1
|
Choroba K, Zowiślok B, Kula S, Machura B, Maroń AM, Erfurt K, Marques C, Cordeiro S, Baptista PV, Fernandes AR. Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes. J Med Chem 2024; 67:19475-19502. [PMID: 39496093 PMCID: PMC11571215 DOI: 10.1021/acs.jmedchem.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
Cu(II) complexes with 2,2':6',2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl2(Ln)]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes (Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Bartosz Zowiślok
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Sławomir Kula
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Anna M. Maroń
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Cristiana Marques
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Malarz K, Ziola P, Zych D, Rurka P, Mrozek-Wilczkiewicz A. Imbalance of redox homeostasis and altered cellular signaling induced by the metal complexes of terpyridine. Sci Rep 2024; 14:26951. [PMID: 39505960 PMCID: PMC11541782 DOI: 10.1038/s41598-024-77575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Compounds that can induce oxidative stress in cancer cells while remaining nontoxic to healthy cells are extremely promising for potential anticancer drugs. 2,2':6',2''-terpyridine-metal complexes possess these properties. The high level of activity (IC50 = 0.605 µM) of 2,2':6',2''-terpyridine-metal complexes on lung, breast, pancreatic, and glioblastoma multiforme cancer lines and their selectivity (SI > 41.32) on human normal fibroblasts were confirmed and presented in this paper. The mechanism of action of these compounds is associated with the generation of reactive oxygen species, which affects several cellular pathways and signals. The results demonstrate that 2,2':6',2''-terpyridine-metal complexes affect cell cycle inhibition in the G0/G1 phase as well as the activation of apoptosis and autophagy cell death. These results were confirmed in several independent studies, including experiments measuring the fluorescence levels of reactive oxygen species, flow cytometry, and gene and protein analysis.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland
| | - Patryk Ziola
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland
| | - Dawid Zych
- Faculty of Chemistry, University of Opole, Oleska 48, Opole, 45-052, Poland
| | - Patryk Rurka
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów, 41- 500, Poland.
| |
Collapse
|
3
|
Csucker J, Scarpi-Luttenauer M, Mesdom P, Hidalgo S, Blacque O, Gasser G, Alberto R. Synthesis, Characterization, and Biological Evaluation of Novel [M(η 6-arene) 2] + (M = Re, 99mTc) Hosted Terpyridines and Copper Complexes Thereof. Inorg Chem 2024; 63:18154-18161. [PMID: 39279145 PMCID: PMC11445722 DOI: 10.1021/acs.inorgchem.4c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We report the synthesis, characterization, and in vitro biological activities of [Re(η6-arene)2]+-terpyridine conjugates and their CuII complexes. The terpyridine (terpy) chelators were attached to the [Re(η6-arene)2]+ scaffold via secondary amine linkers allowing for heteroleptic mono- and homoleptic bis-terpyridine-substituted chelators. Complexation with CuCl2 afforded the respective square pyramidal [Cu(terpy)Cl2] complexes hosted on the [Re(η6-arene)2]+ scaffold. The chelator conjugates and their respective complexes were found to be remarkably cytotoxic against malignant HT29 and A549 human cancer cell lines in vitro with IC50 values in the low micromolar range. Mitochondrial respiration disruption was identified as a possible mode of action of these novel drug candidates. Crucially, the [Re(η6-arene)2]+ hosts delivered water solubility of the otherwise insoluble [Cu(terpy)Cl2] motif. Importantly, the homoleptic [99mTc(η6-arene)2]+-terpyridine conjugate is available in a single step, which enables the presented system to be used as a theranostic approach to modern medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Joshua Csucker
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Matthieu Scarpi-Luttenauer
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11, Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Pierre Mesdom
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11, Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Samia Hidalgo
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - Olivier Blacque
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11, Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Roger Alberto
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
4
|
Pandya C, Sivaramakrishna A. Exploring the binding properties of DNA/BSA and cytotoxicity studies with new terpyridine-ester-based metal complexes (M = Fe(III), Ni(II), Cu(II) and Ru(III)) - A comparative analysis. Int J Biol Macromol 2024; 274:132792. [PMID: 38834110 DOI: 10.1016/j.ijbiomac.2024.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ± 1.75 μM among all synthesized compounds and comparable with cisplatin.
Collapse
Affiliation(s)
- Chayan Pandya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Gil-Moles M, Concepción Gimeno M. The Therapeutic Potential in Cancer of Terpyridine-Based Metal Complexes Featuring Group 11 Elements. ChemMedChem 2024; 19:e202300645. [PMID: 38328860 DOI: 10.1002/cmdc.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Terpyridine-based complexes with group 11 metals emerge as potent metallodrugs in cancer therapy. This comprehensive review focuses on the current landscape of anticancer examples, particularly highlighting the mechanisms of action. While Cu(II) complexes, featuring diverse ancillary ligands, dominate the field, exploration of silver and gold species remains limited. These complexes exhibit significant cytotoxicity against various cancer cell lines with a commendable selectivity for non-tumorigenic cells. DNA interactions, employing intercalation and groove binding, are pivotal and finely tuned through terpyridine ligand functionalization. In addition, copper complexes showcase nuclease activity, triggering apoptosis through ROS generation. Despite silver's high affinity for nitrogen donor atoms, its exploration is relatively sparse, with indications of acting as intercalating agents causing DNA hydrolytic cleavage. Gold(III) compounds, overshadowing gold(I) due to stability concerns, not only intercalate but also induce apoptosis and disrupt the mitochondrial membrane. Further investigations are needed to fully understand the mechanism of action of these compounds, highlighting the necessity of exploring additional biological targets for these promising metallodrugs.
Collapse
Affiliation(s)
- María Gil-Moles
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Departamento de Química, Centro de Investigación de Síntesis Química (CISQ), Universidad de la Rioja, Complejo Científico-Tecnológico, 26004, Logroño, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
6
|
Pisanu F, Sykula A, Sciortino G, Maseras F, Lodyga-Chruscinska E, Garribba E. Experimental and Computational Studies on the Interaction of DNA with Hesperetin Schiff Base Cu II Complexes. Int J Mol Sci 2024; 25:5283. [PMID: 38791321 PMCID: PMC11121494 DOI: 10.3390/ijms25105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The interactions with calf thymus DNA (CT-DNA) of three Schiff bases formed by the condensation of hesperetin with benzohydrazide (HHSB or L1H3), isoniazid (HIN or L2H3), or thiosemicarbazide (HTSC or L3H3) and their CuII complexes (CuHHSB, CuHIN, and CuHTSC with the general formula [CuLnH2(AcO)]) were evaluated in aqueous solution both experimentally and theoretically. UV-Vis studies indicate that the ligands and complexes exhibit hypochromism, which suggests helical ordering in the DNA helix. The intrinsic binding constants (Kb) of the Cu compounds with CT-DNA, in the range (2.3-9.2) × 106, from CuHTSC to CuHHSB, were higher than other copper-based potential drugs, suggesting that π-π stacking interaction due to the presence of the aromatic rings favors the binding. Thiazole orange (TO) assays confirmed that ligands and Cu complexes displace TO from the DNA binding site, quenching the fluorescence emission. DFT calculations allow for an assessment of the equilibrium between [Cu(LnH2)(AcO)] and [Cu(LnH2)(H2O)]+, the tautomer that binds CuII, amido (am) and not imido (im), and the coordination mode of HTSC (O-, N, S), instead of (O-, N, NH2). The docking studies indicate that the intercalative is preferred over the minor groove binding to CT-DNA with the order [Cu(L1H2am)(AcO)] > [Cu(L2H2am)(AcO)] ≈ TO ≈ L1H3 > [Cu(L3H2am)(AcO)], in line with the experimental Kb constants, obtained from the UV-Vis spectroscopy. Moreover, dockings predict that the binding strength of [Cu(L1H2am)(AcO)] is larger than [Cu(L1H2am)(H2O)]+. Overall, the results suggest that when different enantiomers, tautomers, and donor sets are possible for a metal complex, a computational approach should be recommended to predict the type and strength of binding to DNA and, in general, to macromolecules.
Collapse
Affiliation(s)
- Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy;
| | - Anna Sykula
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (A.S.); (E.L.-C.)
| | - Giuseppe Sciortino
- Department de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Barcelona, Spain;
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain;
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain;
| | - Elzbieta Lodyga-Chruscinska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (A.S.); (E.L.-C.)
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy;
| |
Collapse
|
7
|
Choroba K, Machura B, Erfurt K, Casimiro AR, Cordeiro S, Baptista PV, Fernandes AR. Copper(II) Complexes with 2,2':6',2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J Med Chem 2024; 67:5813-5836. [PMID: 38518246 PMCID: PMC11017252 DOI: 10.1021/acs.jmedchem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ana Rita Casimiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Du LQ, Zeng CJ, Mo DY, Qin QP, Tan MX, Liang H. 8-hydroxyquinoline-N-oxide copper(II)- and zinc(II)-phenanthroline and bipyridine coordination compounds: Design, synthesis, structures, and antitumor evaluation. J Inorg Biochem 2024; 251:112443. [PMID: 38100902 DOI: 10.1016/j.jinorgbio.2023.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 μM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chu-Jie Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Dong-Yin Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
9
|
Sarmah S, Konthoujam I, Prakash V, Aguan K, Singha Roy A. Unleashing the binding interaction of chrysin-Cu(II) complex with the biomacromolecular targets: further studies of cell cytotoxicity and radical scavenging properties. J Biomol Struct Dyn 2024:1-17. [PMID: 38189346 DOI: 10.1080/07391102.2023.2300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Flavonoids are significant dietary components and have ability to coordinate with metal ions to produce novel drug discovery leads that are superior to those of the parent flavonoids. Here, in this report, we have synthesized chrysin-Cu(II) complex (as per reported article) and characterized it further with different analytical techniques. The synthesized complex was evaluated for radical scavenging and cell cytotoxicity studies where it exhibited enhanced activity as compared to bare chrysin. The interaction studies of the complex with ct-DNA (Kb ⁓ 105 M-1), human serum albumin (HSA) and ovalbumin (Kb ⁓ 104 M-1) were evaluated using multi-spectroscopic and molecular docking studies. Groove binding mode with ct-DNA was observed as confirmed from competitive displacement studies, viscosity measurement, melting temperature estimation and docking analyses. The complex exhibited comparatively higher affinity towards ct-DNA which indicated it efficient transportation by the carrier proteins and controlled release in the target DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Ibemhanbi Konthoujam
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Vivek Prakash
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| |
Collapse
|
10
|
Mudi A, Ray S, Bera M, Dolai M, Das M, Kundu P, Laha S, Choudhuri I, Chandra Samanta B, Bhattacharyya N, Maity T. A multi-spectroscopic and molecular docking approach for DNA/protein binding study and cell viability assay of first-time reported pendent azide bearing Cu(II)-quercetin and dicyanamide bearing Zn(II)-quercetin complexes. Heliyon 2023; 9:e22712. [PMID: 38125469 PMCID: PMC10731082 DOI: 10.1016/j.heliyon.2023.e22712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
In the current study, one new quercetin-based Zn(II) complex [Zn(Qr)(CNNCN)(H2O)2] (Complex 1) which is developed by condensation of quercetin with ZnCl2 in the presence of NaN(CN)2 and Cu(II) complex [Cu(Qr)N3(CH3OH)(H2O)] (complex 2) which is developed by the condensation reaction of quercetin and CuCl2 in presence of NaN3, are thoroughly examined in relation to their use in biomedicine. The results of several spectroscopic studied confirm the structure of both the complexes and the Density Functional Theory (DFT) study helps to optimize the structure of complex 1 and 2. After completion of the identification process, DNA and Human Serum Albumin (HSA) binding efficacy of both the investigated complexes are performed by implementing a long range of biophysical studies and a thorough analysis of the results unveils that complex 1 has better interaction efficacy with the macromolecules than complex 2. The binding efficacy of complex 1 is comparatively higher towards both macromolecules because of its pure groove binding mode during interaction with DNA and the presence of an extra H-bond during connection with HSA. The experimental host-guest binding results is fully validated by molecular docking study. Interestingly complex 1 shows better antioxidant properties than complex 2, as well as quercetin, and it has strong anticancer property with minimal damage to normal cells, which is proved by the MTT assay study. Better DNA and HSA binding efficacy of 1 may be the reason for the better anticancer property of complex 1.
Collapse
Affiliation(s)
- Anupam Mudi
- Department of Botany, Behala College, Behala, India
| | - Shubham Ray
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Manjushree Bera
- Department of Nutrition, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Manik Das
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| | - Pronab Kundu
- Department of Chemistry, Presidency University, Yelahanka, Bengaluru, 560064, India
| | | | | | | | | | - Tithi Maity
- Department of Chemistry, Prabhat Kumar College, Contai, Contai, Purba Medinipur, 721404, India
| |
Collapse
|
11
|
Wang ZF, Huang XQ, Wu RC, Xiao Y, Zhang SH. Antitumor studies evaluation of triphenylphosphine ruthenium complexes with 5,7-dihalo-substituted-8-quinolinoline targeting mitophagy pathways. J Inorg Biochem 2023; 248:112361. [PMID: 37659141 DOI: 10.1016/j.jinorgbio.2023.112361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Both ruthenium-containing complexes and 8-quinolinoline compounds have emerged as a potential novel agent for malignant tumor therapy. Here, three triphenylphosphine ruthenium complexes, [Ru(ZW1)(PPh3)2Cl2] (PPh3 = triphenylphosphine) (RuZ1), [Ru(ZW2)(PPh3)2Cl2] (RuZ2) and [Ru(ZW2)2(PPh3)Cl2]·CH2Cl2 (RuZ3) bearing 5,7-dichloro-8-quinolinol (H-ZW1) and 5,7-dichloro-8-hydroxyquinaldine (H-ZW2), have been synthesized, characterized and tested for their anticancer potential. We showed that triphenylphosphine ruthenium complexes RuZ1-RuZ3 impaired the cell viability of ovarian adenocarcinoma cisplatin-resistant SK-OV-3/DDP (SKO3CR) and SK-OV-3 (SKO3) cancer cells with greater selectivity and specificity than cisplatin. In addition, RuZ1-RuZ3 show higher excellent cytotoxicity than cisplatin towards SKO3CR cells, with IC50 values of 9.66 ± 1.08, 4.05 ± 0.67 and 7.18 ± 0.40 μM, respectively, in which the SKO3CR cells was the most sensitive to RuZ1-RuZ3. Depending on the substituent type, the antiproliferative ability of RuZ1-RuZ3 followed the trend: -CH3 > -H. However, RuZ1-RuZ3 have no obvious toxicity to normal cell HL-7702. Besides, RuZ1 and RuZ2 could induce mitophagy related-apoptosis pathways through suppression of mitochondrial membrane potential (ΔΨm), accumulation of [Ca2+] and reactive oxygen species (ROS), and regulation of LC3 II/LC3 I, Beclin-1, P62, FUNDC1, PINK1, Parkin, cleaved-caspase-3, caspase-9 and cytochrome c signaling pathway, and hindering the preparation of mitochondrial respiration complexes I and IV and ATP levels. Mechanistic study revealed that RuZ1 and RuZ2 induce apoptosis in SKO3CR cells via mitophagy related-apoptosis pathways induction and energy (ATP) generation disturbance. Taken together, the studied triphenylphosphine ruthenium complexes RuZ1-RuZ3 are promising chemotherapeutic agents with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yu Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China.
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China.
| |
Collapse
|
12
|
Chen YM, Liu YC, Wang JQ, Ou GC, Wang XF, Gao SQ, Du KJ, Lin YW. Functional copper complexes with benzofurans tridentate ligand: Synthesis, crystal structure, DNA binding and anticancer studies. J Inorg Biochem 2023; 247:112330. [PMID: 37478782 DOI: 10.1016/j.jinorgbio.2023.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Metal complexes, particularly copper(II) complexes, are often used as anticancer drugs due to their ability to generate reactive oxygen species (ROS) in cells. Four copper(II) complexes have been designed based on ligands for triplet pyridine derivatives (complexes 1-4), and their structures have been determined using X-ray single crystal analysis. The interactions of these complexes with calf thymus DNA (CT-DNA) have been investigated using various techniques, including UV-vis absorption, viscosity measurements, and circular dichroism spectroscopy. The results indicate that complexes 1-4 strongly interact with DNA through partial intercalations. Further investigation using agarose gel electrophoresis shows that all four complexes can cleave pBR322 DNA in the presence of ascorbic acid as a reducing agent, and the DNA cleavage mechanism is through the generation of singlet oxygen (1O2). In vitro anticancer activities of these complexes have been evaluated using A549, MDA-MB-231, HeLa, and HepG2 cells. The calculated IC50 values indicate significant efficacy against cancer cells. Additionally, AO/EB staining assays reveal that these complexes induce cell apoptosis in HeLa cell line.
Collapse
Affiliation(s)
- Yu-Mei Chen
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Yu-Can Liu
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Jin-Quan Wang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Guang-Chuan Ou
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Xiao-Feng Wang
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China.
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, Laboratory of Protein Structure and Function, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China.
| |
Collapse
|
13
|
Chen Y, Ke Z, Yuan L, Liang M, Zhang S. Hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline complexes as potential anticancer agents: synthesis, characterization and anticancer evaluation. Dalton Trans 2023; 52:12318-12331. [PMID: 37591821 DOI: 10.1039/d3dt01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We synthesized and analyzed nine unique copper(II) hydrazylpyridine salicylaldehyde and 1,10-phenanthroline complexes, [Cu(L1a)(phen)] (Cugdupt1), [Cu(L2a)(phen)]·(CH3CN) (Cugdupt2), [Cu(L3a)(phen)] (Cugdupt3), [Cu(L4a)(phen)]·(CH3CN) (Cugdupt4), [Cu(L5a)(phen)] (Cugdupt5), [Cu(L6a)(phen)] (Cugdupt6), [Cu(L7a)(phen)] (Cugdupt7) [Cu(L8a)(phen)] (Cugdupt8) and [Cu(L9a)(phen)]·0.5(H2O) (Cugdupt9). We were motivated by the intriguing properties of the coupled ligands of hydrazylpyridine, salicylaldehyde, and 1,10-phenanthroline. The MTT assay demonstrated that Cugdupt1-Cugdupt9 have higher anticancer activity than L1H2-L9H2, phen and cisplatin on A549/DDP cancer cells (A549cis). Cugdupt1-Cugdupt9 were superior to cisplatin with IC50 values of 1.6-100.0 fold on A549cis cells (IC50(Cugdupt1-Cugdupt9) = 0.5-30.5 μM, IC50(cisplatin) = 61.5 ± 1.0 μM). However, Cugdupt1-Cugdupt9 had lower cytotoxicity toward the HL-7702 normal cells. Cugdupt1 and Cugdupt8 can induce reduction of mitochondrial respiratory chain complexes I/IV (MRCC-I/IV), mitophagy pathways, and eventually protein regulation and adenosine triphosphate (ATP) depletion in A549cis cells. The findings indicated that Cugdupt1 and Cugdupt8 caused cell death via both ATP diminution and mitophagy pathways. Finally, Cugdupt8 demonstrated high efficacy and no obvious cytotoxicity in A549 tumor-bearing mice. This study thus helps evaluate the potential of the hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline compounds for cisplatin-resistant tumor therapy.
Collapse
Affiliation(s)
- Yating Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Lingyu Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Meixiang Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| |
Collapse
|
14
|
Yang Y, Chen CF, Guo FF, Gu YQ, Liang H, Chen ZF. In vitro and in vivo antitumor activities of Ru and Cu complexes with terpyridine derivatives as ligands. J Inorg Biochem 2023; 246:112284. [PMID: 37327592 DOI: 10.1016/j.jinorgbio.2023.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Six terpyridine ligands(L1-L6) with chlorophenol or bromophenol moiety were obtained to prepare metal terpyridine derivatives complexes: [Ru(L1)(DMSO)Cl2] (1), [Ru(L2)(DMSO)Cl2] (2), [Ru(L3)(DMSO)Cl2] (3), [Cu(L4)Br2]·DMSO (4), Cu(L5)Br2 (5), and [Cu(L6)Br2]⋅CH3OH (6). The complexes were fully characterized. Ru complexes 1-3 showed low cytotoxicity against the tested cell lines. Cu complexes 4-6 exhibited higher cytotoxicity against several tested cancer cell lines compared to their ligands and cisplatin, and lower toxicity towards normal human cells. Copper(II) complexes 4-6 arrested T-24 cell cycle in G1 phase. The mechanism studies indicated that complexes 4-6 accumulated in mitochondria of T-24 cells and caused significant reduction of the mitochondrial membrane potential, increase of the intracellular ROS levels and the release of Ca2+, and the activation of the Caspase cascade, finally inducing apoptosis. Animal studies showed that complex 6 obviously inhibited the tumor growth in a mouse xenograft model bearing T-24 tumor cells without significant toxicity.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541004, China
| | - Cai-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fei-Fei Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
15
|
Xu X, Dai F, Mao Y, Zhang K, Qin Y, Zheng J. Metallodrugs in the battle against non-small cell lung cancer: unlocking the potential for improved therapeutic outcomes. Front Pharmacol 2023; 14:1242488. [PMID: 37727388 PMCID: PMC10506097 DOI: 10.3389/fphar.2023.1242488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality worldwide. Platinum-based chemotherapy is standard-of-care but has limitations including toxicity and resistance. Metal complexes of gold, ruthenium, and other metals have emerged as promising alternatives. This review provides a comprehensive analysis of metallodrugs for NSCLC. Bibliometric analysis reveals growing interest in elucidating mechanisms, developing targeted therapies, and synergistic combinations. Classification of metallodrugs highlights platinum, gold, and ruthenium compounds, as well as emerging metals. Diverse mechanisms include DNA damage, redox modulation, and immunomodulation. Preclinical studies demonstrate cytotoxicity and antitumor effects in vitro and in vivo, providing proof-of-concept. Clinical trials indicate platinums have utility but resistance remains problematic. Non-platinum metallodrugs exhibit favorable safety but modest single agent efficacy to date. Drug delivery approaches like nanoparticles show potential to enhance therapeutic index. Future directions include optimization of metal-based complexes, elucidation of resistance mechanisms, biomarker development, and combination therapies to fully realize the promise of metallodrugs for NSCLC.
Collapse
Affiliation(s)
- Xianzhi Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Feng Dai
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yiting Mao
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Kai Zhang
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Ying Qin
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| | - Jiwei Zheng
- School of Stomatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
17
|
Icsel C, Yilmaz VT, Aygun M, Erkisa M, Ulukaya E. Water-soluble copper(II) 5-fluorouracil complexes bearing polypyridyl co-ligands: synthesis, structures and anticancer activity. Dalton Trans 2023; 52:7048-7058. [PMID: 36939483 DOI: 10.1039/d3dt00363a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Five newly synthesized copper(II) 5-fluorouracil (5-FU) complexes of polypyridyl co-ligands with good solubility in water, namely [CuCl(5-FU)(bpy)(DMSO)] (1), [Cu(5-FU)(phen)2](5-FU)·4H2O (2), [Cu(5-FU)(dpya)2](NO3)·2.5H2O (3), [Cu(5-FU)(NO3)(bpyma)]·H2O (4) and [CuCl(5-FU)(terpy)] (5) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dpya = 2,2'-dipyridylamine, bpyma = bis(2-pyridylmethyl)amine and terpy = 2,2';6',2''-terpyridine), were characterized by elemental analysis and a number of spectrometric methods. The structures of complexes 1-5 were determined by X-ray crystallography and the copper(II) ions were five coordinate. Cytotoxic activity of the complexes in four human cancer cell lines, A549 (lung carcinoma), MDA-MB-231 (breast carcinoma), HCT116 (colon carcinoma) and DU145 (prostate carcinoma), and a normal cell line, BEAS-2B (human lung epithelial), was determined by SRB assay and compared with that of 5-FU and cisplatin. The complexation of 5-FU together with polypyridyl ligands resulted in a significant increase in the cytotoxicity of the complexes, with complex 2 exhibiting the highest anticancer potency against all the cell lines, with HCT116 being the most sensitive. The mode of action of cell death for 2 was investigated using morphological imaging and cytometric analyses, including the capacity for induction of apoptosis, generation of reactive oxygen species, mitochondrial dysfunction and DNA damage.
Collapse
Affiliation(s)
- Ceyda Icsel
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Veysel T Yilmaz
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Muhittin Aygun
- Department of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey
| | - Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, 34010 Istanbul, Turkey
| | - Engin Ulukaya
- Molecular Cancer Research Center (ISUMKAM), Istinye University, 34010 Istanbul, Turkey.,Department of Clinical Biochemistry, Medical School of Istinye University, 34010 Istanbul, Turkey
| |
Collapse
|
18
|
Yang Y, Guo FF, Chen CF, Li YL, Liang H, Chen ZF. Antitumor activity of synthetic three copper(II) complexes with terpyridine ligands. J Inorg Biochem 2023; 240:112093. [PMID: 36525715 DOI: 10.1016/j.jinorgbio.2022.112093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Three new synthetic terpyridine copper(II) complexes were characterized. The copper(II) complexes induced apoptosis of three cancer cell lines and arrested T-24 cell cycle in G1 phase. The complexes were accumulated in mitochondria of T-24 cells and caused significant reduction of the mitochondrial membrane potential. The complexes increased both intracellular ROS and Ca2+ levels and activated the caspase-3/9 expression. The apoptosis was further confirmed by Western Blotting analysis. Bcl-2 was down-regulated and Bax was upregulated after treatment with complexes 1-3. The in vivo studies showed that complexes 1-3 obviously inhibited the growth of tumor without significant toxicity to other organs.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541199, China
| | - Fei-Fei Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Cai-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
19
|
Ji P, Wang P, Chen H, Xu Y, Ge J, Tian Z, Yan Z. Potential of Copper and Copper Compounds for Anticancer Applications. Pharmaceuticals (Basel) 2023; 16:234. [PMID: 37259382 PMCID: PMC9960329 DOI: 10.3390/ph16020234] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 08/01/2023] Open
Abstract
Inducing cancer cell death has always been a research hotspot in life sciences. With the continuous deepening and diversification of related research, the potential value of metal elements in inducing cell death has been explored. Taking iron as an example, ferroptosis, mainly characterized by increasing iron load and driving the production of large amounts of lipid peroxides and eventually leading to cell death, has recently attracted great interest in the cancer research community. After iron, copper, a trace element, has received extensive attention in cell death, especially in inducing tumor cell death. Copper and its complexes can induce autophagy or apoptosis in tumor cells through a variety of different mechanisms of action (activation of stress pathways, arrest of cell cycle, inhibition of angiogenesis, cuproptosis, and paraptosis), which are promising in cancer therapy and have become new hotspots in cancer treatment research. This article reviews the main mechanisms and potential applications of novel copper and copper compound-induced cell death, focusing on copper compounds and their anticancer applications.
Collapse
Affiliation(s)
- Peng Ji
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Wang
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Hao Chen
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Yajing Xu
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jianwen Ge
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zechong Tian
- Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zhirong Yan
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
20
|
Massoud SS, Louka FR, Salem NMH, Fischer RC, Torvisco A, Mautner FA, Vančo J, Belza J, Dvořák Z, Trávníček Z. Dinuclear doubly bridged phenoxido copper(II) complexes as efficient anticancer agents. Eur J Med Chem 2023; 246:114992. [PMID: 36525695 DOI: 10.1016/j.ejmech.2022.114992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Two cationic [Cu2(L1-2)2](ClO4)2 (1, 2), and four neutral doubly bridged-phenoxido-copper(II) complexes [Cu2(L3-4)2] (3, 4) and [Cu2(L5-6)2(H2O)]‧2H2O (5, 6) as well as 1D polymeric catena-[Cu(L7)] (7), where HL1-2 and H2L3-7 represent tripodal tetradentate pyridyl or aliphatic-amino groups based 2,4-disubstituted phenolates, were synthesized and thoroughly characterized by various spectroscopic methods and single crystal X-ray analysis. The molecular structures of the complexes exhibited diverse geometrical environments around the central Cu(II) atoms. The in vitro antiproliferative activity of the isolated complexes and selected parent free ligands were screened against some human cancer cell lines (A2780, A2780R, PC-3, 22Rv1, MCF-7). The most promising cytotoxicity against cancer cells were obtained for 1-6, while complex 6 was found as the best performing as compared to the reference drug cisplatin. The cytotoxicity study of complex 6 was therefore extended to wider variety of cancer cell lines (HOS, A549, PANC-1, CaCo2, HeLa) and results revealed its significant cytotoxicity on all investigated human cancer cells. The cell uptake study showed that cytotoxicity of 6 (3 μM concentration and 24 h of incubation) against A2780 cells was almost independent from the intracellular levels of copper. The effect of complexes 4, 6 and 7 on cell cycle of A2780 cells indicates that the mechanism of action in these complexes is not only different from that of cisplatin but also different among them. Complex 7 was able to induce apoptosis in A2780 cells, while complexes 4 and 6 did not and on the other hand, they showed considerable effect on autophagy induction and there are some clues that these complexes were able to induce cuproptosis in A2780 cells.
Collapse
Affiliation(s)
- Salah S Massoud
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA, 70504, USA; Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey, 21511, Alexandria, Egypt.
| | - Febee R Louka
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 43700, Lafayette, LA, 70504, USA
| | - Nahed M H Salem
- Department of Chemistry, Faculty of Science, Alexandria University, Moharam Bey, 21511, Alexandria, Egypt
| | - Roland C Fischer
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010, Graz, Austria
| | - Ana Torvisco
- Institut für Anorganische Chemische, Technische Universität Graz, Stremayrgasse 9/V, A-8010, Graz, Austria
| | - Franz A Mautner
- Institut für Physikalische and Theoretische Chemie, Technische Universität Graz, Stremayrgasse 9/II, A-8010, Graz, Austria.
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic
| | - Jan Belza
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University, Křížkovského 511/8, CZ-779 00, Olomouc, Czech Republic.
| |
Collapse
|
21
|
Momeni BZ, Karimi S, Janczak J. Penta-coordinated Cr(II) and Cu(II) complexes appended with 4′-(4-quinolyl)-2,2′:6′,2″-terpyridine: crystal structure, Hirshfeld Surface analysis, luminescence and thermal properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Olar R, Maxim C, Badea M, Bacalum M, Raileanu M, Avram S, Korošin NČ, Burlanescu T, Rostas AM. Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity. Pharmaceutics 2022; 14:pharmaceutics14081692. [PMID: 36015318 PMCID: PMC9416163 DOI: 10.3390/pharmaceutics14081692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH2O (N-N: 1,10-phenanthroline/2,2′-bipyridine, Hbzac: 1-phenyl-1,3-butanedione, X: NO3/ClO4, and n = 0, 1) was studied. Single-crystal X-ray diffraction revealed a mononuclear structure for all complexes. The ability of the complexes to scavenge or trap reactive oxygen species such as O2⋅− and HO⋅ was proved by EPR spectroscopy experiments. All complexes inhibited B16 murine melanoma cells in a dose-dependent and nanomolar range, but the complexes with 1,10-phenanthroline were more active. Moreover, comparative activity on B16 and healthy BJ cells revealed a therapeutic index of 1.27–2.24. Bioinformatic methods were used to calculate the drug-likeness, pharmacokinetic, pharmacogenomic, and pharmacodynamic profiles of the compounds. The results showed that all compounds exhibit drug-likeness features, as well as promising absorption, distribution, metabolism, and excretion (ADME) properties, and no toxicity. The pharmacodynamics results showed that the neutral species appear to be good candidates for antitumor molecular targets (Tyrosyl-DNA phosphodiesterase 1, DNA-(apurinic or apyrimidinic site) lyase or Kruppel-like factor 5). Furthermore, the pharmacogenomic results showed a good affinity of the copper(II) complexes for the human cytochrome. These results recommend complexes bearing 1,10-phenanthroline as good candidates for developing drugs to melanoma alternative treatment.
Collapse
Affiliation(s)
- Rodica Olar
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
- Correspondence: (R.O.); (S.A.)
| | - Catalin Maxim
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Mihaela Badea
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Bucharest, 90-92 Panduri Str., 050663 Bucharest, Romania
| | - Mihaela Bacalum
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
| | - Mina Raileanu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Life and Environmental Physics, 30 Reactorului Str., 077125 Magurele-Ilfov, Romania
- Faculty of Physics, Department of Electricity, Solid State and Biophysics, University of Bucharest, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| | - Speranta Avram
- Faculty of Biology, Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95, Splaiul Independenței, 050095 Bucharest, Romania
- Correspondence: (R.O.); (S.A.)
| | - Nataša Čelan Korošin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Teodora Burlanescu
- Laboratory of Optical Processes in Nanostructure Materials, National Institute of Materials Physics, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| | - Arpad Mihai Rostas
- Laboratory of Atomic Structures and Defects in Advanced Materials, LASDAM, National Institute of Materials Physics, 405A Atomiștilor Str., 077125 Magurele-Ilfov, Romania
| |
Collapse
|
23
|
Kashapova NE, Kashapov RR, Ziganshina AY, Amerhanova SK, Lyubina AP, Voloshina AD, Salnikov VV, Zakharova LY. Complexation-induced nanoarchitectonics of sulfonate cailx[4]resorcinol substituted at the upper rim by N-methyl-d-glucamine fragments: Morphological transition and in vitro anticancer activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Mohebbi Jahromi Z, Asadi Z, Eigner V, Dusek M, Rastegari B. A new phenoxo-bridged dicopper Schiff base Complex: Synthesis, Crystal Structure, DNA/BSA Interaction, Cytotoxicity Assay and Catecholase Activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|