1
|
Huang Y, Zhao Q, Li X, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y, Cheng Y. A novel major QTL underlying grain copper concentration in common wheat (Triticum aestivum L.). BMC Genomics 2024; 25:1198. [PMID: 39695377 DOI: 10.1186/s12864-024-11132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Grain copper (Cu) concentrations represent a qualitative trait mainly controlled by genetic factors, which may differ between wheat varieties from the Sichuan Basin of China and other areas. However, the differences are poorly understood. Here, we investigated the grain Cu concentration in a remaining heterozygous line population derived from a multiparental recombinant inbred line. The grain Cu concentration varied from 4.25 to 13.44 mg/kg and 3.32 to 7.74 mg/kg over a two-year investigation, and the broad-sense heritability was 0.67. Bulked-segregation analysis revealed three quantitative trait loci on chromosomes 2A (QGr_Cu_Conc-2A), 2B (QGr_Cu_Conc-2B), and 4D (QGr_Cu_Conc-4D). QGr_Cu_Conc-2B is a novel locus, which was further narrowed between KASP-52.32 and KASP-56.57 with an interval of 52.32-56.57 Mb, explaining 17.10% of the phenotypic variation; its potential candidate gene was TraesCS2B03G0196500, encoding a chloroplast thylakoid lumen protein. KASP-52.32 successfully genotyped two common wheat populations, and the grain Cu concentration of CC genotype varieties was significantly higher than that of TT genotype varieties. Meanwhile, the concentrations of chlorophyll and the expression levels of three TaZIP8 and two TaZIP9 in flag leaves were higher in plants with high grain Cu concentration than in plants with low grain Cu concentration. These results provide guidance for understanding the genetic mechanisms underlying grain Cu concentration and may aid in wheat breeding.
Collapse
Affiliation(s)
- Yiwen Huang
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qiling Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Xiaoying Li
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Dan Long
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China.
| | - Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
2
|
Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, Pandey AK, Garg M, Roy J. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC PLANT BIOLOGY 2024; 24:668. [PMID: 39004715 PMCID: PMC11247745 DOI: 10.1186/s12870-024-05161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ashish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Supriya Kumari
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Vijay Gahlaut
- Department of Biotechnology, University Center for Research and Development Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohammed Saba Rahim
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| |
Collapse
|
3
|
Tadesse W, Gataa ZE, Rachdad FE, Baouchi AE, Kehel Z, Alemu A. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment. Mol Genet Genomics 2023; 298:1515-1526. [PMID: 37851098 PMCID: PMC10657311 DOI: 10.1007/s00438-023-02074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Globally, over 2 billion people suffer from malnutrition due to inadequate intake of micronutrients. Genomic-assisted breeding is identified as a valuable method to facilitate developing new improved plant varieties targeting grain yield and micronutrient-related traits. In this study, a genome-wide association study (GWAS) and single- and multi-trait-based genomic prediction (GP) analysis was conducted using a set of 252 elite wheat genotypes from the International Center for Agricultural Research in Dry Areas (ICARDA). The objective was to identify linked SNP markers, putative candidate genes and to evaluate the genomic estimated breeding values (GEBVs) of grain yield and micronutrient-related traits.. For this purpose, a field trial was conducted at a drought-prone station, Merchouch, Morocco for 2 consecutive years (2018 and 2019) followed by GWAS and genomic prediction analysis with 10,173 quality SNP markers. The studied genotypes exhibited a significant genotypic variation in grain yield and micronutrient-related traits. The GWAS analysis identified highly significantly associated markers and linked putative genes on chromosomes 1B and 2B for zinc (Zn) and iron (Fe) contents, respectively. The genomic predictive ability of selenium (Se) and Fe traits with the multi-trait-based GP GBLUP model was 0.161 and 0.259 improving by 6.62 and 4.44%, respectively, compared to the corresponding single-trait-based models. The identified significantly linked SNP markers, associated putative genes, and developed GP models could potentially facilitate breeding programs targeting to improve the overall genetic gain of wheat breeding for grain yield and biofortification of micronutrients via marker-assisted (MAS) and genomic selection (GS) methods.
Collapse
Affiliation(s)
- Wuletaw Tadesse
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Zakaria El Gataa
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Fatima Ezzahra Rachdad
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Adil El Baouchi
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Zakaria Kehel
- The International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
4
|
Ma J, Ren J, Yuan X, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study reveals the genetic variation and candidate gene for grain calcium content in bread wheat. PLANT CELL REPORTS 2023:10.1007/s00299-023-03036-3. [PMID: 37227494 DOI: 10.1007/s00299-023-03036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE This study provides important information on the genetic basis of GCaC in wheat, thus contributing to breeding efforts to improve the nutrient quality of wheat. Calcium (Ca) plays important roles in the human body. Wheat grain provides the main diet for billions of people worldwide but is low in Ca content. Here, grain Ca content (GCaC) of 471 wheat accessions was determined in four field environments. A genome-wide association study (GWAS) was performed to reveal the genetic basis of GCaC using the phenotypic data form four environments and a wheat 660 K single nucleotide polymorphism (SNP) array. Twelve quantitative trait locus (QTLs) for GCaC were identified on chromosomes 1A, 1D, 2A, 3B, 6A, 6D, 7A, and 7D, which was significant in at least two environments. Haplotype analysis revealed that the phenotypic difference between the haplotypes of TraesCS6D01G399100 was significant (P ≤ 0.05) across four environments, suggesting it as an important candidate gene for GCaC. This research enhances our understanding of the genetic architecture of GCaC for further improving the nutrient quality of wheat.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Jingjie Ren
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xuqing Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shanxi, China.
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
5
|
Ma J, Ye M, Liu Q, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study for grain zinc concentration in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1169858. [PMID: 37077637 PMCID: PMC10106671 DOI: 10.3389/fpls.2023.1169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Introduction Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Miaomiao Ye
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qianqian Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| |
Collapse
|
6
|
Revealing Genetic Differences in Fiber Elongation between the Offspring of Sea Island Cotton and Upland Cotton Backcross Populations Based on Transcriptome and Weighted Gene Coexpression Networks. Genes (Basel) 2022; 13:genes13060954. [PMID: 35741716 PMCID: PMC9222338 DOI: 10.3390/genes13060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island–Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.
Collapse
|