1
|
Eatson J, Bauernfeind S, Midtvedt B, Ciarlo A, Menath J, Pesce G, Schofield AB, Volpe G, Clegg PS, Vogel N, Buzza DMA, Rey M. Self-assembly of defined core-shell ellipsoidal particles at liquid interfaces. J Colloid Interface Sci 2025; 683:435-446. [PMID: 39740560 DOI: 10.1016/j.jcis.2024.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
HYPOTHESIS Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties. EXPERIMENTS We fabricate core-shell ellipsoidal particles with defined aspect ratios and shell thickness through thermo-mechanical stretching. Using interfacial self-assembly experiments, we systematically explore how aspect ratio and shell thickness affect the self-assembly configurations. Monte Carlo simulations and theoretical calculations complement the experiments by mapping the phase diagram of thermodynamically preferred structures as a function of core-shell properties. FINDINGS Pure ellipsoidal particles without a shell consistently form side-to-side "chain-like" assemblies, regardless of aspect ratio. In contrast, core-shell ellipsoidal particles exhibit a transition from tip-to-tip "flower-like" arrangements to side-to-side structures as aspect ratio increases. The critical aspect ratio for this transition shifts with increasing shell thickness. Our results highlight how we can engineer the self-assembly of anisotropic particles at liquid interfaces by tuning their physicochemical properties such as aspect ratio and shell thickness, allowing the deterministic realization of distinct structural configurations.
Collapse
Affiliation(s)
- Jack Eatson
- Department of Physics and Astrophysics, G. W. Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom
| | - Susann Bauernfeind
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - Benjamin Midtvedt
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Antonio Ciarlo
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Johannes Menath
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - Giuseppe Pesce
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; Dipartimento di Fisica "Ettore Pancini", Università degli Studi di Napoli Federico II, Naples, Italy
| | - Andrew B Schofield
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Paul S Clegg
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany
| | - D Martin A Buzza
- Department of Physics and Astrophysics, G. W. Gray Centre for Advanced Materials, University of Hull, Hull HU6 7RX, United Kingdom
| | - Marcel Rey
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany.
| |
Collapse
|
2
|
Bartschmid T, Menath J, Roemling L, Vogel N, Atalay F, Farhadi A, Bourret GR. Au Nanoparticles@Si Nanowire Oligomer Arrays for SERS: Dimers Are Best. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41379-41389. [PMID: 39057191 PMCID: PMC11310913 DOI: 10.1021/acsami.4c10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
We report the synthesis of vertically aligned silicon nanowire (VA-SiNW) oligomer arrays coated with Au nanoparticle (NP) monolayers via a combination of colloidal lithography, metal-assisted chemical etching, and directed NP assembly. Arrays of SiNW monomers (i.e., isolated NWs), dimers, and tetramers are synthesized, decorated with AuNPs, and tested for their performance in surface-enhanced Raman spectroscopy. The ∼20 nm AuNPs easily enter within the ca. 40 nm gaps of the SiNW oligomers, thus reaching the hot spot region. At 785 nm excitation, the AuNPs@SiNW dimer arrays provide the highest Raman signal, in agreement with electromagnetic simulations showing a high electric field enhancement at the Au/Si interface within the dimer gap region.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Johannes Menath
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Lukas Roemling
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Furkan Atalay
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| |
Collapse
|
3
|
Surdo S, Barillaro G. Voltage- and Metal-assisted Chemical Etching of Micro and Nano Structures in Silicon: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400499. [PMID: 38644330 DOI: 10.1002/smll.202400499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Sculpting silicon at the micro and nano scales has been game-changing to mold bulk silicon properties and expand, in turn, applications of silicon beyond electronics, namely, in photonics, sensing, medicine, and mechanics, to cite a few. Voltage- and metal-assisted chemical etching (ECE and MaCE, respectively) of silicon in acidic electrolytes have emerged over other micro and nanostructuring technologies thanks to their unique etching features. ECE and MaCE have enabled the fabrication of novel structures and devices not achievable otherwise, complementing those feasible with the deep reactive ion etching (DRIE) technology, the gold standard in silicon machining. Here, a comprehensive review of ECE and MaCE for silicon micro and nano machining is provided. The chemistry and physics ruling the dissolution of silicon are dissected and similarities and differences between ECE and MaCE are discussed showing that they are the two sides of the same coin. The processes governing the anisotropic etching of designed silicon micro and nanostructures are analyzed, and the modulation of etching profile over depth is discussed. The preparation of micro- and nanostructures with tailored optical, mechanical, and thermo(electrical) properties is then addressed, and their applications in photonics, (bio)sensing, (nano)medicine, and micromechanical systems are surveyed. Eventually, ECE and MaCE are benchmarked against DRIE, and future perspectives are highlighted.
Collapse
Affiliation(s)
- Salvatore Surdo
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
4
|
Farhadi A, Bartschmid T, Bourret GR. Dewetting-Assisted Patterning: A Lithography-Free Route to Synthesize Black and Colored Silicon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44087-44096. [PMID: 37669230 PMCID: PMC10520913 DOI: 10.1021/acsami.3c08533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
We report the use of thermal dewetting to structure gold-based catalytic etching masks for metal-assisted chemical etching (MACE). The approach involves low-temperature dewetting of metal films to generate metal holey meshes with tunable morphologies. Combined with MACE, dewetting-assisted patterning is a simple, benchtop route to synthesize Si nanotubes, Si nanowalls, and Si nanowires with defined dimensions and optical properties. The approach is compatible with the synthesis of both black and colored nanostructured silicon substrates. In particular, we report the lithography-free fabrication of silicon nanowires with diameters down to 40 nm that support leaky wave-guiding modes, giving rise to vibrant colors. Additionally, micrometer-sized areas with tunable film composition and thickness were patterned via shadow masking. After dewetting and MACE, such patterned metal films produced regions with distinct nanostructured silicon morphologies and colors. To-date, the fabrication of colored silicon has relied on complicated nanoscale patterning processes. Dewetting-assisted patterning provides a simpler alternative that eliminates this requirement. Finally, the simple transfer of resonant SiNWs into ethanolic solutions with well-defined light absorption properties is reported. Such solution-dispersible SiNWs could open new avenues for the fabrication of ultrathin optoelectronic devices with enhanced and tunable light absorption.
Collapse
Affiliation(s)
- Amin Farhadi
- Department of Chemistry and
Physics of Materials, University of Salzburg, Jakob Haringerstraße 2a, A-5020 Salzburg, Austria
| | - Theresa Bartschmid
- Department of Chemistry and
Physics of Materials, University of Salzburg, Jakob Haringerstraße 2a, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department of Chemistry and
Physics of Materials, University of Salzburg, Jakob Haringerstraße 2a, A-5020 Salzburg, Austria
| |
Collapse
|
5
|
Petronijevic E, Tomczyk M, Belardini A, Osewski P, Piotrowski P, Centini M, Leahu G, Voti RL, Pawlak DA, Sibilia C, Larciprete MC. Surprising Eutectics: Enhanced Properties of ZnO-ZnWO 4 from Visible to MIR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206005. [PMID: 36529691 DOI: 10.1002/adma.202206005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide-zinc tungstate (ZnO-ZnWO4 ) is a self-organized eutectic composite consisting of parallel ZnO thin layers (lamellae) embedded in a dielectric ZnWO4 matrix. The electromagnetic behavior of composite materials is affected not only by the properties of single constituent materials but also by their reciprocal geometrical micro-/nano-structurization, as in the case of ZnO-ZnWO4 . The light interacting with microscopic structural features in the composite material provides new optical properties, which overcome the possibilities offered by the constituent materials. Here remarkable active and passive polarization control of this composite over various wavelength ranges are shown; these properties are based on the crystal orientation of ZnO with respect to the biaxiality of the ZnWO4 matrix. In the visible range, polarization-dependent polarized luminescence occurs for blue light emitted by ZnO. Moreover, it is reported on the enhancement of the second harmonic generation of the composite with respect to its constituents, due to the phase matching condition. Finally, in the medium infrared spectral region, the composite behaves as a metamaterial with strong polarization dependence.
Collapse
Affiliation(s)
- Emilija Petronijevic
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| | - Monika Tomczyk
- Centre of Excellence ENSEMBLE3, sp. z o.o., Wólczyńska 133, Warsaw, 01-919, Poland
- Department of Chemistry, University of Warsaw, Pasteura Street 1, Warsaw, 00-664, Poland
| | - Alessandro Belardini
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| | - Paweł Osewski
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Wólczyńska 133, Warsaw, 01-919, Poland
| | - Piotr Piotrowski
- Centre of Excellence ENSEMBLE3, sp. z o.o., Wólczyńska 133, Warsaw, 01-919, Poland
- Department of Chemistry, University of Warsaw, Pasteura Street 1, Warsaw, 00-664, Poland
| | - Marco Centini
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| | - Grigore Leahu
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| | - Roberto Li Voti
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| | - Dorota Anna Pawlak
- Centre of Excellence ENSEMBLE3, sp. z o.o., Wólczyńska 133, Warsaw, 01-919, Poland
- Department of Chemistry, University of Warsaw, Pasteura Street 1, Warsaw, 00-664, Poland
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Wólczyńska 133, Warsaw, 01-919, Poland
| | - Concita Sibilia
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| | - Maria Cristina Larciprete
- Department SBAI-Basic and Applied Science for Engineering, Univesità di Roma La Sapienza, Dip.SBAI- Via Scarpa, 16, Roma, 00161, Italy
| |
Collapse
|
6
|
Menath J, Mohammadi R, Grauer JC, Deters C, Böhm M, Liebchen B, Janssen LMC, Löwen H, Vogel N. Acoustic Crystallization of 2D Colloidal Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206593. [PMID: 36281801 DOI: 10.1002/adma.202206593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2D colloidal crystallization provides a simple strategy to produce defined nanostructure arrays over macroscopic areas. Regularity and long-range order of such crystals is essential to ensure functionality, but difficult to achieve in self-assembling systems. Here, a simple loudspeaker setup for the acoustic crystallization of 2D colloidal crystals (ACDC) of polystyrene, microgels, and core-shell particles at liquid interfaces is introduced. This setup anneals an interfacial colloidal monolayer and affords an increase in average grain size by almost two orders of magnitude. The order is characterized via the structural color of the colloidal crystal, the acoustic annealing process is optimized via the frequency and the amplitude of the applied sound wave, and its efficiency is rationalized via the surface coverage-dependent interactions within the interfacial colloidal monolayer. Computer simulations show that multiple rearrangement mechanisms at different length scales, from the local motion around voids to grain boundary movements via consecutive particle rotations around common centers, collude to remove defects. The experimentally simple ACDC process, paired with the demonstrated applicability toward complex particle systems, provides access to highly defined nanostructure arrays for a wide range of research communities.
Collapse
Affiliation(s)
- Johannes Menath
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Reza Mohammadi
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Jens Christian Grauer
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Claudius Deters
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Maike Böhm
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Benno Liebchen
- Institute of Physics: Theory of Soft Matter, Technical University of Darmstadt, Hochschulstraße 12, 64289, Darmstadt, Germany
| | - Liesbeth M C Janssen
- Soft Matter and Biological Physics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
7
|
Ray U, Sarkar S, Banerjee D. Silicon Nanowires as an Efficient Material for Hydrogen Evolution through Catalysis: A Review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Bartschmid T, Farhadi A, Musso ME, Goerlitzer ESA, Vogel N, Bourret GR. Self-Assembled Au Nanoparticle Monolayers on Silicon in Two- and Three-Dimensions for Surface-Enhanced Raman Scattering Sensing. ACS APPLIED NANO MATERIALS 2022; 5:11839-11851. [PMID: 36062062 PMCID: PMC9425434 DOI: 10.1021/acsanm.2c01904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 05/05/2023]
Abstract
Gold nanoparticle/silicon composites are canonical substrates for sensing applications because of their geometry-dependent physicochemical properties and high sensing activity via surface-enhanced Raman spectroscopy (SERS). The self-assembly of gold nanoparticles (AuNPs) synthesized via wet-chemistry on functionalized flat silicon (Si) and vertically aligned Si nanowire (VA-SiNW) arrays is a simple and cost-effective approach to prepare such substrates. Herein, we report on the critical parameters that influence nanoparticle coverage, aggregation, and assembly sites in two- and three-dimensions to prepare substrates with homogeneous optical properties and SERS activity. We show that the degree of AuNP aggregation on flat Si depends on the silane used for the Si functionalization, while the AuNP coverage can be adjusted by the incubation time in the AuNP solution, both of which directly affect the substrate properties. In particular, we report the reproducible synthesis of nearly touching AuNP chain monolayers where the AuNPs are separated by nanoscale gaps, likely to be formed due to the capillary forces generated during the drying process. Such substrates, when used for SERS sensing, produce a uniform and large enhancement of the Raman signal due to the high density of hot spots that they provide. We also report the controlled self-assembly of AuNPs on VA-SiNW arrays, which can provide even higher Raman signal enhancement. The directed assembly of the AuNPs in specific regions of the SiNWs with a control over NP density and monolayer morphology (i.e., isolated vs nearly touching NPs) is demonstrated, together with its influence on the resulting SERS activity.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Maurizio E. Musso
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Ickler M, Menath J, Holstein L, Rey M, Buzza DMA, Vogel N. Interfacial self-assembly of SiO 2-PNIPAM core-shell particles with varied crosslinking density. SOFT MATTER 2022; 18:5585-5597. [PMID: 35849635 DOI: 10.1039/d2sm00644h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spherical particles confined to liquid interfaces generally self-assemble into hexagonal patterns. It was theoretically predicted by Jagla two decades ago that such particles interacting via a soft repulsive potential are able to form complex, anisotropic assembly phases. Depending on the shape and range of the potential, the predicted minimum energy configurations include chains, rhomboid and square phases. We recently demonstrated that deformable core-shell particles consisting of a hard silica core and a soft poly(N-isopropylacrylamide) shell adsorbed at an air/water interface can form chain phases if the crosslinker is primarily incorporated around the silica core. Here, we systematically investigate the interfacial self-assembly behavior of such SiO2-PNIPAM core-shell particles as a function of crosslinker content and core size. We observe chain networks predominantly at low crosslinking densities and smaller core sizes, whereas higher crosslinking densities lead to the formation of rhomboid packing. We correlate these results with the interfacial morphologies of the different particle systems, where the ability to expand at the interface and form a thin corona at the periphery depends on the degree of crosslinking close to the core. We perform minimum energy calculations based on Jagla-type pair potentials with different shapes of the soft repulsive shoulder. We compare the theoretical phase diagram with experimental findings to infer to which extent the interfacial interactions of the experimental system may be captured by Jagla pair-wise interaction potentials.
Collapse
Affiliation(s)
- Maret Ickler
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Johannes Menath
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Laura Holstein
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| | - Marcel Rey
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
- School of Physics & Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - D Martin A Buzza
- G W Gray Centre for Advanced Materials, Department of Physics & Mathematics, University of Hull, Hull HU6 7RX, UK
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, 91058 Erlangen, Germany.
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstrasse 9a, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Li Y, Bai Y, Ikram M, Ren Y, Xu Y, Wang Y, Huo Y, Zhang Z. Enhanced circular dichroism of cantilevered nanostructures by distorted plasmon. OPTICS EXPRESS 2022; 30:23217-23226. [PMID: 36225007 DOI: 10.1364/oe.462558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Chiral structures have a wide range of applications, such as biometric identification, chemical analysis, and chiral sensing. The simple fabrication process of chiral nanostructures that can produce a significant circular dichroism (CD) effect remains a challenge. Here, a three-dimensional (3D) cantilever-shaped nanostructure, which inherits the chiral advantages of 3D nanostructures and simplicity of 2D nanostructures, is proposed. The nanostructure can be prepared by the combination of one-time electron beam lithography and oblique-angle deposition and consists of a thin metal film with periodic holes such that two hanging arms were attached to the edges of holes. The length of the cantilever and the height difference between the two arms can be adjusted by controlling the tilt angle of beam current during the deposition processes. Numerical calculations showed that the enhancement of CD signal was achieved by plasmon distortion on the metal film by the lower hanging part of the cantilever structure. Furthermore, signals can be actively adjusted using a temperature-sensitive polydimethylsiloxane (PDMS) material. The angle between the lower cantilever and the top metal film was regulated by the change in PDMS volume with temperature. The results provide a new way to fabricating 3D nanostructures and a new mechanism to enhance the CD signal. The proposed nanostructure may have potential applications, such as in ultra-sensitive detection and remote temperature readout, and is expected to be an ultra-compact detection tool for nanoscale structural and functional information.
Collapse
|
12
|
Bartschmid T, Wendisch FJ, Farhadi A, Bourret GR. Recent Advances in Structuring and Patterning Silicon Nanowire Arrays for Engineering Light Absorption in Three Dimensions. ACS APPLIED ENERGY MATERIALS 2022; 5:5307-5317. [PMID: 35647497 PMCID: PMC9131305 DOI: 10.1021/acsaem.1c02683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 05/04/2023]
Abstract
Vertically aligned silicon nanowire (VA-SiNW) arrays can significantly enhance light absorption and reduce light reflection for efficient light trapping. VA-SiNW arrays thus have the potential to improve solar cell design by providing reduced front-face reflection while allowing the fabrication of thin, flexible, and efficient silicon-based solar cells by lowering the required amount of silicon. Because their interaction with light is highly dependent on the array geometry, the ability to control the array morphology, functionality, and dimension offers many opportunities. Herein, after a short discussion about the remarkable optical properties of SiNW arrays, we report on our recent progress in using chemical and electrochemical methods to structure and pattern SiNW arrays in three dimensions, providing substrates with spatially controlled optical properties. Our approach is based on metal-assisted chemical etching (MACE) and three-dimensional electrochemical axial lithography (3DEAL), which are both affordable and large-scale wet-chemical methods that can provide a spatial resolution all the way down to the sub-5 nm range.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Fedja J. Wendisch
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
- Nanoinstitut
München, Department of Physics, Ludwig-Maximilians-University
Munich, 80539 München, Germany
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| |
Collapse
|
13
|
Keller AW, Marino E, An D, Neuhaus SJ, Elbert KC, Murray CB, Kagan CR. Sub-5 nm Anisotropic Pattern Transfer via Colloidal Lithography of a Self-Assembled GdF 3 Nanocrystal Monolayer. NANO LETTERS 2022; 22:1992-2000. [PMID: 35226509 DOI: 10.1021/acs.nanolett.1c04761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patterning materials with nanoscale features opens many research opportunities ranging from fundamental science to technological applications. However, current nanofabrication methods are ill-suited for sub-5 nm patterning and pattern transfer. We demonstrate the use of colloidal lithography to transfer an anisotropic pattern of discrete features into substrates with a critical dimension below 5 nm. The assembly of monodisperse, anisotropic nanocrystals (NCs) with a rhombic-plate morphology spaced by dendrimer ligands results in a well-ordered monolayer that serves as a 2D anisotropic hard mask pattern. This pattern is transferred into the underlying substrate using dry etching followed by removal of the NC mask. We exemplify this approach by fabricating an array of pillars with a rhombic cross-section and edge-to-edge spacing of 4.4 ± 1.1 nm. The fabrication approach enables broader access to patterning materials at the deep nanoscale by implementing innovative processes into well-established fabrication methods while minimizing process complexity.
Collapse
|
14
|
Amadi EV, Venkataraman A, Papadopoulos C. Nanoscale self-assembly: concepts, applications and challenges. NANOTECHNOLOGY 2022; 33. [PMID: 34874297 DOI: 10.1088/1361-6528/ac3f54] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/02/2021] [Indexed: 05/09/2023]
Abstract
Self-assembly offers unique possibilities for fabricating nanostructures, with different morphologies and properties, typically from vapour or liquid phase precursors. Molecular units, nanoparticles, biological molecules and other discrete elements can spontaneously organise or form via interactions at the nanoscale. Currently, nanoscale self-assembly finds applications in a wide variety of areas including carbon nanomaterials and semiconductor nanowires, semiconductor heterojunctions and superlattices, the deposition of quantum dots, drug delivery, such as mRNA-based vaccines, and modern integrated circuits and nanoelectronics, to name a few. Recent advancements in drug delivery, silicon nanoelectronics, lasers and nanotechnology in general, owing to nanoscale self-assembly, coupled with its versatility, simplicity and scalability, have highlighted its importance and potential for fabricating more complex nanostructures with advanced functionalities in the future. This review aims to provide readers with concise information about the basic concepts of nanoscale self-assembly, its applications to date, and future outlook. First, an overview of various self-assembly techniques such as vapour deposition, colloidal growth, molecular self-assembly and directed self-assembly/hybrid approaches are discussed. Applications in diverse fields involving specific examples of nanoscale self-assembly then highlight the state of the art and finally, the future outlook for nanoscale self-assembly and potential for more complex nanomaterial assemblies in the future as technological functionality increases.
Collapse
Affiliation(s)
- Eberechukwu Victoria Amadi
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Anusha Venkataraman
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| | - Chris Papadopoulos
- University of Victoria, Department of Electrical and Computer Engineering, PO BOX 1700 STN CSC, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
15
|
Playing with sizes and shapes of colloidal particles via dry etching methods. Adv Colloid Interface Sci 2022; 299:102538. [PMID: 34906837 DOI: 10.1016/j.cis.2021.102538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Monolayers of self-assembled quasi-spherical colloidal particles are essential building blocks in the field of materials science and engineering. More typically, they are used as a template for the fabrication of nanostructures if they serve, for instance, as a mask for deposition of new material on the surface on which particles are assembled or for etching of the material underneath; in this case, they are removed afterwards. This is what occurs in colloidal or nanosphere lithography. In some other cases, they are not used as a sacrificial material but they are incorporated in the final structure because they are inherently interesting for their properties. Independently of their specific use and application, different strategies have been devised in order to modify size and shape of colloidal particles, so as to enrich the variety of attainable patterns and to tailor the properties of the final structures and materials. In this review, we will focus on one of the most widespread methods to shape spherical colloidal particles, i.e. dry etching techniques. We will follow the development of such approaches until recent days, so as to trace an extensive panorama of the diverse parameters that can be harnessed to achieve specific morphological changes and highlight the characteristic features of the variants of this method. We will finally discuss how particles modified via dry etching can be used for patterning or can be resuspended in solvents for very diverse applications.
Collapse
|