a promising remedy against drug-resistant glioma, but it is difficult to maximize photoenergy utilization. Herein, we designed a series of semiconducting polymers to boost the visualization and ablation of glioblastoma. By subtly engineering the side chains or substituents on the phenothiazine and thiophene moieties, an NIR-II polymer luminogen with high-quality fluorescence performance, good solubility, superior photothermal conversion, and balanced reactive oxygen species generation is achieved. The optimal polymer possesses a branched alkyl chain and tetraphenylethylene pendant to manipulate the equilibrium between the radiative and nonradiative energy-dissipating channels. High-sensitivity NIR-II imaging was used to monitor the blood-brain barrier penetration and glioma cell targeting of apolipoprotein E-modified polymer nanoparticles. The NIR irradiation triggers and maximizes the photon utilization in prominent photodynamic/photothermal synergistic therapy in orthotopic drug-resistant glioblastoma.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yisheng Liu
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, 475004, China
| | - Ping Shangguan
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zhengqun Luo
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Cai Qi
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Jincheng Guo
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Xi Li
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Danmin Lin
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gaoyang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng, 475004, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ting Han
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiefei Wang
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
| | - Bingyang Shi
- The Zhongzhou Laboratory for Integrative Biology, Henan Provincial Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Department of Clinical Laboratory of Huaihe Hospital, Henan University, Kaifeng, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China
| |
Collapse
|
19
|
Miao X, Jia M, Weng X, Zhang J, Pan Y, Zhao H, Yu Z, Fan Q, Hu W. Alleviating NIR-II emission quenching in ring-fused fluorophore via manipulating dimer populations for superior fluorescence imaging. LIGHT, SCIENCE & APPLICATIONS 2025; 14:109. [PMID: 40038262 DOI: 10.1038/s41377-025-01787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
Emission quenching resulting from fluorophore aggregation has long been a significant challenge in optimizing emission-based technologies, such as fluorescence imaging and optoelectronic devices. Alleviating this quenching in aggregates is crucial, yet progress is impeded by the limited understanding of the nature and impact of aggregates on emission. Here, we elucidate the critical role of dimeric aggregate (dimer) in alleviating second near-infrared (NIR-II, 900-1700 nm) emission quenching from ring-fused fluorophore 4F for superior fluorescence imaging. Spectral decomposition and molecular dynamics simulations demonstrate the predominance of dimer populations in 4F aggregates. Notably, dimers exhibit significantly weaker emission but intense intermolecular nonradiative (interNR) decay compared to monomers, as demonstrated by ultrafast spectra and quantum calculation. Therefore, the predominant population of dimers with weak emission and pronounced interNR feature underlies the emission quenching in 4F aggregates. This discovery guides the preparation of ultrabright NIR-II 4F nanofluorophore (4F NP3s) by decreasing dimer populations, which show 5-fold greater NIR-II brightness than indocyanine green, enabling superior resolution in visualizing blood vessels. This work offers valuable insights into aggregation-caused quenching, with broad implications extending far beyond NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Xiaofei Miao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China
| | - Mingxuan Jia
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China
| | - Xianwei Weng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Jie Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Yonghui Pan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Hui Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Quli Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| | - Wenbo Hu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
20
|
Xiong LH, Hu P, Zhang J, Sun J, Geng J, Zhuo MP, Tang BZ, He X. Photosensitizing Quantum Dot Killers Encoded by Bivalent DNA for Sequential Cell Penetration, Intracellular Bacterial Imaging, and Targeted Elimination. ACS NANO 2025; 19:7898-7909. [PMID: 39961751 DOI: 10.1021/acsnano.4c14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The precise identification and efficient in situ eradication of intracellular bacteria can not only prevent the bacteria from persisting and spreading within the host but also accelerate the healing of infected wounds and decrease the caused complications. In this study, we designed a multifunctional quantum dot (QD) killer equipped with aggregation-induced emission (AIE) photosensitizers and heterobivalent DNA sequences with the capability to specifically target, fluorescently image, and efficiently eliminate intracellular bacteria. These QD killers undergo cell penetration following lipopolysaccharide receptor-mediated endocytosis and then translocate to the cytosol for intracellular bacterial recognition and labeling. Additionally, by leveraging the robust photodynamic activity of sensitizing QD killers, the complete eradication of intracellular bacteria was realized by reducing the viability of the infected macrophages. The cytocompatibility of QD killers ensures safe treatment without harming normal host cells. Notably, bacterial-infected wounds in vivo showed accelerated healing rates following successful bacterial elimination with QD killer administration. This work highlights the potential of QD killers in eradicating intracellular bacteria hidden within immune cells, providing a promising strategy for addressing intracellular infection-relevant diseases.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Pengtong Hu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Zhang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jie Sun
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Tang J, Si L, Wang Y, Xia G, Wang H. From X- To J-Aggregation: Subtly Managing Intermolecular Interactions for Superior Phototheranostics with Precise 1064 nm Excitation. Adv Healthc Mater 2025; 14:e2404322. [PMID: 39866021 DOI: 10.1002/adhm.202404322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Indexed: 01/28/2025]
Abstract
The stacking mode in aggregate state results from a delicate balance of supramolecular interactions, which closely affects the optoelectronic properties of organic π-conjugated systems. Then, managing these interactions is crucial for advancing phototheranostics, yet remains challenging. A subtle strategy involving peripheral phenyl groups is debuted herein to transform X-aggregated SQ-H into J-aggregated SQ-Ph, reorienting intermolecular dipole interactions while rationally modulating π-π interactions. Co-assembled with liposomes (DSPE-PEG2000), SQ-Ph nanoparticles (NPs) exhibit low toxicity, superior biocompatibility, and a bathochromic shift to the 1064 nm match-excited NIR-II region, with a fluorescence brightness (ε1064 nm ΦNIR-II) of 4129 M-1 cm-1 and a photothermal conversion efficiency (PCE) of 48.3%. Preliminary in vivo experiments demonstrate that SQ-Ph NPs achieve a signal-to-background ratio (SBR) of up to 14.29 in NIR-II fluorescence imaging (FLI), enabling highly efficient photothermal therapy (PTT) of tumors guided by combined photoacoustic imaging (PAI). This study not only enriches the J-aggregation library but also provides a paradigm for optimizing photosensitizers at the supramolecular level.
Collapse
Affiliation(s)
- Jun Tang
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Leilei Si
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Yigang Wang
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Guomin Xia
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Hongming Wang
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
22
|
Yang Y, Wang S, Chen X, Wu X, Wang J, Bu Y, Xu C, Zhang Q, Zhu X, Zhou H. Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death. Anal Chim Acta 2025; 1340:343645. [PMID: 39863315 DOI: 10.1016/j.aca.2025.343645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency. Notably, TTBI within this series possesses remarkable ROS generation capability, which can directly trigger mitochondrial depolarization, thus effectively inducing apoptosis in cancer cells. Meanwhile, the damaged mitochondria activate the mitophagy process, which further boosts the ROS generation of the TTBI owing to the acidic environment in the lysosome, ultimately inducing lysosomal membrane permeability (LMP), thereby blocking the protective autophagy route and promoting extra apoptotic cell death. Accordingly, TTBI disrupts the integrity of mitochondrial and lysosome, leveraging a synergistic interplay between cellular compartments to achieve more potent apoptosis. This work provides new insights to overcome the limitation of PDT efficacy imposed by mitochondrial autophagy.
Collapse
Affiliation(s)
- Yuxin Yang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Shen Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xingxing Chen
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| | - Xuetao Wu
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Yingcui Bu
- School of Science, Anhui Agricultural University, 230036, Hefei, PR China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China.
| |
Collapse
|
23
|
Zhang L, Yan K, Min S, Tan R, Deng S, Deng Y, Zhang H, Yao Y, Liu Y, Yang X, Xiong J, Wang J, Gao T. Structure-Activity Relationship of Hemicyanine Molecules: Mitochondrion-Targeting Hemicyanine Fluorescent Molecular Probes for HSO 3- Recognition and Near-Infrared Image-Guided Photothermal/Photodynamic Synergetic Therapy. J Phys Chem Lett 2025; 16:1746-1752. [PMID: 39930788 DOI: 10.1021/acs.jpclett.4c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hemicyanine molecules have unparalleled potential in the fields of fluorescence sensing, bioimaging, and disease therapeutics due to their excellent optical properties, cell penetration, potential mitochondrial targeting, and photosensitivity. Herein, three dual-cation hemicyanine molecular probes named DCy, PDCy, and TDCy were developed. All of them could detect HSO3-, and PDCy could recognize HSO3- under 365 nm ultraviolet light or sunlight. In addition, TDCy is a multifunctional molecule, which has the following advantages: simple synthesis, red and near-infrared dual-channel mitochondrial imaging, and photothermal/photodynamic synergistic therapy capabilities. Upon analysis of the correlation between the structures of the three hemicyanine molecules and HSO3- recognition, photosensitivity, photothermal activity, cell imaging, and cytotoxicity, the structure-activity relationship of the hemicyanine molecules could be summarized, which could provide guidance for subsequent research and development.
Collapse
Affiliation(s)
- Lu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Ke Yan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Shuang Min
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Ruolei Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Shiyi Deng
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Yanjing Deng
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Hongcheng Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Yuke Yao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Yi Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
- School of Chemistry and Materials Sciences, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Jianglin Wang
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, P. R. China
| | - Tao Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| |
Collapse
|
24
|
Li D, Wen G, Wang H, Ren Q, Wang D, Dao A, Huang H, Zhang P. Photoredox-Mediated Immunotherapy Utilizing Rhenium(I) Photocatalysts with Electron Donor-Acceptor-Donor Configuration. J Med Chem 2025; 68:3749-3763. [PMID: 39854246 DOI: 10.1021/acs.jmedchem.4c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate via photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes (Re-TPO and Re-TP) with electron donor-acceptor-donor configuration. Notably, Re-TP exhibits aggregation-induced emission properties and enhanced spin-orbit coupling compared to Re-TPO, thus exhibiting promoted photosensitizing capability. In addition to generating type I and II reactive oxygen species, the excited Re-TP facilitates the photocatalytic oxidation of NADH to NAD+ and the photoreduction of pyruvic acid to lactic acid. This metabolic intervention triggers PD-L1-linked immune responses and disrupts tumor redox balance, leading to ferroptosis and immunogenic cell death. The combined ferroptosis and immunotherapy effects significantly suppress both primary and distant B16 tumors. This investigation provides a compelling model for designing efficient metal-based PSs for photoredox-mediated photoimmunotherapy against hypoxic tumors.
Collapse
Affiliation(s)
- Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guoqing Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou 313000, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Liu Y, Song Y, Zhu ZH, Ji C, Li J, Jia H, Shi Y, Hu F, Zhao Z, Ding D, Tang BZ, Feng G. Twisted-Planar Molecular Engineering with Sonication-Induced J-Aggregation To Design Near-Infrared J-Aggregates for Enhanced Phototherapy. Angew Chem Int Ed Engl 2025; 64:e202419428. [PMID: 39526982 DOI: 10.1002/anie.202419428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
J-aggregates show great promise in phototherapy, but are limited to specific molecular skeletons and poor molecular self-assembly controllability. Herein, we report a twisted-planar molecular strategy with sonication-induced J-aggregation to develop donor-acceptor (D-A) type J-aggregates for phototherapy. With propeller aggregation-induced emission (AIE) moieties as the twisted subunits and thiophene as the planar π-bridge, the optimal twisted-planar π-interaction in MTSIC induces appropriate slip angle and J-aggregates formation, redshifting the absorption from 624 nm to 790 nm. In contrast, shorter π-planarity results in amorphous aggregates, and elongation promotes charge transfer (CT) coupled J-aggregates. Sonication was demonstrated to be effective in controlling self-assembly behaviors of MTSIC, which enables the transformation from amorphous aggregates to H-intermediates, and finally to stable J-aggregates. After encapsulation with lipid-PEG, the resultant J-dots show enhanced phototherapeutic effects over amorphous dots, including brightness, reactive oxygen species (ROS) generation, and photothermal conversion, delivering superior cancer phototherapy performance. This work not only advances D-A type J-aggregates design but also provides a promising strategy for supramolecular assembly development.
Collapse
Affiliation(s)
- Yubo Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuchen Song
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Hong Zhu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chao Ji
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hanyu Jia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
26
|
Chen P, Rong J, Chen K, Huang T, Shen Q, Sun P, Tang W, Fan Q. Photo-Amplified Plasma Membrane Rupture by Membrane-Anchoring NIR-II Small Molecule Design for Improved Cancer Photoimmunotherapy. Angew Chem Int Ed Engl 2025; 64:e202418081. [PMID: 39363693 DOI: 10.1002/anie.202418081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Immunotherapy is a promising cancer treatment method for eradicating tumor cells by enhancing the immune response. However, there are several major obstacles to conventional phototherapy-mediated immune responses, including inadequate immunogenicity and immunosuppressive environment. Here, we present a novel photoimmunotherapy modality-the development of membrane-anchoring small molecule inducing plasma membrane rupture (PMR) by NIR-II photo-stimulation, thus evoking cell necrotic death and enhancing antitumor immunotherapy. Our top-performing membrane-anchoring small molecule (CBT-3) exhibits temperature-tunable PMR efficiency, allowing rapid necrotic death in cancer cells at 50 μM dose by using exogenous NIR-II light-mediated mild photothermal effect (1064 nm, 0.6 W cm-2). Further evidence indicated that this gentle therapeutic approach activated inflammatory signaling pathways in cells, enhanced immunogenic cell death, and reshaped the immunosuppressive tumor microenvironment, ultimately promoting systemic antitumor immune responses in vivo. This study represents the first instance of utilizing NIR-II photo-amplified PMR effect based on membrane-anchoring small molecule, providing a novel avenue for advancing cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Pengfei Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Rong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Tian Huang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu, 210006, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Pengfei Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu, 210006, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
27
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
28
|
Li Z, Xi Z, Fan C, Xi X, Zhou Y, Zhao M, Xu L. Nanomaterials evoke pyroptosis boosting cancer immunotherapy. Acta Pharm Sin B 2025; 15:852-875. [PMID: 40177577 PMCID: PMC11959974 DOI: 10.1016/j.apsb.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025] Open
Abstract
Cancer immunotherapy is currently a very promising therapeutic strategy for treating tumors. However, its effectiveness is restricted by insufficient antigenicity and an immunosuppressive tumor microenvironment (ITME). Pyroptosis, a unique form of programmed cell death (PCD), causes cells to swell and rupture, releasing pro-inflammatory factors that can enhance immunogenicity and remodel the ITME. Nanomaterials, with their distinct advantages and different techniques, are increasingly popular, and nanomaterial-based delivery systems demonstrate significant potential to potentiate, enable, and augment pyroptosis. This review summarizes and discusses the emerging field of nanomaterials-induced pyroptosis, focusing on the mechanisms of nanomaterials-induced pyroptosis pathways and strategies to activate or enhance specific pyroptosis. Additionally, we provide perspectives on the development of this field, aiming to accelerate its further clinical transition.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyue Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chuanyong Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinran Xi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yao Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
29
|
Fang L, Dai J, Wang X, Tu Y, Li S, He K, Guo W, Hang L, Wang J, Diao Y, Li W, Guo W, Chen Z, Wang J, Li S, Ma P, Jiang G. Glutathione-Driven Disassembly of Planar Organic Phototherapeutic Agents to Enhance Photodynamic-Photothermal Therapy Performance for Nasopharyngeal Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409196. [PMID: 39743957 DOI: 10.1002/smll.202409196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Indexed: 01/04/2025]
Abstract
The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized. Notably, 4,8-Bis (5-phenylthiophen-2-yl)-6-(2-ethylhexyl)-[1,2,5] thiadiazole [3,4-F] benzotriazole (BTBT), which incorporates a benzene ring as the donor, exhibits the highest ROS generation and optimal photothermal conversion capability. To further augment the overall phototheranostic potential of BTBT NPs, a glutathione (GSH)-driven disassembly strategy is employed. This strategy not only alleviates the aggregation-caused quenching (ACQ) effect on ROS but also facilitates enhanced free molecular rotation. As a result, the ROS production sees a tenfold increase, and the photothermal conversion temperature rises by 8.3 °C, achieving a PCE of 77.03%. In summary, a versatile disassembly strategy is proposed that concurrently enhances the performance of both PDT and PTT in planar OPTAs, while also advancing the state-of-the-art in nasopharyngeal carcinoma (NPC) treatment.
Collapse
Affiliation(s)
- Laiping Fang
- Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Jianan Dai
- College of Information Technology, Jilin Normal University, Haifeng Street 1301, Siping, 136000, P. R. China
- Key Laboratory of Function Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
| | - Xuan Wang
- College of Information Technology, Jilin Normal University, Haifeng Street 1301, Siping, 136000, P. R. China
- Key Laboratory of Function Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
| | - Yike Tu
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Shufang Li
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Kuo He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130012, P. R. China
| | - Wenna Guo
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, P. R. China
| | - Yanzhao Diao
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Wenjing Li
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Wei Guo
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Ziying Chen
- Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Jin Wang
- College of Information Technology, Jilin Normal University, Haifeng Street 1301, Siping, 136000, P. R. China
- Key Laboratory of Function Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China
| | - Shumei Li
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130012, P. R. China
| | - Guihua Jiang
- The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China
| |
Collapse
|
30
|
Yang S, Jia Q, Ou X, Sun F, Song C, Zhao T, Kwok RTK, Sun J, Zhao Z, Lam JWY, Wang Z, Tang BZ. Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics. J Am Chem Soc 2025; 147:3570-3583. [PMID: 39812439 DOI: 10.1021/jacs.4c15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short. Therefore, a research paradigm from twisted configuration to near-planar structure featuring a high ε is urgently needed for AIEgens development. Herein, by introducing the strategy of "motion and stillness" into a highly planar A-D-A skeleton, we successfully developed a near-infrared (NIR)-II AIEgen of Y5-2BO-2BTF, which boasts an impressive ε of 1.06 × 105 M-1 cm-1 and a photothermal conversion efficiency (PCE) of 77.8%. The modification of steric hindrance on the benzene ring in the acceptor unit of the aggregation-caused quenching counterpart Y5-2BO, to a meta-CF3-substituted naphthyl, leads to reversely staggered packing and various intermolecular noncovalent conformational locks in Y5-2BO-2BTF ("stillness"). Furthermore, the -CF3 moiety acted as a flexible motion unit with an ultralow energy barrier, significantly facilitating the photothermal process in loose Y5-2BO-2BTF aggregates ("motion"). Accordingly, Y5-2BO-2BTF nanoparticles enabled tumor eradication and pulmonary metastasis inhibition through NIR-II fluorescence-photoacoustic-photothermal imaging-navigated type I photodynamic-photothermal therapy. This work provides the first evidence that the highly planar conformation with a reversely staggered stacking arrangement could serve as a novel molecular design direction for AIEgens, shedding new light on constructing superior phototheranostic agents for bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Shiping Yang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Xinwen Ou
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Fang Sun
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Chaoqi Song
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Tingxing Zhao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK─Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi 710126, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK─Shenzhen), Shenzhen, Guangdong 518172, China
| |
Collapse
|
31
|
Wang Z, Li T, Huang X, Xu R, Zhao Y, Wei J, Pi W, Yao S, Lu J, Zhang X, Lei H, Wang P. Chiral helix amplification and enhanced bioadhesion of two-component low molecular weight hydrogels regulated by OH to eradicate MRSA biofilms. MATERIALS HORIZONS 2025; 12:575-586. [PMID: 39499027 DOI: 10.1039/d4mh01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The supramolecular chemistry of small chiral molecules has attracted widespread attention owing to their similarity to natural assembly codes. Two-component low-molecular-weight (LMW) hydrogels are crucial as they form helical structures via chirality transfer, enabling diverse functions. Herein, we report a pair of two-component chiral LMW hydrogels based on the small molecular drugs baicalin (BA), scutellarin (SCU) and berberine (BBR). The two hydrogels exhibited different helicities and abilities to adhere to methicillin-resistant staphylococcus aureus (MRSA) biofilms. The BA or SCU can each laterally interact with BBR in a tail-to-tail configuration, forming a stable hydrophobic structure, while hydrophilic glucuronide groups are exposed to a water solution to form a hydrogel. However, the tiny variant steric hindrance of the terminal OH moiety of SCU affects π-π stacking in the layered assembly, resulting in SCU-BBR having much stronger chirality deviation and supramolecular chirality amplification than BA-BBR. Thereafter, the OH group in SCU-BBR forms more intermolecular hydrogen bonds with MRSA biofilms, enhancing stronger adhesion and better scavenging effects than BA-BBR. This work provides a unique chiral supramolecular assembly pattern, expands the antibacterial application prospect of a two-component LMW hydrogel accompanying chirality amplification, and provides a new perspective and strategy for biofilm removal.
Collapse
Affiliation(s)
- Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ran Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yihang Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jichang Wei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
32
|
You C, Tian L, Zhu J, Wang L, Tang BZ, Wang D. The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer. J Am Chem Soc 2025; 147:2010-2020. [PMID: 39763433 DOI: 10.1021/jacs.4c15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.5% of photothermal conversion efficiency. Consequently, DPTPzIr nanoparticles perform well in multimodal image-guided photodynamic therapy-photothermal therapy for breast cancer in tumor-bearing mice, enabling precise tumor diagnosis and complete ablation with high biocompatibility. Our present work provides a simple, feasible, and effective paradigm for the development of advanced phototheranostic agents.
Collapse
Affiliation(s)
- Caifa You
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Leyuan Tian
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
33
|
Li J, Niu N, Wang D, Zhu J, Li X, Kong Q, Zhong Tang B, Wang D. As Aggregation-Induced Emission Meets with Noncovalent Conformational Locks: Subtly Regulating NIR-II Molecules for Multimodal Imaging-Navigated Synergistic Therapies. Angew Chem Int Ed Engl 2025; 64:e202413219. [PMID: 39305148 DOI: 10.1002/anie.202413219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 11/03/2024]
Abstract
Phototheranostics is growing into a sparking frontier in disease treatment. Developing single molecular species synchronously featured by powerful absorption capacity, superior second near-infrared (NIR-II) fluorescence and prominent photothermal conversion ability is highly desirable for phototheranostics, yet remains formidably challenging. In this work, we propose a molecular design philosophy that the integration of noncovalent conformational locks (NoCLs) with aggregation-induced emission (AIE) in a single formulation is able to boost multiple photophysical properties for efficient phototheranostics. The introduction of NoCLs skeleton with conformation-locking feature in the center of molecular architecture indeed elevates the structural planarity and rigidity, which simultaneously promotes the absorption capacity and bathochromic-shifts the emission wavelength centered in NIR-II region. Meanwhile, the AIE tendency mainly originated from flexibly propeller-like geometry at the ends of molecular architecture eventually endows the molecule with satisfactory emission intensity and photothermal conversion in aggregates. Consequently, by utilizing the optimized molecule, unprecedented performance on NIR-II fluorescence-photoacoustic-photothermal trimodal imaging-guided photothermal-chemo synergistic therapy is demonstrated by the precise tumor diagnosis and complete tumor ablation.
Collapse
Affiliation(s)
- Jiangao Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qiyu Kong
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
34
|
Zhang J, Ma W, Yang B, Shi T, Liao S, Li Y, Yin S. Biomimetic Metallacage Nanoparticles with Aggregation-Induced Emission for NIR-II Fluorescence Imaging-Guided Synergistic Immuno-Phototherapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69028-69044. [PMID: 39632260 DOI: 10.1021/acsami.4c17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The integration of theranostics, which combines diagnostics with therapeutics, has markedly improved the early detection of diseases, precise medication management, and assessment of treatment outcomes. In the realm of oncology, organoplatinum-based supramolecular coordination complexes (SCCs) that can coload therapeutic agents and imaging molecules have emerged as promising candidates for multimodal theranostics of tumors. To address the challenges of tumor-targeted delivery and multimodal theranostics for SCCs, this study employs a cell membrane cloaking strategy to fabricate biomimetic metallacage nanoparticles (MCNPs) with multimodal imaging capabilities and homologous targeting capabilities. Specifically, a photosensitizer molecule (BTTP) containing AIE-active groups was assembled into a metallacage of C-BTTP through Pt-N coordination. This process endows the metallacage with strong NIR-II fluorescence in the aggregated state and significantly superior ROS generation compared to that of the precursor ligand. After being encapsulated with F127, the MCNPs were further cloaked with U87 cancer cell membranes, creating biomimetic MCNPs that achieve tumor-targeting capabilities. Verified by in vitro and in vivo experiments, MCNPs enable multimodal imaging and initiate immunotherapy under photothermal and photodynamic stimulation, leading to synergistic antitumor effects. Furthermore, the evaluation of immunogenic cell death and dendritic cell maturation rate in U87 tumor-bearing mice confirmed the mechanism of photothermal and photodynamic synergistic immunotherapy. This study provides an innovative strategy for enhancing the tumor-targeting and therapeutic efficiency of SCCs, offering a versatile strategy for efficient and minimally invasive theranostics of tumors. The development of such biomimetic nanoparticles represents a significant advancement in the field of nanomedicine, potentially transforming cancer treatment through personalized and targeted therapies.
Collapse
Affiliation(s)
- Jingpei Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Wei Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Boyu Yang
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Tingyu Shi
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Shenglong Liao
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Yang Li
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| | - Shouchun Yin
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China
| |
Collapse
|
35
|
Ma K, Dong J, Yan D, Wang D, Wang Y, Wang J, Wang D, Tan H, Tang BZ. Molecular Engineering of AIE-Active Photosensitizers with High Biosafety for Effect Extracellular Antibacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403937. [PMID: 39676412 DOI: 10.1002/smll.202403937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Developing versatile photosensitizers to actualize selective antibacteria over normal cells presents an appealing yet significantly challenging task. In this study, a novel photosensitizer named DMMA-SCPI is rationally designed and facilely synthesized, which is demonstrated as a type-I photosensitizer featured by aggregation-induced emission tendency. DMMA-SCPI is capable of effectively eliminating both Galanz positive bacteria and Galanz negative bacteria in vitro and in vivo, and showed insignificant injury to normal cells and tissues, probably resulting from its pyridinium halide that has stronger adsorption property on negatively charged bacteria compared to normal cells, as well as its suitable antimicrobial activity. The antimicrobial activity of pyridinium salt type photosensitizer depends on the adsorptive activities on the surface of bacterial cells as well as the antimicrobial activity of the reactive oxygen species (ROS). Among three photosensitizers, DMMA-SCPI has better water solubility, which provides greater surface activity to adsorb bacteria. Moreover, DMMA-SCPI produces more superoxide anion radicals as ROS, which has proper antimicrobial activity with high biosafety for effect extracellular antibacteria.
Collapse
Affiliation(s)
- Ke Ma
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518034, P. R. China
| | - Jianxia Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Deliang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| | - Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518034, P. R. China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Dong Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, P. R. China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518034, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
36
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
37
|
Yao L, Xie S, Liu Y, Mengqi L, Xia J, Lu B. Singlet oxygen storage and controlled release for improving photodynamic therapy against hypoxic tumor. Chem Commun (Camb) 2024; 60:14012-14021. [PMID: 39535143 DOI: 10.1039/d4cc04619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photodynamic therapy (PDT) is considered to be a promising tumor treatment method due to its non-invasiveness and low risk. However, there are two factors that affect the efficacy of this therapy. One is the light source and the other is the tumor hypoxia. An emerging PDT strategy has been developed to break these limits. This strategy is to adopt compounds, such as 2-pyridone, anthracene, and naphthalene derivatives, that have the ability to store and controlledly release the singlet oxygen (1O2) to achieve PDT in the dark. In this review, we focus on the construction strategies for integrated antitumor drugs containing these 1O2 storage/release units and photosensitizers and summarize their PDT performance in hypoxic tumors or in the dark. The methods to integrate these compounds with photosensitizers or nanocarriers are also discussed in detail to provide insightful design guidelines for the design of highly efficient antitumor systems based on 1O2 storage and controlled release.
Collapse
Affiliation(s)
- Long Yao
- Analysis and Testing Center, Nantong University, Nantong 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuqing Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liu Mengqi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
38
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
39
|
Zhuang J, Pan Q, Zhou C, Cai Z, Li N, Zhao N. The cyano positional isomerism strategy for constructing mitochondria-targeted AIEgens with type I reactive oxygen species generation capability. J Mater Chem B 2024; 12:11359-11367. [PMID: 39405092 DOI: 10.1039/d4tb01847h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
In this work, a series of cationic luminogens (designated as PSMP isomers) were developed based on the cyano positional isomerism strategy. The isomerism of the cyano substituent on the molecular skeleton can finely regulate the optical behaviour, the type of photoinduced reactive oxygen species (ROS), and mitochondria-targeted capability of isomers. Interestingly, PSMP-4, with the cyano group installed at an appropriate location, exhibits a special aggregation-induced emission effect and potent O2˙- generation efficacy through the type I photochemistry pathway. Notably, PSMP-4 can accumulate in mitochondria with high specificity. Taking advantage of its excellent photostability, PSMP-4 realizes in situ mitochondria imaging in a washing-free manner and sensitive response to the change of mitochondrial membrane potential. The integration of comprehensive photophysical properties and mitochondrial specificity enable PSMP-4 to successfully trigger the death of cancer cells through an efficient type I photodynamic therapy process both in vitro and in multicellular tumor spheroid models.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Quan Pan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Chunli Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Ziying Cai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| | - Na Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, 710119 Xi'an, China.
| |
Collapse
|
40
|
Ran XY, Xia WL, Zhang LN, Yu XQ, Chen P, Xie KP, Zhao Y, Yi C, Li K. De novo design of type-l photosensitizer agents based on structure-inherent low triplet energy for hypoxia photodynamic therapy. MATERIALS HORIZONS 2024; 11:5589-5599. [PMID: 39318244 DOI: 10.1039/d4mh01167h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Photodynamic therapy (PDT), owing to its low invasiveness, high efficiency, fewer side effects, spatiotemporal controllability and good selectivity, has attracted increasing attention for its tremendous potential in revolutionizing conventional strategies of tumor treatment. However, hypoxia is a common feature of most malignancies and has become the Achilles' heel of PDT. Currently, Type II photosensitizers (PSs) have inadequate efficacy for PDT due to the inherent oxygen consumption of the anoxic tumor microenvironment. Moreover, due to the absence of a general molecular design strategy and the limitations imposed by the energy gap law, Type-I PSs are less reported. Therefore, the development of Type-I PSs with hypoxia resistant capabilities is urgently required. Herein, in this study, we have obtained pure Type-I materials for the first time by employing a strategy that decreases the triplet energy levels of the π-conjunction bridge. A sufficient donor-acceptor interaction reduces the lowest triplet energy level and aids in the transfer of excitons from singlet to triplet levels. With this strategy, dibenzofulvene derivatives (FEs) displayed purely Type-I ROS generation. Among them, FE-TMI exhibits superior Type-I reactive oxygen species-generation performance, showcasing the great potential of PDT in treating tumor cells under hypoxic conditions and several types of solid tumors in mouse in vivo experiments. This work provides a practical solution for the future design of Type-I PDT materials and is aimed at enhancing PDT efficiency.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
| | - Wen-Li Xia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Ping Chen
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Oncology, Chengdu Seventh People's Hospital, (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610041, Sichuan, China
| | - Kun-Peng Xie
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
| | - Yu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 61064, P. R. China.
| |
Collapse
|
41
|
Yan J, Liu S, Sun D, Peng S, Ming Y, Ostovan A, Song Z, You J, Li J, Fan H. Molecularly Imprinted Ratiometric Fluorescent Sensors for Analysis of Pharmaceuticals and Biomarkers. SENSORS (BASEL, SWITZERLAND) 2024; 24:7068. [PMID: 39517965 PMCID: PMC11548425 DOI: 10.3390/s24217068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Currently, analyzing pharmaceuticals and biomarkers is crucial for ensuring medication safety and protecting life and health, and there is an urgent need to develop new and efficient analytical techniques in view of the limitations of traditional analytical methods. Molecularly imprinted ratiometric fluorescent (MI-RFL) sensors have received increasing attention in the field of analytical detection due to their high selectivity, sensitivity and anti-interference ability, short response time, and visualization. This review summarizes the recent advances of MI-RFL sensors in the field of pharmaceuticals and biomarkers detection. Firstly, the fluorescence sources and working mechanisms of MI-RFL sensors are briefly introduced. On this basis, new techniques and strategies for preparing molecularly imprinted polymers, such as dummy template imprinting, nanoimprinting, multi-template imprinting, and stimulus-responsive imprinting strategies, are presented. Then, dual- and triple-emission types of fluorescent sensors are introduced. Subsequently, specific applications of MI-RFL sensors in pharmaceutical analysis and biomarkers detection are highlighted. In addition, innovative applications of MI-RFL sensors in point-of-care testing are discussed in-depth. Finally, the challenges of MI-RFL sensors for analysis of pharmaceuticals and biomarkers are proposed, and the research outlook and development trends of MI-RFL sensors are prospected.
Collapse
Affiliation(s)
- Jingyi Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| | - Siwu Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| | - Dani Sun
- Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
| | - Siyuan Peng
- School of Life Science, Ludong University, Yantai 264025, China
| | - Yongfei Ming
- School of Life Science, Ludong University, Yantai 264025, China
| | - Abbas Ostovan
- Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
| | - Zhihua Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jinhua Li
- Coastal Zone Ecological Environmental Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road of Laishan District, Yantai 264003, China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 32 Qingquan Road of Laishan District, Yantai 264005, China
| |
Collapse
|
42
|
Peng Y, Hu C, Zhang L, Dong F, Li R, Liang H, Dai H, Jang WJ, Cheng HB, Zhou L, Wang Y, Yoon J. Harnessing Dual Phototherapy and Immune Activation for Cancer Treatment: The Development and Application of BODIPY@F127 Nanoparticles. Adv Healthc Mater 2024; 13:e2401981. [PMID: 39073014 DOI: 10.1002/adhm.202401981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Conventional phototherapeutic agents are typically used in either photodynamic therapy (PDT) or photothermal therapy (PTT). However, efficacy is often hindered by hypoxia and elevated levels of heat shock proteins in the tumor microenvironment (TME). To address these limitations, a formylated, near-infrared (NIR)-absorbing and heavy-atom-free Aza-BODIPY dye is presented that exhibits both type-I and type-II PDT actions with a high yield of reactive oxygen species (ROS) and manifests efficient photothermal conversion by precise adjustments to the conjugate structure and electron distribution, leading to a large amount of ROS production even under severe hypoxia. To improve biosafety and water solubility, the dye with an amphiphilic triblock copolymer (Pluronic F-127), yielding BDP-6@F127 nanoparticles (NPs) is coated. Furthermore, inspired by the fact that phototherapy triggers the release of tumor-associated antigens, a strategy that leverages potential immune activation by combining PDT/PTT with immune checkpoint blockade (ICB) therapy to amplify the systemic immune response and achieve the much-desired abscopal effect is developed. In conclusion, this study presents a promising molecular design strategy that integrates multimodal therapeutics for a precise and effective approach to cancer therapy.
Collapse
Affiliation(s)
- Yang Peng
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Chenyan Hu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ludan Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Fan Dong
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Ruwan Li
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Huihui Liang
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hao Dai
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface & Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yuguang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue Haidian District, Beijing, 100081, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
43
|
Xu Z, Zhang B, Chen S, Zou X, Lin Y, Gong C, Yin X, James TD, Zhou X, Wang L. Intermolecular Assembly of Dual Hydrogen Bonding Regio-Isomers Generates High-Performance AIE Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403071. [PMID: 39136420 DOI: 10.1002/smll.202403071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/29/2024] [Indexed: 11/22/2024]
Abstract
Regio-isomers are utilized to design innovative AIE luminogens (AIEgens) by regulating molecular aggregation behavior. However, relevant examples are limited, and the underlying mechanism is not fully understood. Herein, a regio-isomer strategy is used to develop AIEgens by precisely regulating the intermolecular interactions in the solid state. Among the regio-isomers it is investigated, ortho- isomer (DCM-O3-O7) exhibits enhanced AIE-activity than the para- isomer (DCM-P6), and the size of the ortho- substituents is crucial for the AIE performance. The underlying mechanism of the strategy is revealed using DFT calculations and single-crystal analysis. Dual hydrogen bonds (C─H∙∙∙π and C─H∙∙∙N) are generated between the molecules, which contributes to form dimers, tetramers, and 1D supramolecular structures in the crystal. By restricting intramolecular motion and attenuating π-π interactions, solid-state fluorescence is significantly enhanced. This strategy's effectiveness is validated using other donor-acceptor fluorophores, with DCM-O6 and its analogues serving as efficient probes for bioimaging applications. Notably, DCM-OM, which bears a morpholinyl instead of piperidinyl group, displayed strong lysosome-targeting ability and photostability; DCM-OP, incorporated by the hydrophilic quaternary ammonium group, exhibited wash-free imaging and cell membrane-targeting capabilities; and DCM-O6 nanoparticles enabled high-fidelity in vivo tumor imaging. Therefore, this strategy affords a general method for designing bright AIEgens.
Collapse
Affiliation(s)
- Ziwei Xu
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingling Zhang
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shusen Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xudong Zou
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanhong Lin
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenxing Gong
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiong Yin
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiaole Zhou
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Leyu Wang
- Department of State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
44
|
Zhang W, Kang M, Li X, Pan Y, Li Z, Zhang Y, Liao C, Xu G, Zhang Z, Tang BZ, Xu Z, Wang D. Fiber Optic-Mediated Type I Photodynamic Therapy of Brain Glioblastoma Based on an Aggregation-Induced Emission Photosensitizer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410142. [PMID: 39344926 DOI: 10.1002/adma.202410142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is one of the most lethal human malignancies. The current standard-of-care is highly invasive with strong toxic side effects, leading to poor prognosis and high mortality. As a safe and effective clinical approach, photodynamic therapy (PDT) has emerged as a suitable option for GBM. Nevertheless, its implementation is significantly impeded by the limits of light penetration depth and the firm reliance on oxygen. To overcome these challenges, herein, a promising strategy that harnesses a modified optical fiber and less oxygen-dependent Type I aggregation-induced emission (AIE) photosensitizer (PS) is developed for the first time to realize in vivo GBM treatments. The proposed AIE PS, namely TTTMN, characterized by a highly twisted molecular architecture and a bulky spacer, exhibits enhanced near-infrared emission and strong production of hydroxyl and superoxide radicals at the aggregated state, thus affording efficient fluorescence imaging-guided PDT once formulated into nanoparticles. The inhibition of orthotopic and subcutaneous GBM xenografts provides compelling evidence of the treatment efficacy of Type I PDT irradiated through a tumor-inserted optical fiber. These findings highlight the substantially improved therapeutic outcomes achieved through fiber optic-mediated Type I PDT, positioning it as a promising therapeutic modality for GBM.
Collapse
Affiliation(s)
- Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yinzhen Pan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuorong Li
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Changrui Liao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
45
|
Yu Q, Xu B, Geng J, Xiong LH, Zhang Q, He X. Robust Natural Light-Absorbable and -Degradable AIE Photosensitizers for Fluorescence Labeling and Efficient Photodynamic Eradication of Algal Pollutants. ACS APPLIED BIO MATERIALS 2024; 7:6382-6391. [PMID: 39358907 DOI: 10.1021/acsabm.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Current water pollution caused by the excessive proliferation of harmful algae urges green methods that can efficiently utilize natural light to treat algal pollution. Herein, a series of aggregation-induced emission (AIE) photosensitizers that can efficiently harness sunshine were synthesized for the environmentally friendly and biocompatible treatment of algal pollution. By tuning the number of thiophene units and the electron conjugation degree, the photosensitizers' absorptions were broadened to cover the whole visible light range. The positive charges guided photosensitizers to aggregate on algal cell surfaces, resulting in a turn-on fluorescence signal and robust reactive oxygen species generation under sunshine, thereby achieving fluorescence labeling and photodynamic eradication of algae. The eradication outcomes demonstrated that the AIE photosensitizers significantly outperformed the commercial algaecide ALG. At 20 ppm photosensitizers, 90.4% and 94.2% killing rates were achieved for C. reinhardtii and C. vulgaris, respectively, 2.8- and 3.6-fold higher than those from the same concentration of ALG. Excellent performances in inhibiting algae growth were also verified with efficiency superior to that of ALG. Importantly, the photosensitizers can self-degrade into biocompatible fragments under irradiation to avoid secondary pollution. The developed photosensitizers that possess sunshine convertibility and degradability provide an efficient tool for algal treatment, showing broad research and application prospects.
Collapse
Affiliation(s)
- Qian Yu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bo Xu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Qian Zhang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
46
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Deng Y, Xu L, Liu X, Jiang Q, Sun X, Zhan W, Liang G. Tandem Targeting and Dual Aggregation of an AIEgen for Enhanced Near-Infrared Fluorescence Imaging of Tumors. J Am Chem Soc 2024; 146:25462-25466. [PMID: 39240652 DOI: 10.1021/jacs.4c10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Near-infrared (NIR) aggregation-induced emission luminogens (AIEgens) are excellent probes for tumor imaging, but there still is space to improve their imaging specificity and sensitivity. In this work, a strategy of tandem targeting and dual aggregation of an AIEgen is proposed to achieve these two purposes. An AIEgen, β-tBu-Ala-Cys(StBu)-Lys(Biotin)-Pra(QMT)-CBT (Ala-Biotin-QMT), is designed to tandem target the biotin receptor and leucine aminopeptidase of a cancer cell and thereafter undergo CBT-Cys click reaction-mediated dual aggregations in the cell. Experimental results show that Ala-Biotin-QMT renders 4.8-fold and 7.9-fold higher NIR fluorescence signals over those in the "biotin + LAP inhibitor"-treated control groups in living HepG2 cells and HepG2 tumor-bearing mice, respectively. We anticipate that Ala-Biotin-QMT, which has the tandem targeting and dual aggregation property to simultaneously achieve enhanced tumor enrichment and fluorescence onset, could be applied for accurate cancer diagnosis in the clinic in the future.
Collapse
Affiliation(s)
- Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Lingling Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
48
|
Zhang W, Kang M, Li X, Yang H, Zhang Z, Li Z, Zhang Y, Fan M, Liao C, Liu C, Xu G, Wang D, Xu Z, Tang BZ. Interstitial Optical Fiber-Mediated Multimodal Phototheranostics Based on an Aggregation-Induced NIR-II Emission Luminogen for Orthotopic Breast Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406474. [PMID: 39054931 DOI: 10.1002/adma.202406474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Indexed: 07/27/2024]
Abstract
One-for-all phototheranostics based on a single molecule is recognized as a convenient approach for cancer treatment, whose efficacy relies on precise lesion localization through multimodal imaging, coupled with the efficient exertion of phototherapy. To unleash the full potential of phototheranostics, advancement in both phototheranostic agents and light delivery methods is essential. Herein, an integrated strategy combining a versatile molecule featuring aggregation-induced emission, namely tBuTTBD, with a modified optical fiber to realize comprehensive tumor diagnosis and "inside-out" irradiation in the orthotopic breast tumor, is proposed for the first time. Attributed to the intense donor-acceptor interaction, highly distorted conformation, abundant molecular rotors, and loose intermolecular packing upon aggregation, tBuTTBD can synchronously undergo second near-infrared (NIR-II) fluorescence emission, photothermal and photodynamic generation under laser irradiation, contributing to a trimodal NIR-II fluorescence-photoacoustic (PA)-photothermal imaging-guided phototherapy. The tumor treatment is further carried out following the insertion of a modified optical fiber, which is fabricated by splicing a flat-end fiber with an air-core fiber. This configuration aims to enable effective in situ phototherapy by maximizing energy utilization for therapeutic benefits. This work not only enriches the palette of NIR-II phototheranostic agents but also provides valuable insight for exploring an integrated phototheranostic protocol for practical cancer treatment.
Collapse
Affiliation(s)
- Wenguang Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Yang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuorong Li
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
49
|
Liu D, Liang M, Tao Y, Liu H, Liu Q, Bing W, Li W, Qi J. Hypoxia-accelerating pyroptosis nanoinducers for promoting image-guided cancer immunotherapy. Biomaterials 2024; 309:122610. [PMID: 38749307 DOI: 10.1016/j.biomaterials.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Precise image-guided cancer immunotherapy holds immense potential in revolutionizing cancer treatment. The strategies facilitating activatable imaging and controlled therapeutics are highly desired yet to be developed. Herein, we report a new pyroptosis nanoinducer that integrates aggregation-induced emission luminogen (AIEgen) and DNA methyltransferase inhibitor with hypoxia-responsive covalent organic frameworks (COFs) for advanced image-guided cancer immunotherapy. We first synthesize and compare three donor-acceptor type AIEgens featuring varying numbers of electron-withdrawing units, and find that the incorporation of two acceptors yields the longest response wavelength and most effective photodynamic therapy (PDT) property, surpassing the performance of analogs with one or three acceptor groups. A COF-based nanoplatform containing AIEgen and pyroptosis drug is successfully constructed via the one-pot method. The intra-COF energy transfer significantly quenches AIEgen, in which both fluorescence and PDT properties greatly enhance upon hypoxia-triggered COF degradation. Moreover, the photodynamic process exacerbates hypoxia, accelerating pyroptosis drug release. The nanoagent enables sensitive delineation of tumor site through in situ activatable fluorescence signature. Thanks to the exceptional ROS production capabilities and hypoxia-accelerating drug release, the nanoagent not only inhibits primary tumor growth but also impedes the progression of distant tumors in 4T1 tumor-bearing mice through potent pyroptosis-mediated immune response. This research introduces a novel strategy for achieving activatable phototheranostics and self-accelerating drug release for synergetic cancer immunotherapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongyou Tao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanwen Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China; School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China.
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
50
|
Zhou WL, Wu YG, Wang S, Zhang R, Wang LH, Liu J, Xu X. Laponite-activated AIE supramolecular assembly with modulating multicolor luminescence for logic digital encryption and perfluorinated pollutant detection. Biosens Bioelectron 2024; 258:116343. [PMID: 38718636 DOI: 10.1016/j.bios.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yun-Ga Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Siwei Wang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|