1
|
Kim SH, Jo YR, Yim SY, Lee HS. Reaction-controlled shape evolution and insights into the growth mechanism of CsPbBr 3 nanocrystals. J Colloid Interface Sci 2025; 677:697-703. [PMID: 39116567 DOI: 10.1016/j.jcis.2024.07.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The correlation between structural transformation and optical characteristics of cesium lead bromide (CsPbBr3) nanocrystals (NCs) suggests insights into their growth mechanism and optical performance. Systematic control of reaction parameters led to the successful fabrication of on-demand shape-morphing CsPbBr3 NCs. Transmission electron microscopy observations showed that the shape transformation from nanocubes to microcrystals could be accelerated by increasing the precursor:ligand molar ratio and reaction time. Further evidence for orthorhombic CsPbBr3 NCs was obtained from their selected-area electron diffraction pattern, which exhibits a twin domain induced by the presence of large NCs. Likewise, we observed a substantial decrease in photoluminescence (PL) intensity of CsPbBr3 due to surface decomposition or surface ligand loss resulting from increased size. In addition, fusion of smaller particles having other dimensionality induced the increase in the PL full-width at half maximum. In particular, existence of larger bulk material caused a reduction in the peak intensity in the absorption spectra and a trend of decreasing tendency in intensity of the absorption bands related to bromoplumbate species provided direct evidence of fully converted Cs-oleate.
Collapse
Affiliation(s)
- Sung Hun Kim
- Department of Physics, Research Institute Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yong-Ryun Jo
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang-Youp Yim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Hong Seok Lee
- Department of Physics, Research Institute Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
2
|
Conelli D, Matuhina A, Dibenedetto CN, Grandhi GK, Margiotta N, Fanizza E, Striccoli M, Vivo P, Suranna GP, Grisorio R. Surface-Engineered Cesium Lead Bromide Perovskite Nanocrystals for Enabling Photoreduction Activity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38660951 DOI: 10.1021/acsami.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent years, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have exhibited such intriguing light absorption properties to be contemplated as promising candidates for photocatalytic conversions. However, for effective photocatalysis, the light harvesting system needs to be stable under the reaction conditions propaedeutic to a specific transformation. Unlike photoinduced oxidative reaction pathways, photoreductions with LHP NCs are challenging due to their scarce compatibility with common hole scavengers like amines and alcohols. In this contribution, it is investigated the potential of CsPbBr3 NCs protected by a suitably engineered bidentate ligand for the photoreduction of quinone species. Using an in situ approach for the construction of the passivating agent and a halide excess environment, quantum-confined nanocubes (average edge length = 6.0 ± 0.8 nm) are obtained with a low ligand density (1.73 ligand/nm2) at the NC surface. The bifunctional adhesion of the engineered ligand boosts the colloidal stability of the corresponding NCs, preserving their optical properties also in the presence of an amine excess. Despite their relatively short exciton lifetime (τAV = 3.7 ± 0.2 ns), these NCs show an efficient fluorescence quenching in the presence of the selected electron accepting quinones (1,4-naphthoquinone, 9,10-phenanthrenequinone, and 9,10-anthraquinone). All of these aspects demonstrate the suitability of the NCs for an efficient photoreduction of 1,4-naphthoquinone to 1,4-dihydroxynaphthalene in the presence of triethylamine as a hole scavenger. This chemical transformation is impracticable with conventionally passivated LHP NCs, thereby highlighting the potential of the surface functionalization in this class of nanomaterials for exploring new photoinduced reactivities.
Collapse
Affiliation(s)
- Daniele Conelli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Anastasia Matuhina
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | | | - G Krishnamurthy Grandhi
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Nicola Margiotta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- CNR IPCF─Istituto per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, 70126, Bari, Italy
| | - Marinella Striccoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, 70126, Bari, Italy
| | - Paola Vivo
- Hybrid Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Gian Paolo Suranna
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR-NANOTEC - Institute of Nanotechnology, c/o Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Grisorio
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
3
|
Park JH, Kim HR, Kim MJ, Song Z, Kang MJ, Son DH, Pyun JC. Defect-Passivated Photosensor Based on Cesium Lead Bromide (CsPbBr 3) Perovskite Quantum Dots for Microbial Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019055 DOI: 10.1021/acsami.3c12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A defect-passivated photosensor based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QD) was fabricated using parylene films, and the photosensor was applied for the microbial detection. The CsPbBr3 perovskite QDs were synthesized to be homogeneous in size under thermodynamic control, and the perovskite QD-based photosensor was fabricated using MoS2 flakes as the electron transfer layer. In this work, a parylene film with functional groups was deposited on a photosensor for physical protection (waterproof) and defect (halide vacancy) passivation of the perovskite QD. As the first effect of the parylene film, the physical protection of the perovskite QD from water was estimated by comparing the photosensor performance after incubation in water. As the second effect of the parylene, the interaction between the functional groups of the parylene film and the halide vacancies of the perovskite QDs was investigated through the bandgap, crystal structure, and trap-state density analysis. Additionally, density functional theory analysis on Mulliken charges, lattice parameters, and Gibbs free energy demonstrated the effect of the defect passivation by parylene films. Finally, the parylene-passivated QD-based photosensor was applied to the detection of two kinds of food-poisoning and gastroduodenal disease bacteria (Listeria monocytogenes and Helicobacter pylori).
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil,, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Grisorio R, Fasulo F, Muñoz-García AB, Pavone M, Conelli D, Fanizza E, Striccoli M, Allegretta I, Terzano R, Margiotta N, Vivo P, Suranna GP. In Situ Formation of Zwitterionic Ligands: Changing the Passivation Paradigms of CsPbBr 3 Nanocrystals. NANO LETTERS 2022; 22:4437-4444. [PMID: 35609011 PMCID: PMC9185741 DOI: 10.1021/acs.nanolett.2c00937] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Indexed: 05/03/2023]
Abstract
CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.
Collapse
Affiliation(s)
- Roberto Grisorio
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR
NANOTEC − Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Fasulo
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy
| | - Ana Belén Muñoz-García
- Dipartimento
di Fisica “Ettore Pancini”, Università di Napoli
Federico II, Complesso Universitario di
Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy
| | - Michele Pavone
- Dipartimento
di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia 21, 80126 Napoli, Italy
| | - Daniele Conelli
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- Dipartimento
di Chimica, Università degli Studi
di Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - Marinella Striccoli
- CNR−Istituto
per i Processi Chimico Fisici, UOS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ignazio Allegretta
- Dipartimento
di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Roberto Terzano
- Dipartimento
di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Nicola Margiotta
- Dipartimento
di Chimica, Università degli Studi
di Bari “A. Moro”, Via Orabona 4, 70126 Bari, Italy
| | - Paola Vivo
- Hybrid
Solar Cells, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014 Tampere, Finland
| | - Gian Paolo Suranna
- Dipartimento
di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
(DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
- CNR
NANOTEC − Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Otero-Martínez C, Ye J, Sung J, Pastoriza-Santos I, Pérez-Juste J, Xia Z, Rao A, Hoye RLZ, Polavarapu L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107105. [PMID: 34775643 DOI: 10.1002/adma.202107105] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Colloidal metal-halide perovskite nanocrystals (MHP NCs) are gaining significant attention for a wide range of optoelectronics applications owing to their exciting properties, such as defect tolerance, near-unity photoluminescence quantum yield, and tunable emission across the entire visible wavelength range. Although the optical properties of MHP NCs are easily tunable through their halide composition, they suffer from light-induced halide phase segregation that limits their use in devices. However, MHPs can be synthesized in the form of colloidal nanoplatelets (NPls) with monolayer (ML)-level thickness control, exhibiting strong quantum confinement effects, and thus enabling tunable emission across the entire visible wavelength range by controlling the thickness of bromide or iodide-based lead-halide perovskite NPls. In addition, the NPls exhibit narrow emission peaks, have high exciton binding energies, and a higher fraction of radiative recombination compared to their bulk counterparts, making them ideal candidates for applications in light-emitting diodes (LEDs). This review discusses the state-of-the-art in colloidal MHP NPls: synthetic routes, thickness-controlled synthesis of both organic-inorganic hybrid and all-inorganic MHP NPls, their linear and nonlinear optical properties (including charge-carrier dynamics), and their performance in LEDs. Furthermore, the challenges associated with their thickness-controlled synthesis, environmental and thermal stability, and their application in making efficient LEDs are discussed.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jooyoung Sung
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Republic of Korea
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Deparment of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Vigo, 36310, Spain
| | - Zhiguo Xia
- School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Robert L Z Hoye
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas, Marcosende, Vigo, 36310, Spain
| |
Collapse
|