1
|
Zhu H, Li T, Fu L, Bai J, Li S, Bai Y, Deng S, Yuan S, Liu Q, Ma Y, Peng L, Xu J, Ma N, Cheng G, Ding J, Zhang T. A Proprioceptive Janus Fiber with Controllable Multistage Segments for Bionic Soft Robots. ACS NANO 2024; 18:32023-32037. [PMID: 39499810 DOI: 10.1021/acsnano.4c10117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Smart fibers capable of integrating the multifunctionality of actuation and self-sensation into a single proprioceptive device have significant applications in soft robots and biomedicine. Especially, the achievement of self-sensing the movement patterns of different actuating segments in one fiber is still a great challenge. Herein, in this study, a fiber with the controllable Janus architecture is successfully proposed via an artful centrifugation-driven hierarchical gradient self-assembly strategy, which couples two functional components of piezoresistive carbon nanotubes and magnetic NdFeB nanoparticles into the upper and lower layers of this flexible fibrous framework with the porous sponge structure partially, respectively. As predicted, the final product exhibits the as-anticipated bionic proprioceptive behaviors of programmable actuating deformation and highly selective response to bending, stretching, and pressure with high washable stability and mechanical performances. More importantly, assisted by the different three-dimensional printing molds, the superlong Janus fibers with various controllable lengths of the reversed but sequential multistage segments can be fabricated, offering the hybrid magnetic actuation and proprioceptive sensation existing at arbitrary nodes. Therefore, several kinds of soft organism-inspired Janus fiber-derived soft robots with the arbitrarily controlled segmental characters were assembled as the proof-of-concept, which can not only realize a snake or inchworm-inspired successive contracting-stretching deformation and a sperm-inspired self-rotating crawling motion but also self-sense the signals of each segment themselves in real time and then be used to navigate an object to target position in a liquid-filled confined tube. It is believed that this work promotes the further development of proprioceptive soft robots.
Collapse
Affiliation(s)
- Hao Zhu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tie Li
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Lei Fu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Ju Bai
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shengzhao Li
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Yuanyuan Bai
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shihao Deng
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Shen Yuan
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Qianzuo Liu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunping Ma
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Peng
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Jingyi Xu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Nan Ma
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhang
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Qi Y, Shao J, Zhao Y, Niu T, Yang Y, Zhong S, Xie S, Lin Y, Yang Y. A Pneumatic Flexible Linear Actuator Inspired by Snake Swallowing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405051. [PMID: 39264248 PMCID: PMC11538662 DOI: 10.1002/advs.202405051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/25/2024] [Indexed: 09/13/2024]
Abstract
Soft robots spark a revolution in human-machine interaction. However, developing high-performance soft actuators remains challenging due to trade-offs among output force, driving distance, control precision, safety, and compliance. Here, addressing the lack of long-distance, high-precision flexible linear actuators, an innovative pneumatic flexible linear actuator (PFLA) is introduced, inspired by the smooth and controlled process observed in snakes ingesting sizable food, such as eggs. This PFLA combines a soft tube, emulating the snake's body cavity, with a pneumatically driven piston. Through the joint modulation of moving resistance and driving force by pneumatic pressure, the PFLA exhibits exceptional motion control capabilities, including self-holding without pressure supply, smooth low-speed motion (down to 0.004 m s-1), high-speed motion (up to 5.6 m s-1) with low air pressure demand, and a self-protection mechanism. Highlighting its adaptability and versatility, the PFLA finds applications in various settings, including a wearable assistive devices, a manipulator capable of precise path tracking and positioning, and rapid transportation in diverse environments for pipeline inspection and firefighting. This PFLA combines biomimetic principles with sophisticated fluidic actuation to achieve long-distance, flexible, precise, and safe actuation, offering a more adaptive solution for force/motion transmission, particularly in challenging environments.
Collapse
Affiliation(s)
- Yuyan Qi
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Jiaqi Shao
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Yongjian Zhao
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Tong Niu
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Yi Yang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Songyi Zhong
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Shaorong Xie
- School of Computer Engineering and ScienceShanghai UniversityShanghai200444China
| | - Yangqiao Lin
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| | - Yang Yang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
| |
Collapse
|
3
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
4
|
Li Q, Cheng M, Wu M. Effective On-Line Performance Modulation and Efficient Continuous Preparation of Ultra-Long Twisted and Coiled Polymer Artificial Muscles for Engineering Applications. Soft Robot 2024; 11:519-530. [PMID: 38190210 DOI: 10.1089/soro.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Artificial muscle is a kind of thread-like actuator that can produce contractile strain, generate force, and output mechanical work under external stimulations to imitate the functions and achieve the performances of biological muscles. It can be used to actuate various bionic soft robots and has broad application prospects. The electrically controlled twisted and coiled polymer (TCP) artificial muscles, with the advantages of high power density, large stroke and low driving voltage, while also being electrolyte free, are the most practical. However, the relationship between the muscle performances and its preparation parameters is not very clear yet, and the complete procedure of designing and preparing TCP muscles according to actual needs has not been established. Besides, current preparation approaches are very time-consuming and cannot make ultra-long TCP muscles. These problems greatly limit wide applications of TCP artificial muscles. In this study, we studied and built the relationship between the actuating performances of TCP muscles and their preparation parameters, so that suitable TCP muscles can be easily designed and prepared according to actual requirements. Moreover, an efficient preparation method integrating one-step annealing technique has been developed to realize on-line performance modulation and continuous fabrication of ultra-long TCP muscles. By graphically assembling long muscles on heat-resist films, we designed and produced a series of fancy soft robots (butterfly, flower, starfish), which can perform various bionic movements and complete specific tasks. This work has achieved efficient on-demand preparation and large-scale assembly of ultra-long TCP muscles, laying solid foundations for their engineering applications in soft robot field.
Collapse
Affiliation(s)
- Qingwei Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Mingxing Cheng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Mengjie Wu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Wu W, Shi L, Qian K, Zhou J, Zhao T, Thaiboonrod S, Miao M, Feng X. Synergistic strengthening of PVA ionic conductive hydrogels using aramid nanofibers and tannic acid for mechanically robust, antifreezing, water-retaining and antibacterial flexible sensors. J Colloid Interface Sci 2024; 654:1260-1271. [PMID: 37907005 DOI: 10.1016/j.jcis.2023.10.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Ion-conductive hydrogels with multi-functionality have gained significant attraction as flexible sensors in various fields such as wearable health monitoring and human motion detection, owing to their high ion conductivity, excellent flexibility and stretchability, and easy availability. In this work, multifunctional ion-conductive hydrogel with excellent mechanical properties, antifreezing properties, water retention and antibacterial performance was fabricated by the freeze-thaw crosslinking between polyvinyl alcohol (PVA) and aramid nanofibers (ANF), and the subsequent solution immersion crosslinking in a mixture of tannic acid (TA) and CaCl2 solution (DMSO/H2O as co-solvent). The rational engineering of a multi-spatial distributed hydrogen bond and Ca2+ coordination bond networks within the hydrogel led to a significant improvement in mechanical properties. Furthermore, through the introduction of TA and binary solvents (DMSO/H2O), the hydrogel had witnessed a substantial enhancement in its antimicrobial properties and water retention capacity. The resultant PAT5/CaCl2-5% (DMSO/H2O) hydrogel exhibited outstanding elongation at break (754.73%), tensile strength (6.25 MPa), electrical conductivity (3.09 S/m), which can be employed in flexible sensors to monitor real-time functional motion for human under diverse conditions. As such, this innovation opens up a novel pathway for envisioning flexible sensor devices, particularly in the realm of human activity monitoring.
Collapse
Affiliation(s)
- Wanting Wu
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Kunpeng Qian
- School of Materials Sciences and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jianyu Zhou
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Tingting Zhao
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Sineenat Thaiboonrod
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Miao Miao
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xin Feng
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Xue J, Tian Z, Xiao X, Du C, Niu S, Han Z, Liu Y. Magnetoactive Soft Materials with Programmable Magnetic Domains for Multifunctional Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56223-56232. [PMID: 37988636 DOI: 10.1021/acsami.3c11842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Despite considerable progress having been made in the research of soft actuators, there remains a grand challenge in creating a facile manufacturing process that offers both extensive programmability and exceptional actuation capabilities. Taking inspiration from uncomplicated small organisms, this work aims to develop soft actuators that can be mobilized through straightforward design and control, similar to caterpillars or inchworms. They execute intricate actions and functions to meet survival needs in the most efficient manner possible. Here, a novel soft actuator with uniformly dispersed ferromagnetic microparticles but programmatic magnetic profile distribution is proposed by a convenient magnetization process. Benefiting from its high magnetic sensitivity and good matrix flexibility, the actuator can simultaneously achieve reversible, remote, and fast programmable shape transformation and controllable movement even in a magnetic field as low as 14 Gs. Complemented by intrinsic material properties and structural configuration, actuation employing spatial magnetization profiles can facilitate multiple modes of locomotion when subjected to magnetic fields, allowing for an efficient manipulation task of both solid and liquid media. More importantly, a finite element model is developed to assist in the design of the interaction between the alternating magnetic field and the magnetic torques. This advanced soft actuator would strongly push forward major breakthroughs in key applications such as intelligent sensors, disaster rescue, and wearable devices.
Collapse
Affiliation(s)
- Jingze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
| | - Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
| | - Xinze Xiao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| |
Collapse
|
7
|
Mei G, Li J, Feng D, Qian D, Liu Z. Twistocaloric Modeling of Elastomer Fibers and Experimental Validation. Macromol Rapid Commun 2023; 44:e2300275. [PMID: 37344253 DOI: 10.1002/marc.202300275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Indexed: 06/23/2023]
Abstract
The twistocaloric effect is attributed to the change in entropy of the material driven by torsional stress. It is responsible for the torsional refrigeration of fiber materials that has been widely exploited as one of the solid-state cooling techniques with high efficiency and low volume change rate. The lack of theories and mathematical models of twistocaloric effect, however, limits broad applications of torsional refrigeration. In this work, a twistocaloric model is established to capture the relationship between twist density and temperature variation of natural rubber fibers and thermoplastic elastomer yarns. An experimental setup consisting torsion actuator and torque sensor coupled with a temperature measurement system is built to validate the model. Using the Maxwell relationship, twistocaloric coefficient is measured by quantifying the thermal effect induced by torsion under shear strain. The experimental characterization of the twistocaloric effect in natural rubber fiber and thermoplastic elastomer yarn are consistent with the theoretical predictions.
Collapse
Affiliation(s)
- Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry and College of Pharmacy, Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Jiatian Li
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry and College of Pharmacy, Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Danyang Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry and College of Pharmacy, Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas Richardson, Dallas, TX, 75080, USA
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry and College of Pharmacy, Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Yang Y, Li D, Sun Y, Wu M, Su J, Li Y, Yu X, Li L, Yu J. Muscle-inspired soft robots based on bilateral dielectric elastomer actuators. MICROSYSTEMS & NANOENGINEERING 2023; 9:124. [PMID: 37814608 PMCID: PMC10560252 DOI: 10.1038/s41378-023-00592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023]
Abstract
Muscle groups perform their functions in the human body via bilateral muscle actuation, which brings bionic inspiration to artificial robot design. Building soft robotic systems with artificial muscles and multiple control dimensions could be an effective means to develop highly controllable soft robots. Here, we report a bilateral actuator with a bilateral deformation function similar to that of a muscle group that can be used for soft robots. To construct this bilateral actuator, a low-cost VHB 4910 dielectric elastomer was selected as the artificial muscle, and polymer films manufactured with specific shapes served as the actuator frame. By end-to-end connecting these bilateral actuators, a gear-shaped 3D soft robot with diverse motion capabilities could be developed, benefiting from adjustable actuation combinations. Lying on the ground with all feet on the ground, a crawling soft robot with dexterous movement along multiple directions was realized. Moreover, the directional steering was instantaneous and efficient. With two feet standing on the ground, it also acted as a rolling soft robot that can achieve bidirectional rolling motion and climbing motion on a 2° slope. Finally, inspired by the orbicularis oris muscle in the mouth, a mouthlike soft robot that could bite and grab objects 5.3 times of its body weight was demonstrated. The bidirectional function of a single actuator and the various combination modes among multiple actuators together allow the soft robots to exhibit diverse functionalities and flexibility, which provides a very valuable reference for the design of highly controllable soft robots.
Collapse
Affiliation(s)
- Yale Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, PR China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, PR China
| | - Dengfeng Li
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, SAR China
| | - Yanhua Sun
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, PR China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, PR China
| | - Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, PR China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR China
| | - Ying Li
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, PR China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR China
| | - Lu Li
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, PR China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, PR China
| |
Collapse
|
9
|
Kim S, Cha Y. A soft crawling robot with a modular design based on electrohydraulic actuator. iScience 2023; 26:106726. [PMID: 37216115 PMCID: PMC10192932 DOI: 10.1016/j.isci.2023.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/26/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The soft structure of creatures without a rigid internal skeleton can easily adapt to any atypical environment. In the same context, robots with soft structures can change their shape to adapt to complex and varied surroundings. In this study, we introduce a caterpillar-inspired soft crawling robot with a fully soft body. The proposed crawling robot consists of soft modules based on an electrohydraulic actuator, a body frame, and contact pads. The modular robotic design produces deformations similar to the peristaltic crawling behavior of caterpillars. In this approach, the deformable body replicates the mechanism of the anchor movement of a caterpillar by sequentially varying the friction between the robot contact pads and the ground. The robot carries out forward movement by repeating the operation pattern. The robot has also been demonstrated to traverse slopes and narrow crevices.
Collapse
Affiliation(s)
- Sohyun Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Youngsu Cha
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Wu S, Hong Y, Zhao Y, Yin J, Zhu Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. SCIENCE ADVANCES 2023; 9:eadf8014. [PMID: 36947625 PMCID: PMC10032605 DOI: 10.1126/sciadv.adf8014] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/21/2023] [Indexed: 06/14/2023]
Abstract
Many inspirations for soft robotics are from the natural world, such as octopuses, snakes, and caterpillars. Here, we report a caterpillar-inspired, energy-efficient crawling robot with multiple crawling modes, enabled by joule heating of a patterned soft heater consisting of silver nanowire networks in a liquid crystal elastomer (LCE)-based thermal bimorph actuator. With patterned and distributed heaters and programmable heating, different temperature and hence curvature distribution along the body of the robot are achieved, enabling bidirectional locomotion as a result of the friction competition between the front and rear end with the ground. The thermal bimorph behavior is studied to predict and optimize the local curvature of the robot under thermal stimuli. The bidirectional actuation modes with the crawling speeds are investigated. The capability of passing through obstacles with limited spacing are demonstrated. The strategy of distributed and programmable heating and actuation with thermal responsive materials offers unprecedented capabilities for smart and multifunctional soft robots.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Leng X, Mei G, Zhang G, Liu Z, Zhou X. Tethering of twisted-fiber artificial muscles. Chem Soc Rev 2023; 52:2377-2390. [PMID: 36919405 DOI: 10.1039/d2cs00489e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Twisted-fiber artificial muscles, a new type of soft actuator, exhibit significant potential for use in applications related to lightweight smart devices and soft robotics. Fiber twisting generates internal torque and a spiral architecture, exhibiting rotation, contraction, or elongation as a result of fiber volume change. Untethering a twisted fiber often results in fiber untwisting and loss of stored torque energy. Preserving the torque in twisted fibers during actuation is necessary to realize a reversible and stable artificial muscle performance; this is a key issue that has not yet been systematically discussed and reviewed. This review summarizes the mechanisms for preserving the torque within twisted fibers and the potential applications of such systems. The potential challenges and future directions of research related to twisted-fiber artificial muscles are also discussed.
Collapse
Affiliation(s)
- Xueqi Leng
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Jing Y, Su F, Yu X, Fang H, Wan Y. Advances in artificial muscles: A brief literature and patent review. Front Bioeng Biotechnol 2023; 11:1083857. [PMID: 36741767 PMCID: PMC9893653 DOI: 10.3389/fbioe.2023.1083857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Artificial muscles are an active research area now. Methods: A bibliometric analysis was performed to evaluate the development of artificial muscles based on research papers and patents. A detailed overview of artificial muscles' scientific and technological innovation was presented from aspects of productive countries/regions, institutions, journals, researchers, highly cited papers, and emerging topics. Results: 1,743 papers and 1,925 patents were identified after retrieval in Science Citation Index-Expanded (SCI-E) and Derwent Innovations Index (DII). The results show that China, the United States, and Japan are leading in the scientific and technological innovation of artificial muscles. The University of Wollongong has the most publications and Spinks is the most productive author in artificial muscle research. Smart Materials and Structures is the journal most productive in this field. Materials science, mechanical and automation, and robotics are the three fields related to artificial muscles most. Types of artificial muscles like pneumatic artificial muscles (PAMs) and dielectric elastomer actuator (DEA) are maturing. Shape memory alloy (SMA), carbon nanotubes (CNTs), graphene, and other novel materials have shown promising applications in this field. Conclusion: Along with the development of new materials and processes, researchers are paying more attention to the performance improvement and cost reduction of artificial muscles.
Collapse
Affiliation(s)
- Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Yuan Jing,
| | - Fangfang Su
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaona Yu
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Hebner TS, Korner K, Bowman CN, Bhattacharya K, White TJ. Leaping liquid crystal elastomers. SCIENCE ADVANCES 2023; 9:eade1320. [PMID: 36652507 PMCID: PMC9848472 DOI: 10.1126/sciadv.ade1320] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Snap-through mechanisms are pervasive in everyday life in biological systems, engineered devices, and consumer products. Snap-through transitions can be realized in responsive materials via stimuli-induced mechanical instability. Here, we demonstrate a rapid and powerful snap-through response in liquid crystalline elastomers (LCEs). While LCEs have been extensively examined as material actuators, their deformation rate is limited by the second-order character of their phase transition. In this work, we locally pattern the director orientation of LCEs and fabricate mechanical elements with through-thickness (functionally graded) modulus gradients to realize stimuli-induced responses as fast as 6 ms. The rapid acceleration and associated force output of the LCE elements cause the elements to leap to heights over 200 times the material thickness. The experimental examination in functionally graded LCE elements is complemented with computational evaluation of the underlying mechanics. The experimentally validated model is then exercised as a design tool to guide functional implementation, visualized as directional leaping.
Collapse
Affiliation(s)
- Tayler S. Hebner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kevin Korner
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kaushik Bhattacharya
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Wu J, Yang M, Sheng N, Peng Y, Sun F, Han C. Moisture-Sensitive Response and High-Reliable Cycle Recovery Effectiveness of Yarn-Based Actuators with Tether-Free, Multi-Hierarchical Hybrid Construction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53274-53284. [PMID: 36379058 DOI: 10.1021/acsami.2c15619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Yarn-based muscle actuators are highly desired for applications in soft robotics, flexible sensors, and other related applications due to their actuation properties. Although the tethering avoiding release of inserted twist, the complex preparation process and harsh experimental conditions make tether-free structures yarn actuator with reliable cycle recovery effectiveness is needed. Herein, a tether-free, multi-hierarchical hybrid construction of a moisture-sensitive responsive yarn-based actuator with the viscose/PET ratio (VPR) = 0.9 exhibited a contraction stroke of 83.15%, a work capacity of 52.98 J·kg-1, and an exerting force of 0.15 MPa. Additionally, the maximum cycle recovery rate of 99% is comparable to that of human skeletal muscles, confirming the advantages of a two-component hybrid structure. The underlying mechanism is discussed based on geometric characterization and energy conversion analysis between the actuation source and the spring frame. The mechanical manufacturing process makes it simple to expand the structurally stable yarn muscles into fabric muscles, opening up new opportunities to advance the usage of yarn-based actuators in smart textiles, medical materials, intelligent plants, and other versatile fields.
Collapse
Affiliation(s)
- Jing Wu
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Mengxin Yang
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Nan Sheng
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Yangyang Peng
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Fengxin Sun
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
- Laboratory of Soft Fibrous Materials, College of Textile Science and Engineering, Jiangnan University, Wuxi214122, China
| | - Chenchen Han
- College of Textiles Science and Engineering, Jiangnan University, Wuxi214122, China
| |
Collapse
|
15
|
Fulati A, Uto K, Iwanaga M, Watanabe M, Ebara M. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma. Adv Healthc Mater 2022; 11:e2200050. [PMID: 35385611 DOI: 10.1002/adhm.202200050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Shape-memory polymers (SMPs) are promising materials in numerous emerging biomedical applications owing to their unique shape-memory characteristics. However, simultaneous realization of high strength, toughness, stretchability while maintaining high shape fixity (Rf ) and shape recovery ratio (Rr ) remains a challenge that hinders their practical applications. Herein, a novel shape-memory polymeric string (SMP string) that is ultra-stretchable (up to 1570%), strong (up to 345 MPa), tough (up to 237.9 MJ m-3 ), and highly recoverable (Rf averagely above 99.5%, Rr averagely above 99.1%) through a facile approach fabricated solely by tetra-branched poly(ε-caprolactone) (PCL) is reported. Notably, the shape-memory contraction force (up to 7.97 N) of this SMP string is customizable with the manipulation of their energy storage capacity by adjusting the string thickness and stretchability. In addition, this SMP string displays a controllable shape-memory response time and demonstrates excellent shape-memory-induced contraction effect against both rigid silicone tubes and porcine carotids. This novel SMP string is envisioned to be applied in the contraction of blood vessels and resolves the difficulties in the restriction of blood flow in minimally invasive surgeries such as fetoscopic surgery of sacrococcygeal teratoma (SCT).
Collapse
Affiliation(s)
- Ailifeire Fulati
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
- Graduate School of Science and Technology University of Tsukuba Tsukuba 3058577 Japan
| | - Koichiro Uto
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
| | - Masanobu Iwanaga
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
| | - Miho Watanabe
- Department of Pediatric Surgery Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
- Graduate School of Science and Technology University of Tsukuba Tsukuba 3058577 Japan
- Graduate School of Advanced Engineering Tokyo University of Science Tokyo 1258585 Japan
| |
Collapse
|
16
|
Sun Y, Li D, Wu M, Yang Y, Su J, Wong T, Xu K, Li Y, Li L, Yu X, Yu J. Origami-inspired folding assembly of dielectric elastomers for programmable soft robots. MICROSYSTEMS & NANOENGINEERING 2022; 8:37. [PMID: 35450326 PMCID: PMC8971403 DOI: 10.1038/s41378-022-00363-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Origami has become an optimal methodological choice for creating complex three-dimensional (3D) structures and soft robots. The simple and low-cost origami-inspired folding assembly provides a new method for developing 3D soft robots, which is ideal for future intelligent robotic systems. Here, we present a series of materials, structural designs, and fabrication methods for developing independent, electrically controlled origami 3D soft robots for walking and soft manipulators. The 3D soft robots are based on soft actuators, which are multilayer structures with a dielectric elastomer (DE) film as the deformation layer and a laser-cut PET film as the supporting flexible frame. The triangular and rectangular design of the soft actuators allows them to be easily assembled into crawling soft robots and pyramidal- and square-shaped 3D structures. The crawling robot exhibits very stable crawling behaviors and can carry loads while walking. Inspired by origami folding, the pyramidal and square-shaped 3D soft robots exhibit programmable out-of-plane deformations and easy switching between two-dimensional (2D) and 3D structures. The electrically controllable origami deformation allows the 3D soft robots to be used as soft manipulators for grasping and precisely locking 3D objects. This work proves that origami-inspired fold-based assembly of DE actuators is a good reference for the development of soft actuators and future intelligent multifunctional soft robots.
Collapse
Affiliation(s)
- Yanhua Sun
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 People’s Republic of China
| | - Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 People’s Republic of China
| | - Yale Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 People’s Republic of China
| | - Tszhung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 People’s Republic of China
| | - Kangming Xu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Ying Li
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Lu Li
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing Co-Innovation Center for Micro/Nano Optoelectronic Materials and Devices, Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160 People’s Republic of China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 People’s Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054 People’s Republic of China
| |
Collapse
|
17
|
Zhou P, Lin J, Zhang W, Luo Z, Chen L. Pressure-Perceptive Actuators for Tactile Soft Robots and Visual Logic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104270. [PMID: 34913616 PMCID: PMC8844481 DOI: 10.1002/advs.202104270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/12/2021] [Indexed: 05/25/2023]
Abstract
Soft actuators with sensing capabilities are important in intelligent robots and human-computer interactions. However, present perceptive actuating systems rely on the integration of multiple functional units with complex circuit design. Here, a new-type pressure-perceptive actuator is reported, which integrates functions of sensing, actuating, and decision making at material level without complex combination. The actuator is composed of an actuating unit and a pressure-sensing unit, both of which are fabricated by carbon nanotube (CNT), silk, and polymer composite. On the one hand, the actuating unit can be driven by low voltages (<13 V), owing to a Joule-heating effect. On the other hand, the current passing the pressure-sensing unit can be controlled by tactile pressure. In the integrated actuator, it is able to control the deformation amplitude of actuating unit by applying different pressures on the pressure-sensing unit. A portable tactile-activated gripper is fabricated to operate an object through pressure control, demonstrating its application in tactile soft robots. Finally, three visual logic gates (AND, OR, and NOT) are proposed, which convert "tactile" inputs into "visible" deformation outputs, using the CNT-silk-based material for sensing and actuating in the decision-making process. This study provides a new path for intelligent soft robots and new-generation logic devices.
Collapse
Affiliation(s)
- Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Jian Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117China
| |
Collapse
|
18
|
Yu K, Ji X, Yuan T, Cheng Y, Li J, Hu X, Liu Z, Zhou X, Fang L. Robust Jumping Actuator with a Shrimp-Shell Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104558. [PMID: 34514641 DOI: 10.1002/adma.202104558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
It is highly desirable to develop compact- and robust-film jumping robots that can withstand severe conditions. Besides, the demands for strong actuation force, large bending curvature in a short response time, and good environmental tolerance are significant challenges to the material design. To address these challenges, this paper reports the fabrication of a thin-film jumping actuator, which exhibits a shrimp-shell architecture, from a conjugated ladder polymer (cLP) that is connected by carbon nanotube (CNT) sheets. The hierarchical porous structure ensures the fast absorption and desorption of organic vapor, thereby achieving a high response rate. The actuator does not exhibit shape distortion at temperatures of up to 225 °C and in concentrated sulfuric acid, as well as when immersed in many organic solvents. This work avails a new design strategy for high-performance actuators that function under harsh and complicated conditions.
Collapse
Affiliation(s)
- Kaiqing Yu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaozhou Ji
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Tianyu Yuan
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yao Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jingjing Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoyu Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Lei Fang
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
19
|
Lee HJ, Baik S, Hwang GW, Song JH, Kim DW, Park BY, Min H, Kim JK, Koh JS, Yang TH, Pang C. An Electronically Perceptive Bioinspired Soft Wet-Adhesion Actuator with Carbon Nanotube-Based Strain Sensors. ACS NANO 2021; 15:14137-14148. [PMID: 34425674 DOI: 10.1021/acsnano.1c05130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.
Collapse
Affiliation(s)
- Heon Joon Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Sangyul Baik
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jin Ho Song
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
- Department SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Da Wan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal H3A 2B4, Quebec, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
| | - Hyeongho Min
- Department SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Je-Sung Koh
- Department of Mechanical Engineering, Ajou University, Suwon 16499, Gyeonggi-do, Republic of Korea
| | - Tae-Heon Yang
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si 27469, Chungbuk, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Suwon 16419, Gyunggi-do, Republic of Korea
| |
Collapse
|
20
|
Abstract
Nature's evolution over billions of years has led to the development of different kinds of twisted structures in a variety of biological species. Twisted fibers from nanoscale- to micrometer-scale diameter have been prepared by mimicking natural twisted structures. Mechanically inserting twist in a yarn is an efficient and important method, which generates internal stress, changes the macromolecular orientation, and increases compactness. Recently, twist insertion has been found to produce interesting fiber properties, including chemical, mechanical, electrical, and thermal properties. This Account summarizes recent progress in how twist insertion affects the chemical and physical properties of fibers and describes their applications in artificial spider silk, artificial muscles, refrigeration, and electricity generation.Twist and associated chirality widely arise in nature from molecules to nano- and microscale materials to macroscopic objects such as DNA, RNA, peptides, and chromosomes. Such twisted architectures play an important role in improving the mechanical properties and enabling biological functions. Inspired by the beauty and interesting properties of twisted structures, a wide range of artificial chiral materials with twisted or coiled structures have been prepared, from organic and inorganic nanorods, nanotubes, and nanobelts to macroscopic architectures and buildings.An efficient way to prepare twisted materials is by inserting twist in fibers or yarns, which is an ancient technique used to make yarns or ropes (Wang, R., et al. Science 2019, 366, 216-221. Mu, J., et al. Science 2019, 365, 150-155). During the twisting process, torque is generated in fibers or yarns, the structure of the polymer chains becomes helically oriented, and the fibers in a yarn become more compact. Therefore, the twisting of fibers and yarns can produce novel chemical, mechanical, electrical, and thermal properties (Dou, Y., et al. Nat. Commun. 2019, 10, 1-10. Kim, S. H., et al. Science 2017, 357, 773-778). This Account focuses on the novel properties generated by twist insertion. The mechanical stress and strain can be optimized in a yarn by twist insertion, and different types of fibers exhibit rather different mechanisms.In the first section, we will focus on recent progress in improving the mechanical properties of twisted fibers, including carbon nanotube yarns, single-filament fibers, and hydrogel fibers. Torque was generated by twist insertion in a fiber or a yarn, and the balance of internal torsional stress can be changed by causing a change in yarn volume. This will result in twist release and torsional and tensile actuations of the yarn, which will be described in the second section. Twisting a yarn generally makes it more compact, which will result in a mechanically induced change in capacitance, supercapacitance, and other useful electrochemical properties when a conducting yarn is in an electrolyte. Such processes were used to develop novel devices for twist-based electricity generation, called twistrons, which will be discussed in the third section. Twist insertion or release also changes the polymer chain orientation or crystal structure, resulting in changes in entropy. This is called the twistocaloric effect, which was used to develop a new cooling method, and will be discussed in the last section.
Collapse
Affiliation(s)
- Xiang Zhou
- Key Laboratory of Functional Polymer Materials, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- College of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xueqi Leng
- Key Laboratory of Functional Polymer Materials, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Zunfeng Liu
- Key Laboratory of Functional Polymer Materials, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Ray H. Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|