1
|
Duan S, Qian L, Zheng Y, Zhu Y, Liu X, Dong L, Yan W, Zhang J. Mechanisms of the Accelerated Li + Conduction in MOF-Based Solid-State Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314120. [PMID: 38578406 DOI: 10.1002/adma.202314120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Indexed: 04/06/2024]
Abstract
Solid polymer electrolytes (SPEs) for lithium metal batteries have garnered considerable interests owing to their low cost, flexibility, lightweight, and favorable interfacial compatibility with battery electrodes. Their soft mechanical nature compared to solid inorganic electrolytes give them a large advantage to be used in low pressure solid-state lithium metal batteries, which can avoid the cost and weight of the pressure cages. However, the application of SPEs is hindered by their relatively low ionic conductivity. In addressing this limitation, enormous efforts are devoted to the experimental investigation and theoretical calculations/simulation of new polymer classes. Recently, metal-organic frameworks (MOFs) have been shown to be effective in enhancing ion transport in SPEs. However, the mechanisms in enhancing Li+ conductivity have rarely been systematically and comprehensively analyzed. Therefore, this review provides an in-depth summary of the mechanisms of MOF-enhanced Li+ transport in MOF-based solid polymer electrolytes (MSPEs) in terms of polymer, MOF, MOF/polymer interface, and solid electrolyte interface aspects, respectively. Moreover, the understanding of Li+ conduction mechanisms through employing advanced characterization tools, theoretical calculations, and simulations are also reviewed in this review. Finally, the main challenges in developing MSPEs are deeply analyzed and the corresponding future research directions are also proposed.
Collapse
Affiliation(s)
- Song Duan
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Lanting Qian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yanfei Zhu
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, P. R. China
| | - Xiang Liu
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Li Dong
- Zhaoqing Leoch Battery Technology Co., Ltd, Zhaoqing City, 526000, P. R. China
| | - Wei Yan
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jiujun Zhang
- Institute of New Energy Materials and Engineering/School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
2
|
Wang X, Jin S, Liu Z. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries. Chem Commun (Camb) 2024; 60:5369-5390. [PMID: 38687504 DOI: 10.1039/d4cc01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Solid-state electrolytes (SSEs) are the key materials in the new generation of all-solid-state lithium ion/metal batteries. Metal-organic frameworks (MOFs) are ideal materials for developing solid electrolytes because of their structural diversity and porous properties. However, there are several significant issues and obstacles involved, such as lower ion conductivity, a smaller ion transport number, a narrower electrochemical stability window and poor interface contact. In this review, a comprehensive analysis and summary of the unique ion-conducting behavior of MOF-based electrolytes in rechargeable batteries are presented, and the different design principles of MOF-based SSEs are classified and emphasized. Accordingly, four design principles for achieving these MOF-based SSEs are presented and the influence of SSEs combined with MOFs on the electrochemical performance of the batteries is described. Finally, the challenges in the application of MOF materials in lithium ion/metal batteries are explored, and directions for future research on MOF-based electrolytes are proposed. This review will deepen the understanding of MOF-based electrolytes and promote the development of high-performance solid-state lithium ion/metal batteries. This review not only provides theoretical guidance for research on new MOF-based SSE systems, but also contributes to further development of MOFs applied to rechargeable batteries.
Collapse
Affiliation(s)
- Xin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Sheng Jin
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
3
|
Zhang J, Wang Y, Xia Q, Li X, Liu B, Hu T, Tebyetekerwa M, Hu S, Knibbe R, Chou S. Confining Polymer Electrolyte in MOF for Safe and High-Performance All-Solid-State Sodium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202318822. [PMID: 38372507 DOI: 10.1002/anie.202318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Nanoconfined polymer molecules exhibit profound transformations in their properties and behaviors. Here, we present the synthesis of a polymer-in-MOF single ion conducting solid polymer electrolyte, where polymer segments are partially confined within nanopores ZIF-8 particles through Lewis acid-base interactions for solid-state sodium-metal batteries (SSMBs). The unique nanoconfinement effectively weakens Na ion coordination with the anions, facilitating the Na ion dissociation from salt. Simultaneously, the well-defined nanopores within ZIF-8 particles provide oriented and ordered migration channels for Na migration. As a result, this pioneering design allows the solid polymer electrolyte to achieve a Na ion transference number of 0.87, Na ion conductivity of 4.01×10-4 S cm-1, and an extended electrochemical voltage window up to 4.89 V vs. Na/Na+. The assembled SSMBs (with Na3V2(PO4)3 as the cathode) exhibit dendrite-free Na-metal deposition, promising rate capability, and stable cycling performance with 96 % capacity retention over 300 cycles. This innovative polymer-in-MOF design offers a compelling strategy for advancing high-performance and safe solid-state metal battery technologies.
Collapse
Affiliation(s)
- Jinfang Zhang
- School of Materials Science and Engineering, North University of China, 030051, Taiyuan, Shanxi, China
| | - Yuanyuan Wang
- School of Materials Science and Engineering, North University of China, 030051, Taiyuan, Shanxi, China
| | - Qingbing Xia
- School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Xiaofeng Li
- School of Materials Science and Engineering, North University of China, 030051, Taiyuan, Shanxi, China
| | - Bin Liu
- School of Energy and Power Engineering, North University of China, 030051, Taiyuan, Shanxi, China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, 030051, Taiyuan, Shanxi, China
| | - Mike Tebyetekerwa
- School of Chemical Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Shengliang Hu
- School of Energy and Power Engineering, North University of China, 030051, Taiyuan, Shanxi, China
| | - Ruth Knibbe
- School of Mechanical and Mining Engineering, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou University, 325035, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Zheng Z, Zhou J, Zhu Y. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning. Chem Soc Rev 2024; 53:3134-3166. [PMID: 38375570 DOI: 10.1039/d3cs00572k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The increasing demand for high-security, high-performance, and low-cost energy storage systems (EESs) driven by the adoption of renewable energy is gradually surpassing the capabilities of commercial lithium-ion batteries (LIBs). Solid-state electrolytes (SSEs), including inorganics, polymers, and composites, have emerged as promising candidates for next-generation all-solid-state batteries (ASSBs). ASSBs offer higher theoretical energy densities, improved safety, and extended cyclic stability, making them increasingly popular in academia and industry. However, the commercialization of ASSBs still faces significant challenges, such as unsatisfactory interfacial resistance and rapid dendrite growth. To overcome these problems, a thorough understanding of the complex chemical-electrochemical-mechanical interactions of SSE materials is essential. Recently, computational methods have played a vital role in revealing the fundamental mechanisms associated with SSEs and accelerating their development, ranging from atomistic first-principles calculations, molecular dynamic simulations, multiphysics modeling, to machine learning approaches. These methods enable the prediction of intrinsic properties and interfacial stability, investigation of material degradation, and exploration of topological design, among other factors. In this comprehensive review, we provide an overview of different numerical methods used in SSE research. We discuss the current state of knowledge in numerical auxiliary approaches, with a particular focus on machine learning-enabled methods, for the understanding of multiphysics-couplings of SSEs at various spatial and time scales. Additionally, we highlight insights and prospects for SSE advancements. This review serves as a valuable resource for researchers and industry professionals working with energy storage systems and computational modeling and offers perspectives on the future directions of SSE development.
Collapse
Affiliation(s)
- Zhuoyuan Zheng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China.
| | - Jie Zhou
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China.
| | - Yusong Zhu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 211816, China.
| |
Collapse
|
5
|
Barbosa JC, Correia DM, Fidalgo-Marijuan A, Gonçalves R, Ferdov S, de Zea Bermudez V, Lanceros-Mendez S, Costa CM. High Performance Ternary Solid Polymer Electrolytes Based on High Dielectric Poly(vinylidene fluoride) Copolymers for Solid State Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37379238 DOI: 10.1021/acsami.3c03361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Renewable energy sources require efficient energy storage systems. Lithium-ion batteries stand out among those systems, but safety and cycling stability problems still need to be improved. This can be achieved by the implementation of solid polymer electrolytes (SPE) instead of the typically used separator/electrolyte system. Thus, ternary SPEs have been developed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), P(VDF-TrFE-CFE) as host polymers, clinoptilolite (CPT) zeolite added to stabilize the battery cycling performance, and ionic liquids (ILs) (1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN])), 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PMPyr][TFSI]) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), incorporated to increase the ionic conductivity. The samples were processed by doctor blade with solvent evaporation at 160 °C. The nature of the polymer matrix and fillers affect the morphology and mechanical properties of the samples and play an important role in electrochemical parameters such as ionic conductivity value, electrochemical window stability, and lithium-transference number. The best ionic conductivity (4.2 × 10-5 S cm-1) and lithium transference number (0.59) were obtained for the PVDF-HFP-CPT-[PMPyr][TFSI] sample. Charge-discharge battery tests at C/10 showed excellent battery performance with values of 150 mAh g-1 after 50 cycles, regardless of the polymer matrix and IL used. In the rate performance tests, the best SPE was the one based on the P(VDF-TrFE-CFE) host polymer, with a discharge value at C-rate of 98.7 mAh g-1, as it promoted ionic dissociation. This study proves for the first time the suitability of P(VDF-TrFE-CFE) as SPE in lithium-ion batteries, showing the relevance of the proper selection of the polymer matrix, IL type, and lithium salt in the formulation of the ternary SPE, in order to optimize solid-state battery performance. In particular, the enhancement of the ionic conductivity provided by the IL and the effect of the high dielectric constant polymer P(VDF-TrFE-CFE) in improving battery cyclability in a wide range of discharge rates must be highlighted.
Collapse
Affiliation(s)
- João C Barbosa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
- CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Renato Gonçalves
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Stanislav Ferdov
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| |
Collapse
|
6
|
Barbosa J, Correia DM, Fidalgo-Marijuan A, Gonçalves R, Ferdov S, de Zea Bermudez V, Costa CM, Lanceros-Mendez S. Influence of Solvent Evaporation Temperature on the Performance of Ternary Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- co-hexafluoropropylene) Combining an Ionic Liquid and a Zeolite. ACS APPLIED ENERGY MATERIALS 2023; 6:5239-5248. [PMID: 37234969 PMCID: PMC10206616 DOI: 10.1021/acsaem.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Solid polymer electrolytes (SPEs) will allow improving safety and durability in next-generation solid-state lithium-ion batteries (LIBs). Within the SPE class, ternary composites are a suitable approach as they provide high room-temperature ionic conductivity and excellent cycling and electrochemical stability. In this work, ternary SPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by solvent evaporation at different temperatures (room temperature, 80, 120, and 160 °C). Solvent evaporation temperature affects the morphology, degree of crystallinity, and mechanical properties of the samples as well as the ionic conductivity and lithium transference number. The highest ionic conductivity (1.2 × 10-4 S·cm-1) and lithium transference number (0.66) have been obtained for the SPE prepared at room temperature and 160 °C, respectively. Charge-discharge battery tests show the highest value of discharge capacity of 149 and 136 mAh·g-1 at C/10 and C/2 rates, respectively, for the SPE prepared at 160 °C. We conclude that the fine control of the solvent evaporation temperature during the preparation of the SPE allows us to optimize solid-state battery performance.
Collapse
Affiliation(s)
- João
C. Barbosa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- CQ-VR, University
of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | | | - Arkaitz Fidalgo-Marijuan
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department
of Organic and Inorganic Chemistry, University
of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Renato Gonçalves
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Stanislav Ferdov
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Verónica de Zea Bermudez
- CQ-VR, University
of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Department
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of
Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Liang H, Wang L, Wang A, Song Y, Wu Y, Yang Y, He X. Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. NANO-MICRO LETTERS 2023; 15:42. [PMID: 36719552 PMCID: PMC9889599 DOI: 10.1007/s40820-022-00996-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 05/19/2023]
Abstract
Highlights The current issues and recent advances in polymer/inorganic composite electrolytes are reviewed. The molecular interaction between different components in the composite environment is highlighted for designing high-performance polymer/inorganic composite electrolytes. Inorganic filler properties that affect polymer/inorganic composite electrolyte performance are pointed out. Future research directions for polymer/inorganic composite electrolytes compatible with high-voltage lithium metal batteries are outlined. Abstract Solid-state electrolytes (SSEs) are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density. Among them, polymer solid-state electrolytes (PSEs) are competitive candidates for replacing commercial liquid electrolytes due to their flexibility, shape versatility and easy machinability. Despite the rapid development of PSEs, their practical application still faces obstacles including poor ionic conductivity, narrow electrochemical stable window and inferior mechanical strength. Polymer/inorganic composite electrolytes (PIEs) formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes (ISEs), exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics. Some PIEs are highly compatible with high-voltage cathode and lithium metal anode, which offer desirable access to obtaining lithium metal batteries with high energy density. This review elucidates the current issues and recent advances in PIEs. The performance of PIEs was remarkably influenced by the characteristics of the fillers including type, content, morphology, arrangement and surface groups. We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs. Finally, the obstacles and opportunities for creating high-performance PIEs are outlined. This review aims to provide some theoretical guidance and direction for the development of PIEs.
Collapse
Affiliation(s)
- Hongmei Liang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Aiping Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Youzhi Song
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yanzhou Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
8
|
Poly(vinylidene fluoride-co-hexafluoropropylene) based tri-composites with zeolite and ionic liquid for electromechanical actuator and lithium-ion battery applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Urgoiti-Rodriguez M, Vaquero-Vílchez S, Mirandona-Olaeta A, Fernández de Luis R, Goikolea E, Costa CM, Lanceros-Mendez S, Fidalgo-Marijuan A, Ruiz de Larramendi I. Exploring ionic liquid-laden metal-organic framework composite materials as hybrid electrolytes in metal (ion) batteries. Front Chem 2022; 10:995063. [PMID: 36186579 PMCID: PMC9515320 DOI: 10.3389/fchem.2022.995063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
This review focuses on the combination of metal-organic frameworks (MOFs) and ionic liquids (ILs) to obtain composite materials to be used as solid electrolytes in metal-ion battery applications. Benefiting from the controllable chemical composition, tunable pore structure and surface functionality, MOFs offer great opportunities for synthesizing high-performance electrolytes. Moreover, the encapsulation of ILs into porous materials can provide environmentally benign solid-state electrolytes for electrochemical devices. Due to the versatility of MOF-based materials, in this review we also explore their use as anodes and cathodes in Li- and Na-ion batteries. Finally, solid IL@MOF electrolytes and their implementation into Li and Na batteries have been analyzed, as well as the design and advanced manufacturing of solid IL@MOF electrolytes embedded on polymeric matrices.
Collapse
Affiliation(s)
- Maitane Urgoiti-Rodriguez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Saloa Vaquero-Vílchez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Alexander Mirandona-Olaeta
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Roberto Fernández de Luis
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Eider Goikolea
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Carlos M. Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Arkaitz Fidalgo-Marijuan
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
| | - Idoia Ruiz de Larramendi
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| |
Collapse
|
10
|
Serra J, Fidalgo-Marijuan A, Barbosa JC, Correia DM, Gonçalves R, Porro JM, Lanceros-Mendez S, Costa CM. Lithium-Ion Battery Solid Electrolytes Based on Poly(vinylidene Fluoride)-Metal Thiocyanate Ionic Liquid Blends. ACS APPLIED POLYMER MATERIALS 2022; 4:5909-5919. [PMID: 36568737 PMCID: PMC9778058 DOI: 10.1021/acsapm.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 06/17/2023]
Abstract
Solid polymer electrolytes (SPEs) are required to improve battery safety through the elimination of the liquid electrolyte solution in current batteries. This work is focused on the development of a hybrid SPE based on poly(vinylidene fluoride), PVDF, and 1-butyl-3-methylimidazolium cobalt(II) isothiocyanate, [BMIM]2[(SCN)4Co] magnetic ionic liquid (MIL), and its battery cycling behavior at room temperature. The addition of MIL in filler contents up to 40 wt % to the PVDF matrix does not influence the compact morphology of the samples obtained by solvent casting. The polar β-phase of PVDF increases with increasing MIL content, whereas the degree of crystallinity, thermal degradation temperature, and mechanical properties of the MIL/PVDF blends decrease with increasing MIL content. The ionic conductivity of the MIL/PVDF blends increases both with temperature and MIL content, showing the highest ionic conductivity of 7 × 10-4 mS cm-1 at room temperature for the MIL/PVDF blend with 40 wt % of MIL. The cathodic half-cells prepared with this blend as SPE show good reversibility and excellent cycling behavior at different C-rates, with a discharge capacity of 80 mAh g-1 at a C/10-rate with a Coulombic efficiency of 99%. The developed magnetic SPE, with excellent performance at room temperature, shows potential for the implementation of sustainable lithium-ion batteries, which can be further tuned by the application of an external magnetic field.
Collapse
Affiliation(s)
- João
P. Serra
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Department
of Organic and Inorganic Chemistry, University
of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - João C. Barbosa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Centre
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Daniela M. Correia
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Centre
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Renato Gonçalves
- Centre of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - José M. Porro
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Lee JY, Yu TY, Yeh SC, Wu NL, Jeng RJ. Spiro-Twisted Benzoxazine Derivatives Bearing Nitrile Group for All-Solid-State Polymer Electrolytes in Lithium Batteries. Polymers (Basel) 2022; 14:2869. [PMID: 35890645 PMCID: PMC9317537 DOI: 10.3390/polym14142869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, two nitrile-functionalized spiro-twisted benzoxazine monomers, namely 2,2'-((6,6,6',6'-tetramethyl-6,6',7,7'-tetrahydro-2H,2'H-8,8'-spirobi[indeno[5,6-e][1,3]oxazin]-3,3'(4H,4'H)-diyl)bis(4,1-phenylene))diacetonitrile (TSBZBC) and 4,4'-(6,6,6',6'-tetramethyl-6,6',7,7'-tetrahydro-2H,2'H-8,8'-spirobi[indeno[5,6-e][1,3]oxazin]-3,3'(4H,4'H)-diyl)dibenzonitrile (TSBZBN) were successfully developed as cross-linkable precursors. In addition, the incorporation of the nitrile group by covalent bonding onto the crosslinked spiro-twisted molecular chains improve the miscibility of SPE membranes with lithium salts while maintaining good mechanical properties. Owing to the presence of a high fractional free volume of spiro-twisted matrix, the -CN groups would have more space for rotation and vibration to assist lithium migration, especially for the benzyl cyanide-containing SPE. When combined with poly (ethylene oxide) (PEO) electrolytes, a new type of CN-containing semi-interpenetrating polymer networks for solid polymer electrolytes (SPEs) were prepared. The PEO-TSBZBC and PEO-TSBZBN composite SPEs (with 20 wt% crosslinked structure in the polymer) are denoted as the BC20 and BN20, respectively. The BC20 sample exhibited an ionic conductivity (σ) of 3.23 × 10-4 S cm-1 at 80 °C and a Li+ ion transference number of 0.187. The LiFePO4 (LFP)|BC20|Li sample exhibited a satisfactory charge-discharge capacity of 163.6 mAh g-1 at 0.1 C (with approximately 100% coulombic efficiency). Furthermore, the Li|BC20|Li cell was more stable during the Li plating/stripping process than the Li|BN20|Li and Li|PEO|Li samples. The Li|BC20|Li symmetric cell could be cycled continuously for more than 2700 h without short-circuiting. In addition, the specific capacity of the LFP|BC20|Li cell retained 87% of the original value after 50 cycles.
Collapse
Affiliation(s)
- Jen-Yu Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan; (J.-Y.L.); (T.-Y.Y.)
| | - Tsung-Yu Yu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan; (J.-Y.L.); (T.-Y.Y.)
| | - Shih-Chieh Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan; (J.-Y.L.); (T.-Y.Y.)
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Nae-Lih Wu
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan; (J.-Y.L.); (T.-Y.Y.)
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
12
|
Barbosa J, Gonçalves R, Costa CM, Lanceros-Méndez S. Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries. ACS OMEGA 2022; 7:14457-14464. [PMID: 35572743 PMCID: PMC9089680 DOI: 10.1021/acsomega.2c01926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
Lithium-ion batteries (LIBs) are the most widely used energy storage system because of their high energy density and power, robustness, and reversibility, but they typically include an electrolyte solution composed of flammable organic solvents, leading to safety risks and reliability concerns for high-energy-density batteries. A step forward in Li-ion technology is the development of solid-state batteries suitable in terms of energy density and safety for the next generation of smart, safe, and high-performance batteries. Solid-state batteries can be developed on the basis of a solid polymer electrolyte (SPE) that may rely on natural polymers in order to replace synthetic ones, thereby taking into account environmental concerns. This work provides a perspective on current state-of-the-art sustainable SPEs for lithium-ion batteries. The recent developments are presented with a focus on natural polymers and their relevant properties in the context of battery applications. In addition, the ionic conductivity values and battery performance of natural polymer-based SPEs are reported, and it is shown that sustainable SPEs can become essential components of a next generation of high-performance solid-state batteries synergistically focused on performance, sustainability, and circular economy considerations.
Collapse
Affiliation(s)
- João
C. Barbosa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-053 Braga, Portugal
| | - Renato Gonçalves
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-053 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
13
|
Kan WQ, Zhou LM, Zhou YD, Meng M, Zhang Y, He YC. Three Co(II)-containing coordination polymers displaying solvent determined entanglement structures and different ammonia and amines selective sensing properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Maia BA, Magalhães N, Cunha E, Braga MH, Santos RM, Correia N. Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers (Basel) 2022; 14:403. [PMID: 35160393 PMCID: PMC8839412 DOI: 10.3390/polym14030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Solid-state electrolytes are a promising family of materials for the next generation of high-energy rechargeable lithium batteries. Polymer electrolytes (PEs) have been widely investigated due to their main advantages, which include easy processability, high safety, good mechanical flexibility, and low weight. This review presents recent scientific advances in the design of versatile polymer-based electrolytes and composite electrolytes, underlining the current limitations and remaining challenges while highlighting their technical accomplishments. The recent advances in PEs as a promising application in structural batteries are also emphasized.
Collapse
Affiliation(s)
- Beatriz Arouca Maia
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
- Chemical Engineering Department, FEUP—Faculty of Engineering, University of Porto, 4200-265 Porto, Portugal
| | - Natália Magalhães
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
| | - Eunice Cunha
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
| | - Maria Helena Braga
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
- Engineering Physics Department, FEUP—Faculty of Engineering, University of Porto, 4200-265 Porto, Portugal
| | - Raquel M. Santos
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
| | - Nuno Correia
- Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4000-014 Porto, Portugal; (B.A.M.); (N.M.); (R.M.S.); (N.C.)
- LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
| |
Collapse
|
15
|
Teo LP, Buraidah MH, Arof AK. Development on Solid Polymer Electrolytes for Electrochemical Devices. Molecules 2021; 26:6499. [PMID: 34770908 PMCID: PMC8587213 DOI: 10.3390/molecules26216499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Electrochemical devices, especially energy storage, have been around for many decades. Liquid electrolytes (LEs), which are known for their volatility and flammability, are mostly used in the fabrication of the devices. Dye-sensitized solar cells (DSSCs) and quantum dot sensitized solar cells (QDSSCs) are also using electrochemical reaction to operate. Following the demand for green and safer energy sources to replace fossil energy, this has raised the research interest in solid-state electrochemical devices. Solid polymer electrolytes (SPEs) are among the candidates to replace the LEs. Hence, understanding the mechanism of ions' transport in SPEs is crucial to achieve similar, if not better, performance to that of LEs. In this paper, the development of SPE from basic construction to electrolyte optimization, which includes polymer blending and adding various types of additives, such as plasticizers and fillers, is discussed.
Collapse
Affiliation(s)
| | | | - Abdul Kariem Arof
- Centre for Ionics University of Malaya, Physics Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (L.P.T.); (M.H.B.)
| |
Collapse
|