1
|
Chan M, Larsen N, Baxter H, Jespersen L, Ekinci EI, Howell K. The impact of botanical fermented foods on metabolic syndrome and type 2 diabetes: a systematic review of randomised controlled trials. Nutr Res Rev 2024; 37:396-415. [PMID: 37881833 DOI: 10.1017/s0954422423000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Our systematic review assessed the impact of botanical fermented food (BFF) consumption on glucose, lipid, anthropometric, inflammatory and gut microbiota parameters, in adults with metabolic syndrome (MetS), MetS components or type 2 diabetes mellitus (T2DM). Embase, MEDLINE, Cochrane CENTRAL and Google Scholar were searched with no language limits, from inception to 31 August 2022, for eligible randomised controlled trials (RCTs). Two independent reviewers screened 6873 abstracts and extracted relevant data. Risk of bias (ROB) was assessed using the Cochrane Collaboration's ROB2 tool. The final review included twenty-six RCTs, with thirty-one reports published between 2001 and 2022. Significant (p < 0·05) within-group and between-group changes in cardiometabolic outcome means were reported in twenty-three and nineteen studies, respectively. Gut microbiota composition was assessed in four studies, with two finding significant between-group differences. No significant difference between groups of any measured outcomes was observed in five studies. There were fourteen studies at low ROB; ten were of some concern; and two were at high ROB. In 73% of included studies, BFF consumption by participants with obesity, MetS or T2DM led to significant between-group improvements in discrete cardiometabolic outcomes, including fasting blood glucose, lipid profile, blood pressure, waist circumference, body fat percentage and C-reactive protein. BFF consumption increased the abundance of beneficial gut bacteria, such as Bifidobacterium and LAB, whilst reducing potential pathogens such as Bacteroides. To determine the clinical significance of BFFs as therapeutic dietary adjuncts, their safety, tolerability and affordability must be balanced with the limited power and magnitude of these preliminary findings.
Collapse
Affiliation(s)
- Miin Chan
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Nadja Larsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Helen Baxter
- Austin Health Science Library, Austin Health, Heidelberg, VIC, Australia
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Elif I Ekinci
- The Australian Centre for Accelerating Diabetes Innovations (ACADI), Melbourne Medical School, The University of Melbourne and Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Rivero-Pino F, Casquete M, Castro MJ, Redondo del Rio P, Gutierrez E, Mayo-Iscar A, Nocito M, Corell A. Prospective, Randomized, Double-Blind Parallel Group Nutritional Study to Evaluate the Effects of Routine Intake of Fresh vs. Pasteurized Yogurt on the Immune System in Healthy Adults. Nutrients 2024; 16:1969. [PMID: 38931322 PMCID: PMC11206341 DOI: 10.3390/nu16121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The immune system is affected by the dietary products humans intake. Immune system regulation by nutrition has uses in the clinical context, but it can also benefit healthy populations by delaying or preventing the emergence of immune-mediated chronic illnesses. In this study, the purpose was to describe and compare the modulator effects on the immune system of the routine ingestion of fresh vs. pasteurized yogurt. A unicentral, prospective, randomized, double-blind, parallel group 8-week nutritional study was carried out comparing the ingestion of 125 g of the products in healthy adults three times a day. A complete battery of in vitro tests on the activity of the immune system, processes and phenomena was performed. Exclusive immune-modulatory effects of fresh yogurt with respect to base line were found in terms of increased systemic IgM (primary immune responses), increased synthesis of IFN-gamma upon stimulation (Th1) and increased peripheral T cells (mainly "naive" CD4s). In the three interventions, we observed an increased phagocytic activity and burst test in granulocytes, together with increased secretion of IL-6, IL-1 β and IL-8 (pro-inflammatory) and increased CD16 expression (FcR favoring phagocytosis) in granulocytes. Overall, it is concluded that regardless of bacteria being alive or thermally inactivated, yogurt has common effects on the innate system, but the presence of live bacteria is necessary to achieve a potentiating effect on the specific immune response.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Mar Casquete
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Maria José Castro
- Departamento de Enfermería, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paz Redondo del Rio
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Eloina Gutierrez
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Agustín Mayo-Iscar
- Departamento de Estadística e Investigación Operativa & IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Mercedes Nocito
- Inmunología, Hospital Clínico de Zaragoza, 50009 Zaragoza, Spain
| | - Alfredo Corell
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
- Departamento de Pediatría, Inmunología, Obstetricia-Ginecología, Nutrición-Bromatología, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
3
|
Pokala A, Kraft J, Taormina VM, Michalski MC, Vors C, Torres-Gonzalez M, Bruno RS. Whole milk dairy foods and cardiometabolic health: dairy fat and beyond. Nutr Res 2024; 126:99-122. [PMID: 38669850 DOI: 10.1016/j.nutres.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Bovine dairy milk is a nutrient-rich matrix, but consumption of full-fat dairy food varieties has been claimed historically to be associated with poorer cardiometabolic health, a notion often attributed to the saturated fat content. However, continued investigation that includes observational studies and randomized controlled trials (RCTs) provide evidence that favorably supports full-fat dairy foods and their bioactive components on cardiometabolic health. This review addresses this controversy by examining the evidence surrounding full-fat dairy foods and their implications for human health. Dairy foods are heterogeneous, not just in their fat content but also in other compositional aspects within and between fermented (e.g., yogurt, cheese) and nonfermented products (e.g., milk) that could differentially influence cardiometabolic health. Drawing from complementary lines of evidence from epidemiological studies and RCTs, this review describes the health effects of dairy foods regarding their fat content, as well as their polar lipids that are concentrated in the milk fat globule fraction. Observational studies have limitedly supported the consumption of full-fat dairy to protect against cardiometabolic disorders. However, this framework has been disputed by RCTs indicating that dairy foods, regardless of their fat content or fermentation, are not detrimental to cardiometabolic health and may instead alleviate certain cardiometabolic risk factors. As dietary recommendations evolve, which currently indicate to avoid full-fat dairy foods, it is essential to consider the totality of evidence, especially from RCTs, while also recognizing that investigation is needed to evaluate the complexity of dairy foods within diverse dietary patterns and their impacts on cardiometabolic health.
Collapse
Affiliation(s)
- Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, 05405, USA
| | - Victoria M Taormina
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, Vermont, 05405, USA
| | - Marie-Caroline Michalski
- INRAE, UMR1397, Inserm, U1060, Université Claude Bernard Lyon 1, CarMeN laboratory, Pierre-Bénite, FR
| | - Cécile Vors
- INRAE, UMR1397, Inserm, U1060, Université Claude Bernard Lyon 1, CarMeN laboratory, Pierre-Bénite, FR
| | | | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
4
|
Wardenaar FC, Mohr AE, Ortega-Santos CP, Nyakayiru J, Kersch-Counet C, Chan Y, Clear AM, Kurka J, Schott KD, Seltzer RGN. Explorative Characterization of GI Complaints, General Physical and Mental Wellbeing, and Gut Microbiota in Trained Recreative and Competitive Athletes with or without Self-Reported Gastrointestinal Symptoms. Nutrients 2024; 16:1712. [PMID: 38892645 PMCID: PMC11174857 DOI: 10.3390/nu16111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The current state of the literature lacks a clear characterization of gastrointestinal (GI) symptoms, gut microbiota composition, and general physical and mental wellbeing in well-trained athletes. Therefore, this study aimed to characterize differences in self-reported symptoms, gut microbiota composition, and wellbeing (i.e., sleep quality, mood, and physical (PHQ) and mental wellbeing) between athletes with and without GI symptoms. In addition, we assessed the potential impact of a 3-week multi-ingredient fermented whey supplement in the GI complaints group, without a control group, on the gut microbiota and self-reported GI symptoms and wellbeing. A total of 50 athletes (24.7 ± 4.5 years) with GI issues (GI group at baseline, GI-B) and 21 athletes (25.4 ± 5.3 years) without GI issues (non-GI group, NGI) were included. At baseline, there was a significant difference in the total gastrointestinal symptom rating scale (GSRS) score (24.1 ± 8.48 vs. 30.3 ± 8.82, p = 0.008) and a trend difference in PHQ (33.9 ± 10.7 vs. 30.3 ± 8.82, p = 0.081), but no differences (p > 0.05) were seen for other outcomes, including gut microbiota metrics, between groups. After 3-week supplementation, the GI group (GI-S) showed increased Bifidobacterium relative abundance (p < 0.05), reported a lower number of severe GI complaints (from 72% to 54%, p < 0.001), and PHQ declined (p = 0.010). In conclusion, well-trained athletes with GI complaints reported more severe GI symptoms than an athletic reference group, without showing clear differences in wellbeing or microbiota composition. Future controlled research should further investigate the impact of such multi-ingredient supplements on GI complaints and the associated changes in gut health-related markers.
Collapse
Affiliation(s)
- Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA;
| | - Jean Nyakayiru
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands; (J.N.); (C.K.-C.)
| | | | - Yat Chan
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Anna-Marie Clear
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Jonathan Kurka
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Kinta D. Schott
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| | - Ryan G. N. Seltzer
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (A.E.M.); (Y.C.); (A.-M.C.); (J.K.); (K.D.S.); (R.G.N.S.)
| |
Collapse
|
5
|
Gadhoumi H, Dhouafli Z, Yeddes W, serairi beji R, Miled K, Trifi M, Chirchi A, Saidani Tounsi M, Hayouni EA. Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice. Indian J Microbiol 2024; 64:229-243. [PMID: 38468731 PMCID: PMC10924858 DOI: 10.1007/s12088-023-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024] Open
Abstract
Functional beverages play an essential role in our modern life and contribute to nutritional well-being. Current efforts to understand and develop functional beverages to promote health and wellness have been enhanced. The present study aimed to investigate the production of three fermented plants beverages (FPBs) from aromatic and medicinal plants and to evaluate the fermented product in terms of physio-biochemical composition, the aromatic compounds, antioxidant activity, and in vivo protective effects on hepatotoxicity and nephrotoxicity induced by carbon tetrachloride (CCl4). The results showed that the fermented beverage NurtBio B had the highest levels of polyphenols, flavonoids, and tannins; 242.3 ± 12.4 µg GAE/mL, 106.4 ± 7.3 µg RE/mL and 94.2 ± 5.1 µg CE/mL, respectively. The aromatic profiles of the fermented beverages showed thirty-one interesting volatile compounds detected by GC-MS headspace analyses such as benzaldehyde, Eucalyptol, Fenchone, 3-Octadecyne, Estragole, and Benzene propanoic acid 1-methylethyl ester. In addition, the fermentation process was significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. In vivo administration of CCl4 in mice induced hepatotoxicity and nephrotoxicity by a significant rise in the levels of serum liver and kidney biomarkers. The protective effects of the FPBs showed that they significantly restored the majority of these biological parameters to normal levels, along with increase antioxidant enzyme activities, as well as an improvement of histopathological changes, suggesting their protective effects.
Collapse
Affiliation(s)
- Hamza Gadhoumi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Zohra Dhouafli
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Walid Yeddes
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Raja serairi beji
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Khaled Miled
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Mounir Trifi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Abdelhamid Chirchi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
6
|
Zeng X, Wang Y, Yang S, Liu Y, Li X, Liu D. The functionalities and applications of whey/whey protein in fermented foods: a review. Food Sci Biotechnol 2024; 33:769-790. [PMID: 38371680 PMCID: PMC10866834 DOI: 10.1007/s10068-023-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 02/20/2024] Open
Abstract
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
Collapse
Affiliation(s)
- Xiaorong Zeng
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yujie Wang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Shuda Yang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yijun Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye, 734000 China
| | - Diru Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
7
|
Jannat K, Agho KE, Parvez SM, Rahman M, Thomson R, Amin MB, Merom D. The Effects of Yogurt Supplementation and Nutritional Education on Malnourished Infants: A Pilot RCT in Dhaka's Slums. Nutrients 2023; 15:2986. [PMID: 37447313 DOI: 10.3390/nu15132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Our objective was to quantify the effects of yogurt supplementation and nutrition education over three months on the linear growth of infants at risk of stunting. We conducted a three-arm pilot randomized controlled trial: (1) nutrition education for mothers; (2) nutrition education plus a daily yogurt supplement (50 g) for the index child; and (3) usual care (control). Dyads of children aged 4-6 months and at risk of stunting [length-for-age z-score (LAZ) ≤ -1 SD and >-2 SD] and their mothers with ≤10 years of education were eligible for the study. Participants were recruited from five slum areas in Dhaka, Bangladesh. Intention-to-treat (N = 162) and complete-case analyses (N = 127) showed no between-group statistically significant differences in LAZ or weight-for-age (WAZ). However, the yogurt group showed greater change in linear growth compared to the control (LAZ: mean difference 0.20, 95% CI: -0.06, 0.47, p-value 0.13), which was also slightly greater than the education-only group. Children in the yogurt plus group were five times (95% CI: 0.80, 31.80, p-value 0.09) more likely to meet the minimum dietary diversity (MDD) score compared to the control. A 3-month follow-up of this pilot study did not demonstrate that yogurt was beneficial to linear growth. However, there were encouraging trends that merit replication of the intervention with larger samples and longer follow-ups.
Collapse
Affiliation(s)
- Kaniz Jannat
- Centre for Research in Mathematics and Data Science, School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Kingsley Emwinyore Agho
- Centre for Research in Mathematics and Data Science, School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Sarker Masud Parvez
- Environmental Interventions Unit, Laboratory of Food Safety and One Health, Infectious Disease Division, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Mahbubur Rahman
- Environmental Interventions Unit, Laboratory of Food Safety and One Health, Infectious Disease Division, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Russell Thomson
- Centre for Research in Mathematics and Data Science, School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Mohammed Badrul Amin
- Environmental Interventions Unit, Laboratory of Food Safety and One Health, Infectious Disease Division, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Dafna Merom
- Centre for Research in Mathematics and Data Science, School of Health Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
8
|
Guo X, Su F, Gao Y, Tang L, Yu X, Zi J, Zhou Y, Wang H, Xue J, Wang X. Effects of dietary restriction on genome stability are sex and feeding regimen dependent. Food Funct 2023; 14:471-488. [PMID: 36519635 DOI: 10.1039/d2fo03138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Preserving genome stability is essential to prevent aging and cancer. Dietary restriction (DR) is the most reproducible non-pharmacological way to improve health and extend lifespan in various species. Whether DR helps to preserve genome stability and whether this effect is altered by experimental variables remain unclear. Moreover, DR research relies heavily on experimental animals, making the development of reliable in vitro mimetics of great interest. Therefore, we tested the effects of sex and feeding regimen (time-restricted eating, alternate day fasting and calorie restriction) on genome stability in CF-1 mice and whether these effects can be recapitulated by cell culture paradigms. Here, we show that calorie restriction significantly decreases the spontaneous micronuclei (MN), a biomarker of genome instability, in bone marrow cells of females instead of males. Alternate day fasting significantly decreases cisplatin-induced MN in females instead of males. Unexpectedly, daily time-restricted eating significantly exacerbates cisplatin-induced MN in males but not in females. Additionally, we design several culture paradigms that are able to faithfully recapitulate the key effects of these DR regimens on genome stability. In particular, 30% reduction of serum, a mimetic of calorie restriction, exhibits a strong ability to decrease spontaneous and cisplatin-induced MN in immortalized human umbilical vein endothelial cells. We conclude that the effects of different DR regimens on genome stability are not universal and females from each diet regimen sustain a more stable genome than males. Our results provide novel insight into the understanding of how DR influences genome stability in a sex and regimen dependent way, and suggest that our in vitro DR mimetics could be adopted to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China
| | - Fuping Su
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Yue Gao
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Liyan Tang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Xixi Yu
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Jiangli Zi
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Yingshui Zhou
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Han Wang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China
| | - Jinglun Xue
- Yeda Institute of Gene and Cell Therapy, Taizhou 318000, Zhejiang, China
| | - Xu Wang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China.,Yeda Institute of Gene and Cell Therapy, Taizhou 318000, Zhejiang, China
| |
Collapse
|
9
|
Khosroshahi ED, Razavi SH. Wheat germ valorization by fermentation: A novel insight into the stabilization, nutritional/functional values and therapeutic potentials with emphasis on anti-cancer effects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Illikoud N, Mantel M, Rolli-Derkinderen M, Gagnaire V, Jan G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett 2022; 251-252:91-102. [DOI: 10.1016/j.imlet.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
11
|
Foligné B, Menetrey Q, Titécat M. Letter to the Editor: Focus on Zymomonas spp for the sake of clarity. Compr Rev Food Sci Food Saf 2022; 21:4507-4508. [PMID: 36349466 DOI: 10.1111/1541-4337.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benoit Foligné
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Quentin Menetrey
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Marie Titécat
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| |
Collapse
|
12
|
Lu K, Wang X, Wan J, Zhou Y, Li H, Zhu Q. Correlation and Difference between Core Micro-Organisms and Volatile Compounds of Suan Rou from Six Regions of China. Foods 2022; 11:foods11172708. [PMID: 36076900 PMCID: PMC9455853 DOI: 10.3390/foods11172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Suan Rou (SR), a traditional fermented meat, is widely favored by consumers due to its unique flavor and characteristics. To study the relationship between the core differential micro-organisms and differential volatile organic compounds (VOCs) of SR from six regions of China, high-throughput sequencing (HTS) and gas-chromatography−ion mobility spectrometry (GC-IMS) technologies were used to analyze the correlation between micro-organisms and VOCs in SR from Xiangxi of Hunan, Rongshui of Guangxi, Zunyi of Guizhou, Jinping of Guizhou, Congjiang of Guizhou, and Libo of Guizhou. A total of 13 core micro-organisms were identified at the genus level. Moreover, 95 VOCs were identified in the SR samples by GC-IMS analysis, with alcohols, aldehydes, ketones, and esters comprising the major VOCs among all the samples. The results showed a strong correlation (|r| > 0.8, p < 0.05) between the core differential micro-organisms and differential VOCs, including four bacteria, five fungi, and 12 VOCs. Pediococcus, Debaryomyces, Zygosaccharomyces, and Candida significantly contributed to the unique VOCs of SR.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jing Wan
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hongying Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Department of Agricultural, Food and Nutritional Science, 4–10 Ag/For Building, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Qiujin Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-8823-6890
| |
Collapse
|