1
|
Rani S, Das S, Siddiqui SA, Jain A, Rani D, Pahuja M, Chaudhary N, Afshan M, Ghosh R, Swadia D, Riyajuddin SK, Bera C, Ghosh K. Harnessing Environmental Sensitivity in SnSe-Based Metal-Semiconductor-Metal Devices: Unveiling Negative Photoconductivity for Enhanced Photodetector Performance and Humidity Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26899-26914. [PMID: 38741334 DOI: 10.1021/acsami.4c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The extreme sensitivity of 2D-layered materials to environmental adsorbates, which is typically seen as a challenge, is harnessed in this study to fine-tune the material properties. This work investigates the impact of environmental adsorbates on electrical properties by studying metal-semiconductor-metal (MSM) devices fabricated on CVD-synthesized SnSe flakes. The freshly prepared devices exhibit positive photoconductivity (PPC), whereas they gradually develop negative photoconductivity (NPC) after being exposed to an ambient environment for ∼1 day. While the photodetectors based on positive photoconductivity exhibit a responsivity and detectivity of 6.1 A/W and 5.06 × 108 Jones, the same for the negative photoconductivity-based photodetector reaches up to 36.3 A/W and 1.49 × 109 Jones, respectively. In addition, the noise-equivalent power of the NPC photodetector decreases by 300 times as compared to the PPC device, which implies a prominent detection capability of the NPC device against weak photo signals. To substantiate the hypothesis that negative photoconductivity stems from the photodesorption of water and oxygen molecules on the dangling bonds of SnSe flakes, the flakes are etched along the most active planes (010) with a focused laser beam in an inert environment, which enhances responsivity by 43%, supporting negative photoconductivity linked to photodesorption. Furthermore, the humidity-dependent dark current variation of the NPC photodetectors is used to design a humidity sensor for human respiration monitoring with faster response and recovery times of 0.72 and 0.68 s, respectively. These findings open up the possibility of tuning the photoelectrical response of layered materials in a facile manner to develop future sensors and optoelectronic multifunctional devices.
Collapse
Affiliation(s)
- Seema Rani
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Subhabrata Das
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Shumile Ahmed Siddiqui
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Ayushi Jain
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Daya Rani
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Mansi Pahuja
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Nikita Chaudhary
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Mohd Afshan
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Rishita Ghosh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Devansh Swadia
- Indian Institute of Science Education and Research Mohali, Knowledge City-Sector 81, Mohali 140306, India
| | - S K Riyajuddin
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Chandan Bera
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| | - Kaushik Ghosh
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City-Sector 81, Mohali 140306, India
| |
Collapse
|
2
|
Karmakar G, Dutta Pathak D, Tyagi A, Mandal BP, Wadawale AP, Kedarnath G. Molecular precursor mediated selective synthesis of phase pure cubic InSe and hexagonal In 2Se 3 nanostructures: new anode materials for Li-ion batteries. Dalton Trans 2023; 52:6700-6711. [PMID: 37128966 DOI: 10.1039/d3dt00234a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Indium selenides (InSe and In2Se3) have earned a special place among the 2D layered metal chalcogenides owing to their nontoxic nature and favourable carrier mobility. Additionally, they are also being projected as next generation battery anodes with high theoretical lithium-ion storage capacities. While the development of indium selenide-based batteries is still in its embryonic stage, a simple and easily scalable synthetic pathway to access these materials is highly desirable for energy storage applications. This study reports a controlled synthetic route to nanometric cubic InSe and hexagonal In2Se3 materials through proper choice of coordinating solvents from a structurally characterized air and moisture stable single source molecular precursor: tris(4,6-dimethyl-2-pyrimidylselenolato)indium(III). The crystal structure, phase purity, composition, morphology and band gap of the nanomaterials were thoroughly evaluated by pXRD, energy dispersive X-ray spectroscopy (EDS), electron microscopy (SEM and TEM), and diffuse reflectance spectroscopy (DRS), respectively. The pristine InSe and In2Se3 nanostructures have been employed as anode materials in lithium-ion batteries (LIBs). Both the cells deliver reasonably high initial discharge capacities with a cyclability of 200 and 620 cycles for cubic InSe and hexagonal In2Se3 respectively with ∼100% coulombic efficiency.
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Dipa Dutta Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
3
|
Jijana AN, Feleni U, Ndangili PM, Bilibana M, Ajayi RF, Iwuoha EI. Quantum Dot-Sensitised Estrogen Receptor-α-Based Biosensor for 17β-Estradiol. BIOSENSORS 2023; 13:242. [PMID: 36832008 PMCID: PMC9954354 DOI: 10.3390/bios13020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
17β-estradiol (E2) is an important natural female hormone that is also classified as an estrogenic endocrine-disrupting compound (e-EDC). It is, however, known to cause more damaging health effects compared to other e-EDCs. Environmental water systems are commonly contaminated with E2 that originates from domestic effluents. The determination of the level of E2 is thus very crucial in both wastewater treatment and in the aspect of environmental pollution management. In this work, an inherent and strong affinity of the estrogen receptor-α (ER-α) for E2 was used as a basis for the development of a biosensor that was highly selective towards E2 determination. A gold disk electrode (AuE) was functionalised with a 3-mercaptopropionic acid-capped tin selenide (SnSe-3MPA) quantum dot to produce a SnSe-3MPA/AuE electroactive sensor platform. The ER-α-based biosensor (ER-α/SnSe-3MPA/AuE) for E2 was produced by the amide chemistry of carboxyl functional groups of SnSe-3MPA quantum dots and the primary amines of ER-α. The ER-α/SnSe-3MPA/AuE receptor-based biosensor exhibited a formal potential (E0') value of 217 ± 12 mV, assigned as the redox potential for monitoring the E2 response using square-wave voltammetry (SWV). The response parameters of the receptor-based biosensor for E2 include a dynamic linear range (DLR) value of 1.0-8.0 nM (R2 = 0.99), a limit of detection (LOD) value of 1.69 nM (S/N = 3), and a sensitivity of 0.04 µA/nM. The biosensor exhibited high selectivity for E2 and good recoveries for E2 determination in milk samples.
Collapse
Affiliation(s)
- Abongile N. Jijana
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, Johannesburg 2125, South Africa
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, P/Bag X6, Florida, Roodepoort, Johannesburg 1710, South Africa
| | - Peter M. Ndangili
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Mawethu Bilibana
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Rachel F. Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Emmanuel I. Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
4
|
Karmakar G, Tyagi A, Halankar KK, Nigam S, Mandal BP, Wadawale AP, Kedarnath G, Debnath AK. Molecular precursor-mediated facile synthesis of phase pure metal-rich digenite (Cu 1.8S) nanocrystals: an efficient anode for lithium-ion batteries. Dalton Trans 2023; 52:1461-1475. [PMID: 36645001 DOI: 10.1039/d2dt03757b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copper sulfides have gained significant attention as alternative electrodes for rechargeable batteries. A simple and easily scalable synthetic pathway to access these materials is highly desirable. This paper describes the facile synthesis of metal-rich digenite Cu1.8S nanocrystals from a structurally characterized new single-source molecular precursor in various high boiling solvents of varied polarity. The as-prepared nanostructures were thoroughly characterized by PXRD, Raman spectroscopy, EDS, XPS, electron microscopy techniques and diffuse reflectance spectroscopy to understand the crystal structure, phase purity, elemental composition, morphology and band gap. It was found that the reaction solvent has a profound role on their crystallite size, morphology and band gap, however the crystal structure and phase purity remained unaffected. Pristine Cu1.8S nanostructures have been employed as an anode material in lithium-ion batteries (LIBs). The cell delivers a high initial charge capacity of ∼462 mA h g-1 and retains a capacity of 240 mA h g-1 even after 300 cycles at 0.1 A g-1. DFT calculations revealed that multi-size polyhedron layers in the direction perpendicular to the two Li movement channels aid in the sustainable uptake of Li atoms with controlled volume expansion. The structure-mediated flexibility of the metal-rich Cu1.8S lattice during lithiation permits high cyclability with reasonable retention of capacity.
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Kruti K Halankar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Sandeep Nigam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Anil K Debnath
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India.,Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| |
Collapse
|
5
|
Karmakar G, Tyagi A, Shah AY, Nigam S, Wadawale AP, Kedarnath G, Vats BG, Naveen Kumar N, Singh V. Facile one pot synthesis of highly photoresponsive coinage metal selenides (Cu 1.8Se and Ag 2Se) achieved through novel Cu and Ag pyridylselenolates as molecular precursors. Dalton Trans 2022; 51:12670-12685. [PMID: 35938959 DOI: 10.1039/d2dt01897g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper selenide (Cu1.8Se) and silver selenide (Ag2Se) have garnered unprecedented attention as efficient absorber materials for cost-effective and sustainable solar cells. Phase pure preparation of these exotic materials in a nano-regime is highly desirable. This account outlines a simple and easily scalable pathway to Cu1.8Se and Ag2Se nanocrystals using novel complexes [Cu{2-SeC5H2(Me-4,6)2N}]4 (1), [Ag{2-SeC5H2(Me-4,6)2N}]6 (2) and [Ag{2-SeC5H3(Me-5)N}]6·2C6H5CH3 (3·2C6H5CH3) as single source molecular precursors (SSPs). Structural studies revealed that the Cu and Ag complexes crystallize into tetrameric and hexameric forms, respectively. This observed structural diversity in the complexes has been rationalized via DFT calculations and attributed to metal-metal bond endorsed energetics. The thermolysis at relatively lower temperature in oleylamine of complex 1 afforded cubic berzelianite Cu1.8Se and complexes 2 and 3 produced orthorhombic naumannite Ag2Se nanocrystals. The low temperature synthesis of these nanocrystals seems to be driven by the observed preformed Cu4Se4 and Ag6Se6 core in the complexes which have close resemblance with the bulk structure of the final materials (Cu1.8Se and Ag2Se). The crystal structure, phase purity, morphology, elemental composition and band gap of these nanocrystals were determined from pXRD, electron microscopy (SEM and TEM), EDS and DRS-UV, respectively. The band gap of these nanocrystals lies in the range suitable for solar cell applications. Finally, these nanocrystal-based prototype photo-electrochemical cells exhibit high photoresponsivity and stability under alternating light and dark conditions.
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Alpa Y Shah
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Sandeep Nigam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Bal Govind Vats
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - N Naveen Kumar
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vishal Singh
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
6
|
Thomas A, Karmakar G, Shah AY, Lokhande SV, Kulkarni AY, Tyagi A, Singh Chauhan R, Kumar NN, Singh AP. Molecular precursor-mediated facile synthesis of photo-responsive stibnite Sb 2S 3 nanorods and tetrahedrite Cu 12Sb 4S 13 nanocrystals. Dalton Trans 2022; 51:12181-12191. [PMID: 35876784 DOI: 10.1039/d2dt01814d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stibnite Sb2S3 and tetrahedrite Cu12Sb4S13 nanostructures being economical, environmentally benign and having a high absorption coefficient are highly promising materials for energy conversion applications. However, producing these materials especially tetrahedrite in the phase pure form is a challenging task. In this report we present a structurally characterized single source molecular precursor [Sb(4,6-Me2pymS)3] for the facile synthesis of binary Sb2S3 as well as ternary Cu12Sb4S13 in oleylamine (OAm) at a relatively lower temperature. The as-prepared Sb2S3 and Cu12Sb4S13 nanostructures were thoroughly checked for their phase purity, elemental composition and morphology by powder X-ray diffraction (pXRD), electron dispersive spectroscopy (EDS) and electron microscopy techniques. pXRD and EDS studies confirm the formation of phase pure, crystalline orthorhombic Sb2S3 and cubic Cu12Sb4S13. The SEM, TEM and HRTEM images depict the formation of well-defined nanorods and nearly spherical nanocrystals for Sb2S3 and Cu12Sb4S13, respectively. The Sb2S3 nanorods and Cu12Sb4S13 nanocrystals exhibit an optical bandgap of ∼1.88 and 2.07 eV, respectively, which are slightly blue-shifted relative to their bulk bandgap, indicating the quantum confinement effect. Finally, efficient photoresponsivity and good photo-stability were achieved in the as-prepared Sb2S3 and Cu12Sb4S13 nanostructure-based prototype photo-electrochemical cell, which make them promising candidates for alternative low-cost photon absorber materials.
Collapse
Affiliation(s)
- Agnes Thomas
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Homi Bhabha National Institute, Mumbai 400094, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Alpa Y Shah
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Homi Bhabha National Institute, Mumbai 400094, India.
| | - Saili Vikram Lokhande
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Atharva Yeshwant Kulkarni
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, Homi Bhabha National Institute, Mumbai 400094, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rohit Singh Chauhan
- Department of Chemistry, K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai 400077, India.
| | - N Naveen Kumar
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Avadhesh Pratap Singh
- Department of Chemistry, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur-228118, India
| |
Collapse
|
7
|
Karmakar G, Tyagi A, Shah AY, Wadawale A, Kedarnath G, Singh V. Molecular precursor driven synthesis of phase pure tin sulfide nanosheets and investigation of their photoresponsive behaviour. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|