1
|
Cook SR, Ball AG, Mohammad A, Pompano RR. A 3D-printed multi-compartment organ-on-chip platform with a tubing-free pump models communication with the lymph node. LAB ON A CHIP 2025; 25:155-174. [PMID: 39661075 PMCID: PMC11633827 DOI: 10.1039/d4lc00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination. Here we developed a 3D-printed, user-friendly device and companion tubing-free impeller pump with the capacity to co-culture two or more tissue samples, including a LN, under a recirculating common media. Native tissue structure and immune function were incorporated by maintaining slices of murine LN tissue ex vivo in 3D-printed mesh supports for at least 24 h. In a two-compartment model of a LN and an upstream injection site in mock tissue, vaccination of the multi-compartment chip was similar to in vivo vaccination in terms of locations of antigen accumulation and acute changes in activation markers and gene expression in the LN. We anticipate that in the future, this flexible platform will enable models of multi-organ immune responses throughout the body.
Collapse
Affiliation(s)
- Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | - Alexander G Ball
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Carter Immunology Center and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | | | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
O’Grady BJ, McCall AS, Cullison S, Chavarria D, Kjar A, Schrag MS, Lippmann ES. Anatomically and Physiologically Accurate Engineered Neurovascular Unit and Blood-Brain Barrier Model Using Microvessels Isolated from Postmortem Human Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615283. [PMID: 39386654 PMCID: PMC11463414 DOI: 10.1101/2024.09.26.615283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Brain vasculature is a complex and heterogeneous physiological structure that serves specialized roles in maintaining brain health and homeostasis. There is substantial interest in developing representative human models of the brain vasculature for drug screening and disease modeling applications. Many contemporary strategies have focused on culturing neurovascular cell types in hydrogels and microdevices, but it remains challenging to achieve anatomically relevant vascular structures that have physiologically similar function to their in vivo counterparts. Here, we present a strategy for isolating microvessels from cryopreserved human cortical tissue and culturing these vessels in a biomimetic gelatin-based hydrogel contained in a microfluidic device. We provide histological evidence of arteriole and capillary architectures within hydrogels, as well as anastomosis to the hydrogel edges allowing lumen perfusion. In capillaries, we demonstrate restricted diffusion of a 10 kDa dextran, indicating intact passive blood-brain barrier function. We anticipate this bona fide human brain vasculature-on-a-chip will be useful for various biotechnology applications.
Collapse
Affiliation(s)
- Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - A. Scott McCall
- Department of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Cullison
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Zhao Y, Yoon T, Miller J, Montville CP, Bowden AK. A rapid and low-cost method to fabricate well of the well (WOW) dishes with arbitrary 3D microwell shapes for improved embryo culture. Sci Rep 2024; 14:19757. [PMID: 39187532 PMCID: PMC11347645 DOI: 10.1038/s41598-024-70517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Despite its high cost, the success rate for in vitro fertilization (IVF) remains < 33% in humans, driving the need for new techniques to improve embryo culture outcomes. The well-of-the-well (WOW) culture system is a platform for in-vitro mammalian embryo culture that has been shown to enhance the developmental competence of embryos and clinical pregnancy rates in humans. However, discovery and testing of the best design for optimal embryo culture quality is hindered by the lack of a method to flexibly produce WOW dishes of various designs. Here, we present a low-cost and simple method to fabricate WOW dishes with microwells of arbitrary shapes and dimensions. We use a low-cost 3D printing service to fabricate a poly(dimethylsiloxane) (PDMS)-based WOW insert that can be paired with a standard in vitro fertilization (IVF) dish to create WOW dishes with new microwell shapes, including pyramidal and hemispherical designs. We validate the fabrication quality of the WOW inserts and demonstrate the utility of the assembled WOW dishes for observation and grading of mouse embryo quality. Moreover, our results indicate that WOW dishes with hemispherical microwells result in better culture outcomes than traditional flat-bottomed IVF dishes and those with other microwell shapes, including the semi-elliptical microwells used in commercial WOW dishes. The proposed fabrication strategy thus provides a way to rapidly fabricate and test new WOW dishes that may bolster IVF success rates.
Collapse
Affiliation(s)
- Yunqin Zhao
- Vanderbilt Biophotonics Center and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taehyung Yoon
- Vanderbilt Biophotonics Center and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | | | | | - Audrey K Bowden
- Vanderbilt Biophotonics Center and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Scott TE, Boccarossa T, Florian D, Fischer MA, Peck SH, Savona MR, Pingen G, Guelcher SA. Rapid prototyping of perfusion cell culture devices for three-dimensional imaging of mesenchymal stem cell deposition and proliferation. Heliyon 2024; 10:e35103. [PMID: 39170274 PMCID: PMC11336473 DOI: 10.1016/j.heliyon.2024.e35103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Perfusion of porous scaffolds transports cells to the surface to yield cellular constructs for 3D models of disease and for tissue engineering applications. While ceramic scaffolds mimic the structure and composition of trabecular bone, their opacity and tortuous pores limit the penetration of light into the interior. Scaffolds that are both perfusable and amenable to fluorescence microscopy are therefore needed to visualize the spatiotemporal dynamics of cells in the bone microenvironment. In this study, a hybrid injection molding approach was designed to enable rapid prototyping of collector arrays with variable configurations that are amenable to longitudinal imaging of attached human mesenchymal stem cells (hMSCs) using fluorescence microscopy. Cylindrical collectors were arranged in an array that is permeable to perfusion in the xy-plane and to light in the z-direction for imaging from below. The effects of the collector radius, number, and spacing on the collection efficiency of perfused hMSCs was simulated using computational fluid dynamics (CFD) and measured experimentally using fluorescence microscopy. The effect of collector diameter on simulated and experimental cell collection efficiencies followed a trend similar to that predicted by interception theory corrected for intermolecular and hydrodynamic forces for the arrays with constant collector spacing. In contrast, arrays designed with constant collector number yielded collection efficiencies that poorly fit the trend with collector radius predicted by interception theory. CFD simulations of collection efficiency agreed with experimental measurements within a factor of two. These findings highlight the utility of CFD simulations and hybrid injection molding for rapid prototyping of collector arrays to optimize the longitudinal imaging of cells without the need for expensive and time-consuming tooling.
Collapse
Affiliation(s)
- Taylor E. Scott
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA
- Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tim Boccarossa
- Department of Engineering, Union University, Jackson, TN, USA
| | - David Florian
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Melissa A. Fischer
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sun H. Peck
- Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Nashville VA Medical Center, Department of Veterans Affairs, Nashville, TN, USA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Georg Pingen
- Department of Engineering, Union University, Jackson, TN, USA
| | - Scott A. Guelcher
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN, USA
- Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Li T, Nie M, Morimoto Y, Takeuchi S. Pillar electrodes embedded in the skeletal muscle tissue for selective stimulation of biohybrid actuators with increased contractile distance. Biofabrication 2024; 16:035022. [PMID: 38744312 DOI: 10.1088/1758-5090/ad4ba1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Electrodes are crucial for controlling the movements of biohybrid robots, but their external placement outside muscle tissue often leads to inefficient and non-selective stimulation of nearby biohybrid actuators. To address this, we propose embedding pillar electrodes within the skeletal muscle tissue, resulting in enhanced contraction of the target muscle without affecting the neighbor tissue with a 4 mm distance. We use finite element method simulations to establish a selectivity model, correlating the VIE(volume integration of electric field intensity within muscle tissue) with actual contractile distances under different amplitudes of electrical pulses. The simulated selective index closely aligns with experimental results, showing the potential of pillar electrodes for effective and selective biohybrid actuator stimulation. In experiments, we validated that the contractile distance and selectivity achieved with these pillar electrodes exceed conventional Au rod electrodes. This innovation has promising implications for building biohybrid robots with densely arranged muscle tissue, ultimately achieving more human-like movements. Additionally, our selectivity model offers valuable predictive tools for assessing electrical stimulation effects with different electrode designs.
Collapse
Affiliation(s)
- Tingyu Li
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Electronic and Physical Systems,School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Hagemann C, Bailey MCD, Carraro E, Stankevich KS, Lionello VM, Khokhar N, Suklai P, Moreno-Gonzalez C, O’Toole K, Konstantinou G, Dix CL, Joshi S, Giagnorio E, Bergholt MS, Spicer CD, Imbert A, Tedesco FS, Serio A. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs. PLoS Biol 2024; 22:e3002503. [PMID: 38478490 PMCID: PMC10936828 DOI: 10.1371/journal.pbio.3002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the μm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.
Collapse
Affiliation(s)
- Cathleen Hagemann
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Matthew C. D. Bailey
- The Francis Crick Institute, London, United Kingdom
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, United Kingdom
| | - Eugenia Carraro
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Ksenia S. Stankevich
- Department of Chemistry and York Biomedical Research Institute, University of York, York, United Kingdom
| | - Valentina Maria Lionello
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noreen Khokhar
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Pacharaporn Suklai
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Carmen Moreno-Gonzalez
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Kelly O’Toole
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | | | | | - Sudeep Joshi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Eleonora Giagnorio
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mads S. Bergholt
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, United Kingdom
| | - Christopher D. Spicer
- Department of Chemistry and York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Francesco Saverio Tedesco
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Andrea Serio
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| |
Collapse
|
7
|
Halwes M, Stamp M, Collins DJ. A Rapid Prototyping Approach for Multi-Material, Reversibly Sealed Microfluidics. MICROMACHINES 2023; 14:2213. [PMID: 38138382 PMCID: PMC10745384 DOI: 10.3390/mi14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Microfluidic organ-on-chip models recapitulate increasingly complex physiological phenomena to study tissue development and disease mechanisms, where there is a growing interest in retrieving delicate biological structures from these devices for downstream analysis. Standard bonding techniques, however, often utilize irreversible sealing, making sample retrieval unfeasible or necessitating destructive methods for disassembly. To address this, several commercial devices employ reversible sealing techniques, though integrating these techniques into early-stage prototyping workflows is often ignored because of the variation and complexity of microfluidic designs. Here, we demonstrate the concerted use of rapid prototyping techniques, including 3D printing and laser cutting, to produce multi-material microfluidic devices that can be reversibly sealed. This is enhanced via the incorporation of acrylic components directly into polydimethylsiloxane channel layers to enhance stability, sealing, and handling. These acrylic components act as a rigid surface separating the multiple mechanical seals created between the bottom substrate, the microfluidic features in the device, and the fluidic interconnect to external tubing, allowing for greater design flexibility. We demonstrate that these devices can be produced reproducibly outside of a cleanroom environment and that they can withstand ~1 bar pressures that are appropriate for a wide range of biological applications. By presenting an accessible and low-cost method, we hope to enable microfluidic prototyping for a broad range of biomedical research applications.
Collapse
Affiliation(s)
- Michael Halwes
- Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia; (M.H.); (M.S.)
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Melanie Stamp
- Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia; (M.H.); (M.S.)
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - David J. Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia; (M.H.); (M.S.)
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
8
|
Wang Z, Zhang Y, Li Z, Wang H, Li N, Deng Y. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304427. [PMID: 37653590 DOI: 10.1002/smll.202304427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 09/02/2023]
Abstract
As an ideal in vitro model, brain-on-chip (BoC) is an important tool to comprehensively elucidate brain characteristics. However, the in vitro model for the definition scope of BoC has not been universally recognized. In this review, BoC is divided into brain cells-on-a- chip, brain slices-on-a-chip, and brain organoids-on-a-chip according to the type of culture on the chip. Although these three microfluidic BoCs are constructed in different ways, they all use microfluidic chips as carrier tools. This method can better meet the needs of maintaining high culture activity on a chip for a long time. Moreover, BoC has successfully integrated cell biology, the biological material platform technology of microenvironment on a chip, manufacturing technology, online detection technology on a chip, and so on, enabling the chip to present structural diversity and high compatibility to meet different experimental needs and expand the scope of applications. Here, the relevant core technologies, challenges, and future development trends of BoC are summarized.
Collapse
Affiliation(s)
- Zhaohe Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongqian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Yang DS, Wu Y, Kanatzidis EE, Avila R, Zhou M, Bai Y, Chen S, Sekine Y, Kim J, Deng Y, Guo H, Zhang Y, Ghaffari R, Huang Y, Rogers JA. 3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays. MATERIALS HORIZONS 2023; 10:4992-5003. [PMID: 37641877 DOI: 10.1039/d3mh00876b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Systems for capture, storage and analysis of eccrine sweat can provide insights into physiological health status, quantify losses of water, electrolytes, amino acids and/or other essential species, and identify exposures to adverse environmental species or illicit drugs. Recent advances in materials and device designs serve as the basis for skin-compatible classes of microfluidic platforms and in situ colorimetric assays for precise assessments of sweat rate, sweat loss and concentrations of wide-ranging types of biomarkers in sweat. This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the pH of sweat, with laboratory-grade accuracy and sensitivity.
Collapse
Affiliation(s)
- Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Precision Biology Research Center (PBRC), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yixin Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evangelos E Kanatzidis
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Rice University, Houston, TX, 77005, USA
| | - Mingyu Zhou
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yun Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shulin Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yurina Sekine
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Hexia Guo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yi Zhang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
10
|
Rabe DC, Ho U, Choudhury A, Wallace J, Luciani E, Lee D, Flynn E, Stott SL. Aryl-diazonium salts offer a rapid and cost-efficient method to functionalize plastic microfluidic devices for increased immunoaffinity capture. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300210. [PMID: 38283881 PMCID: PMC10812904 DOI: 10.1002/admt.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 01/30/2024]
Abstract
Microfluidic devices have been used for decades to isolate cells, viruses, and proteins using on-chip immunoaffinity capture using biotinylated antibodies, proteins, or aptamers. To accomplish this, the inner surface is modified to present binding moieties for the desired analyte. While this approach has been successful in research settings, it is challenging to scale many surface modification strategies. Traditional polydimethylsiloxane (PDMS) devices can be effectively functionalized using silane-based methods; however, it requires high labor hours, cleanroom equipment, and hazardous chemicals. Manufacture of microfluidic devices using plastics, including cyclic olefin copolymer (COC), allows chips to be mass produced, but most functionalization methods used with PDMS are not compatible with plastic. Here we demonstrate how to deposit biotin onto the surface of a plastic microfluidic chips using aryl-diazonium. This method chemically bonds biotin to the surface, allowing for the addition of streptavidin nanoparticles to the surface. Nanoparticles increase the surface area of the chip and allow for proper capture moiety orientation. Our process is faster, can be performed outside of a fume hood, is very cost-effective using readily available laboratory equipment, and demonstrates higher rates of capture. Additionally, our method allows for more rapid and scalable production of devices, including for diagnostic testing.
Collapse
Affiliation(s)
- Daniel C Rabe
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142
| | - Uyen Ho
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
| | - Adarsh Choudhury
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
| | - Jessica Wallace
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
| | - Evelyn Luciani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
| | - Dasol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
| | - Elizabeth Flynn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142
| |
Collapse
|
11
|
Musgrove HB, Cook SR, Pompano RR. Parylene-C Coating Protects Resin-3D-Printed Devices from Material Erosion and Prevents Cytotoxicity toward Primary Cells. ACS APPLIED BIO MATERIALS 2023; 6:3079-3083. [PMID: 37534979 PMCID: PMC10754061 DOI: 10.1021/acsabm.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Resin 3D printing is attractive for the rapid fabrication of microscale cell culture devices, but common resin materials are unstable and cytotoxic under culture conditions. Strategies such as leaching or overcuring are insufficient to protect sensitive primary cells such as white blood cells. Here, we evaluated the effectiveness of using a parylene C coating of commercially available clear resins to prevent cytotoxic leaching, degradation of microfluidic devices, and absorption of small molecules. We found that parylene C significantly improved both the cytocompatibility with primary murine white blood cells and the material integrity of prints while maintaining the favorable optical qualities held by clear resins.
Collapse
Affiliation(s)
- Hannah B. Musgrove
- Dept. of Chemistry, University of Virginia, Charlottesville, Virginia. 22903, USA
| | - Sophie R. Cook
- Dept. of Chemistry, University of Virginia, Charlottesville, Virginia. 22903, USA
| | - Rebecca R. Pompano
- Dept. of Chemistry, University of Virginia, Charlottesville, Virginia. 22903, USA
| |
Collapse
|
12
|
Qian R, Yan Y, Pei Y, Zhang Y, Chi Y, Chen Y, Hao K, Xu Z, Yang G, Shao Z, Wang Y, Li X, Lu C, Zhang X, Chen K, Zhang W, Wang B, Ying Z, Huang K. Spatial localization ability of planarians identified through a light maze paradigm. PLoS One 2023; 18:e0288118. [PMID: 37467232 DOI: 10.1371/journal.pone.0288118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
Spatial localization ability is crucial for free-living animals to fit the environment. As shown by previous studies, planarians can be conditioned to discriminate directions. However, due to their simplicity and primitiveness, they had never been considered to have true spatial localization ability to retrieve locations of objects and places in the environment. Here, we introduce a light maze training paradigm to demonstrate that a planarian worm can navigate to a former recognized place from the start point, even if the worm is transferred into a newly produced maze. This finding identifies the spatial localization ability of planarians for the first time, which provides clues for the evolution of spatial learning. Since the planarians have a primitive brain with simple structures, this paradigm can also provide a simplified model for a detailed investigation of spatial learning.
Collapse
Affiliation(s)
- Renzhi Qian
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuan Yan
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yu Pei
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yixuan Zhang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuanwei Chi
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuxuan Chen
- College of Biological Science, China Agricultural University, Beijing, China
| | - Kun Hao
- College of Biological Science, China Agricultural University, Beijing, China
| | - Zhen Xu
- College of Biological Science, China Agricultural University, Beijing, China
| | - Guang Yang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Zilun Shao
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuhao Wang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Xinran Li
- College of Biological Science, China Agricultural University, Beijing, China
| | - Chenxu Lu
- College of Biological Science, China Agricultural University, Beijing, China
| | - Xuan Zhang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Beijing, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Baoqing Wang
- College of Biological Science, China Agricultural University, Beijing, China
| | - Zhengxin Ying
- College of Biological Science, China Agricultural University, Beijing, China
| | - Kaiyuan Huang
- College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation. Polymers (Basel) 2023; 15:polym15051249. [PMID: 36904490 PMCID: PMC10007139 DOI: 10.3390/polym15051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Parylene C has been widely used in the fields of microelectromechanical systems (MEMS) and electronic device encapsulation because of its unique properties, such as biocompatibility and conformal coverage. However, its poor adhesion and low thermal stability limit its use in a wider range of applications. This study proposes a novel method for improving the thermal stability and enhancing the adhesion between Parylene and Si by copolymerizing Parylene C with Parylene F. The successful preparation of Parylene copolymer films containing different ratios of Parylene C and Parylene F was confirmed using Fourier-transform infrared spectroscopy and surface energy calculations. The proposed method resulted in the copolymer film having an adhesion 10.4 times stronger than that of the Parylene C homopolymer film. Furthermore, the friction coefficients and cell culture capability of the Parylene copolymer films were tested. The results indicated no degradation compared with the Parylene C homopolymer film. This copolymerization method significantly expands the applications of Parylene materials.
Collapse
|
14
|
Musgrove HB, Saleheen A, Zatorski JM, Arneja A, Luckey CJ, Pompano RR. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices. MICROMACHINES 2023; 14:435. [PMID: 36838135 PMCID: PMC9964747 DOI: 10.3390/mi14020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Bubbles are a common cause of microfluidic malfunction, as they can perturb the fluid flow within the micro-sized features of a device. Since gas bubbles form easily within warm cell culture reagents, degassing is often necessary for biomicrofluidic systems. However, fabrication of a microscale degasser that can be used modularly with pre-existing chips may be cumbersome or challenging, especially for labs not equipped for traditional microfabrication, and current commercial options can be expensive. Here, we address the need for an affordable, accessible bubble trap that can be used in-line for continuous perfusion of organs-on-chip and other microfluidic cultures. We converted a previously described, manually fabricated PDMS degasser to allow scaled up, reproducible manufacturing by commercial machining or fused deposition modeling (FDM) 3D printing. After optimization, the machined and 3D printed degassers were found to be stable for >2 weeks under constant perfusion, without leaks. With a ~140 µL chamber volume, trapping capacity was extrapolated to allow for ~5-20 weeks of degassing depending on the rate of bubble formation. The degassers were biocompatible for use with cell culture, and they successfully prevented bubbles from reaching a downstream microfluidic device. Both degasser materials showed little to no leaching. The machined degasser did not absorb reagents, while the FDM printed degasser absorbed a small amount, and both maintained fluidic integrity from 1 µL/min to >1 mL/min of pressure-driven flow. Thus, these degassers can be fabricated in bulk and allow for long-term, efficient bubble removal in a simple microfluidic perfusion set-up.
Collapse
Affiliation(s)
- Hannah B. Musgrove
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Amirus Saleheen
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Abhinav Arneja
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
15
|
Heatherington E, Zhao X, Goyal N, Ounaies Z, Frecker M. On the Design and Testing of an Origami Inspired Nasal Cover: Mitigating Aerosol Risks During Endoscopic Sinus Procedures. J Med Device 2022. [DOI: 10.1115/1.4055251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Aerosols generated during endoscopic sinus procedures present a concern to the health and safety of healthcare personnel especially with the presence of COVID-19. The purpose of this study is to describe the design and testing of a nasal cover to restrict aerosolized pathogens. The nasal cover was designed to sit overtop the nose with conformal slits for insertion of endoscopic instrumentation. Polydimethylsiloxane (PDMS) was chosen as the nasal mask material and its composition, thickness, and slit geometry were selected using a Taguchi experimental design and survey with clinical collaborators at Penn State Milton S. Hershey Medical Center. The nasal cover was designed using principles of origami engineering to be manufactured flat then folded into its operating state. Form and functionality were evaluated by surgeons, fellows, and residents in the aforementioned survey. Aerosol containment was evaluated by measuring smoke, representative of surgical aerosols, with an optical particle counter. A 25:1 composition PDMS with 3mm thickness and vertical slit geometry was chosen for the nasal cover design. Survey results demonstrated that the origami cover sat well on the nose and did not significantly impact the surgical conditions with single instrumentation. On average, this nasal cover was found to restrict more than 93% of 0.3µm aerosols, and more than 99% of all aerosols larger than 0.5µm in size. Use of a patient worn nasal cover has the potential to drastically reduce the risk to hospital personnel during endonasal surgeries by reducing aerosol generation and potential pathogen spread.
Collapse
Affiliation(s)
- Evan Heatherington
- Department of Mechanical Engineering, The Pennsylvania State University, University Park , PA, USA
| | - Xiaoyue Zhao
- Department of Mechanical Engineering, The Pennsylvania State University, University Park , PA, USA
| | - Neerav Goyal
- Department of Otolaryngology-Head and Neck Surgery, Penn State College of Medicine , 500 University Dr, MC, Hershey, PA 17033, USA
| | - Zoubeida Ounaies
- Department of Mechanical Engineering, The Pennsylvania State University, University Park , PA, USA
| | - Mary Frecker
- Department of Mechanical Engineering, The Pennsylvania State University, University Park , PA, USA
| |
Collapse
|