1
|
Marszałek A, Puszczało E, Szymańska K, Sroka M, Kudlek E, Generowicz A. Application of Mesoporous Silicas for Adsorption of Organic and Inorganic Pollutants from Rainwater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2917. [PMID: 38930286 PMCID: PMC11205702 DOI: 10.3390/ma17122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Precipitation is an important factor that influences the quality of surface water in many regions of the world. The pollution of stormwater runoff from roads and parking lots is an understudied area in water quality research. Therefore, a comprehensive analysis of the physicochemical properties of rainwater flowing from parking lots was carried out, considering heavy metals and organic micropollutants. High concentrations of zinc were observed in rainwater, in addition to alkanes, e.g., tetradecane, hexadecane, octadecane, 2,6,10-trimethyldodecane, 2-methyldodecane; phenolic derivatives, such as 2,6-dimethoxyphenol and 2,4-di-tertbutylphenol; and compounds such as benzothiazole. To remove the contaminants present in rainwater, adsorption using silica carriers of the MCF (Mesostructured Cellular Foams) type was performed. Three groups of modified carriers were prepared, i.e., (1) SH (thiol), (2) NH2 (amino), and (3) NH2/SH (amine and thiol functional groups). The research problem, which is addressed in the presented article, is concerned with the silica carrier influence of the functional group on the adsorption efficiency of micropollutants. The study included an evaluation of the effects of adsorption dose and time on the efficiency of the contaminant removal process, as well as an analysis of adsorption isotherms and reaction kinetics. The colour adsorption from rainwater was 94-95% for MCF-NH2 and MCF-NH2/SH. Zinc adsorbance was at a level of 90% for MCF-NH2, and for MCF-NH2/SH, 52%. Studies have shown the high efficacy (100%) of MCF-NH2 in removing organic micropollutants, especially phenolic compounds and benzothiazole. On the other hand, octadecane was the least susceptible to adsorption in each case. It was found that the highest efficiency of removal of organic micropollutants and zinc ions was obtained through the use of functionalized silica NH2.
Collapse
Affiliation(s)
- Anna Marszałek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, University of Technology, 44-100 Gliwice, Poland; (A.M.); (E.K.)
| | - Ewa Puszczało
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Marek Sroka
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, University of Technology, 44-100 Gliwice, Poland; (A.M.); (E.K.)
| | - Agnieszka Generowicz
- Department of Environmental Technologies, Cracow University of Technology, 31-155 Kraków, Poland
| |
Collapse
|
2
|
Yadav S, Choudhary N, Sonpal V, Paital AR. Carbon Dots-Embedded Silica Tubes: An Excitation-Independent Yellow-Emitting Turn-On Probe for Simultaneous Detection and Removal of Inorganic Arsenic with In Vivo Tracking in Living Organisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307491. [PMID: 37880860 DOI: 10.1002/smll.202307491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Indexed: 10/27/2023]
Abstract
The environmental monitoring and remediation of highly toxic inorganic arsenic species in natural water are needed for the benefit of the ecosystem. Current studies on arsenic detection and removal often employ separate materials, which exhibit blue luminescence with fluorescence quenching, making them unsuitable for biological and environmental samples. In this study, carbon dot-embedded mesoporous silica tubes functionalized with melamine are synthesized to address these limitations and enable specific and turn-on probing of inorganic arsenic. The newly synthesized material demonstrates excitation-independent yellow luminescence and can effectively detect both As (III) and As (V) at low detection limits (11 × 10-9 m, 11.2 × 10-9 m), well below the prescribed threshold limits in drinking water. It also exhibits a high adsorption capacity (≈125, 159 mg g-1 ) with fast kinetics. The material's applicability in environmental samples is validated through the successful quantification of arsenic in real samples with satisfactory recoveries. Moreover, the material shows recyclability for reuse, as demonstrated by its arsenic adsorption and desorption for several cycles under basic conditions. Additionally, the material's capability for monitoring arsenic in a biological sample (Artemia salina) is demonstrated through fluorescence imaging. The encouraging outcomes underscore the material's potential use in monitoring and mitigating arsenic in aqueous systems.
Collapse
Affiliation(s)
- Sanjay Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Nishu Choudhary
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Vasavdutta Sonpal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Alok Ranjan Paital
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
3
|
Wen R, Wu X, Tian J, Lu J. A colorimetric aptasensor for CA125 determination based on dual catalytic performance of CeO 2 nanozyme confined in macroporous silica foam. Mikrochim Acta 2023; 190:470. [PMID: 37971689 DOI: 10.1007/s00604-023-06046-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023]
Abstract
A portable colorimetric aptasensor was constructed based on the dual catalytic performance of CeO2 nanozyme to determine carbohydrate antigen 125 (CA125). Firstly, CeO2 nanozyme was synthesized by calcination and ultrasonically dispersed in a macroporous silica foam (MSF) to form CeO2@MSF. Then the aptamer of CA125 (apt) and complementary DNA (c-DNA) were successively assembled on the CeO2@MSF to construct a CeO2@MSF/apt/c-DNA colorimetric aptasensor, which exhibited excellent oxidase-mimic performance and phosphatase-mimic activity simultaneously. In the presence of CA125, the apt specifically binds to target CA125, and the single-strand c-DNA leaves the CeO2@MSF/apt surface, which is catalytically hydrolyzed by exonuclease I. The produced phosphate ions inhibit the phosphatase-mimic activity of CeO2 nanozyme. Thus, the absorbance at 652 nm of 3,3',5,5'-tetramethylbenzidine solution containing ascorbic acid-2-phosphate increases with the concentration of CA125. The response is linearly related to the logarithm of CA125 concentration from 1.0 to 10.0 U/mL under optimal experimental conditions. Based on this, the constructed colorimetric aptasensor has a high sensitivity, good selectivity, and high accuracy for CA125 determination in real human serum sample.
Collapse
Affiliation(s)
- Ruiting Wen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xingyang Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jiuying Tian
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Jusheng Lu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
4
|
Sanna Angotzi M, Mameli V, Zákutná D, Secci F, Xin HL, Cannas C. Hard-Soft Core-Shell Architecture Formation from Cubic Cobalt Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101679. [PMID: 37242095 DOI: 10.3390/nano13101679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Cubic bi-magnetic hard-soft core-shell nanoarchitectures were prepared starting from cobalt ferrite nanoparticles, prevalently with cubic shape, as seeds to grow a manganese ferrite shell. The combined use of direct (nanoscale chemical mapping via STEM-EDX) and indirect (DC magnetometry) tools was adopted to verify the formation of the heterostructures at the nanoscale and bulk level, respectively. The results showed the obtainment of core-shell NPs (CoFe2O4@MnFe2O4) with a thin shell (heterogenous nucleation). In addition, manganese ferrite was found to homogeneously nucleate to form a secondary nanoparticle population (homogenous nucleation). This study shed light on the competitive formation mechanism of homogenous and heterogenous nucleation, suggesting the existence of a critical size, beyond which, phase separation occurs and seeds are no longer available in the reaction medium for heterogenous nucleation. These findings may allow one to tailor the synthesis process in order to achieve better control of the materials' features affecting the magnetic behaviour, and consequently, the performances as heat mediators or components for data storage devices.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| | - Dominika Zákutná
- Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Fausto Secci
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria S.S. 554 Bivio per Sestu, 09042 Monserrato, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Florence, Italy
| |
Collapse
|
5
|
Humelnicu D, Ignat M, Dinu MV, Dragan ES. Optimization of Arsenic Removal from Aqueous Solutions Using Amidoxime Resin Hosted by Mesoporous Silica. ACS OMEGA 2022; 7:31069-31080. [PMID: 36092575 PMCID: PMC9453956 DOI: 10.1021/acsomega.2c03140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The paper reports on the performances of cross-linked amidoxime hosted into mesoporous silica (AMOX) in the removal of As(III) and As(V). The optimum pH for sorption of As(III) and As(V) was pH 8 and pH 5, respectively. The PFO kinetic model and the Sips isotherm fitted the best the experimental data. The thermodynamic parameters were evaluated using the equilibrium constant values given by the Sips isotherm at different temperatures and found that the adsorption process of As(III) and As(V) was spontaneous and endothermic on all AMOX sorbents. The spent AMOX sorbents could be easily regenerated with 0.2 mol/L HCl solution and reused up to five sorption/desorption cycles with an average decrease of the adsorption capacity of 18%. The adverse effect of the co-existing inorganic anions on the adsorption of As(III) and As(V) onto the sorbent with the highest sorption capacity (AMOX3) was arranged in the following order: H2PO4 - > HCO3 - > NO3 - > SO4 2-.
Collapse
Affiliation(s)
- Doina Humelnicu
- Faculty
of Chemistry, “Al. I. Cuza”
University of Iasi, Carol
I Bd. 11, Iasi 700506, Romania
| | - Maria Ignat
- Faculty
of Chemistry, “Al. I. Cuza”
University of Iasi, Carol
I Bd. 11, Iasi 700506, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania
| | - Maria Valentina Dinu
- “Petru
Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania
| | - Ecaterina Stela Dragan
- “Petru
Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, Iasi 700487, Romania
| |
Collapse
|
6
|
Boi ME, Sanna Angotzi M, Porceddu M, Musu E, Mameli V, Bacchetta G, Cannas C. Germination and early seedling development of Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso in the presence of arsenates and arsenites. Heliyon 2022; 8:e10693. [PMID: 36177222 PMCID: PMC9513622 DOI: 10.1016/j.heliyon.2022.e10693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Arsenate, As(V), and arsenite, As(III), are the most available arsenicals present in the soil solutions, in particular in mine polluted substrates, and cause several symptoms of toxicity in plants (like inhibition of seed germination and reduction of seedling development). For these reasons, seeds germination studies are essential for the design of phytoremediation activities of mine sites. Seed germination and seedling development of Helichrysum microphyllum subsp. tyrrhenicum, were evaluated at 15 °C using various concentrations of As(V) and As(III) (0–500 mg/L and 0–200 mg/L, respectively). Seeds were harvested (I) into a mine dump contaminated in As, (II) nearby this site, and (III) faraway the As contaminated area and without mine activities. Seed germination, cotyledons emergence, and seedling mortality were evaluated for 90 days. As(V) and As(III) acted differently, showing a much higher toxicity when arsenite was added than arsenate. The taxon was able to germinate, develop cotyledons, and survive under all arsenate concentrations, whereas arsenite acted on these steps already at 2.5 mg/L. Moreover, a linear decrease in cotyledons emergence was assessed with the increase of both arsenicals’ concentrations, as well as a linear decrease of seedling survival under arsenite. The taxon showed great adaptability to As pollution, giving an important contribution in phytoremediation of mining sites.
Collapse
Affiliation(s)
- Maria Enrica Boi
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Department of Life and Environmental Sciences, Centre for Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.,Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, FI, Italy
| | - Marco Porceddu
- Department of Life and Environmental Sciences, Centre for Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.,Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Elodia Musu
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Ausi, Palazzo Bellavista, 09016 Monteponi Iglesias, CI, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, FI, Italy
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, Centre for Conservation of Biodiversity (CCB), University of Cagliari, Viale Sant'Ignazio da Laconi 13, 09123 Cagliari, Italy.,Sardinian Germplasm Bank (BG-SAR), Hortus Botanicus Karalitanus (HBK), University of Cagliari, Viale Sant'Ignazio da Laconi, 9-11, 09123 Cagliari, Italy
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, S. S. 554 Bivio per Sestu, 09042 Monserrato, CA, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, FI, Italy
| |
Collapse
|
7
|
Sanna Angotzi M, Mameli V, Fantasia A, Cara C, Secci F, Enzo S, Gerina M, Cannas C. As (III, V) Uptake from Nanostructured Iron Oxides and Oxyhydroxides: The Complex Interplay between Sorbent Surface Chemistry and Arsenic Equilibria. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:326. [PMID: 35159671 PMCID: PMC8840107 DOI: 10.3390/nano12030326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023]
Abstract
Iron oxides/oxyhydroxides, namely maghemite, iron oxide-silica composite, akaganeite, and ferrihydrite, are studied for AsV and AsIII removal from water in the pH range 2-8. All sorbents were characterized for their structural, morphological, textural, and surface charge properties. The same experimental conditions for the batch tests permitted a direct comparison among the sorbents, particularly between the oxyhydroxides, known to be among the most promising As-removers but hardly compared in the literature. The tests revealed akaganeite to perform better in the whole pH range for AsV (max 89 mg g-1 at pH0 3) but to be also efficient toward AsIII (max 91 mg g-1 at pH0 3-8), for which the best sorbent was ferrihydrite (max 144 mg g-1 at pH0 8). Moreover, the study of the sorbents' surface chemistry under contact with arsenic and arsenic-free solutions allowed the understanding of its role in the arsenic uptake through electrophoretic light scattering and pH measurements. Indeed, the sorbent's ability to modify the starting pH was a crucial step in determining the removal of performances. The AsV initial concentration, contact time, ionic strength, and presence of competitors were also studied for akaganeite, the most promising remover, at pH0 3 and 8 to deepen the uptake mechanism.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Alessandra Fantasia
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Fausto Secci
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Stefano Enzo
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Marianna Gerina
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 12800 Prague, Czech Republic;
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 bivio per Sestu, 09042 Monserrato, Italy; (M.S.A.); (A.F.); (C.C.); (F.S.); (C.C.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
8
|
Sanna Angotzi M, Mameli V, Khanal S, Veverka M, Vejpravova J, Cannas C. Effect of different molecular coatings on the heating properties of maghemite nanoparticles. NANOSCALE ADVANCES 2022; 4:408-420. [PMID: 35178500 PMCID: PMC8765356 DOI: 10.1039/d1na00478f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
In this work, the effect of different molecular coatings on the alternating magnetic field-induced heating properties of 15 nm maghemite nanoparticles (NPs) in water dispersions was studied at different frequencies (159-782 kHz) and field amplitudes (100-400 G). The original hydrophobic oleate coating was replaced with dimercaptosuccinic acid (DMSA) or polyethylene glycol trimethoxysilane (PEGTMS), while cetrimonium bromide (CTAB) or stearic acid-poloxamer 188 (SA-P188) was intercalated or encapsulated, respectively, to transfer the dispersions into water. Surface modification, based on intercalation processes, induced clustering phenomena with the formation of spherical-like assemblies (CTAB and SA-P188), while ligand-exchange strategies kept the particles isolated. The clustering phenomenon has detrimental effects on the heating performances compared with isolated systems, in line with the reduction of Brown relaxation times. Furthermore, broader comprehension of the heating phenomenon in this dynamic system is obtained by following the evolution of SPA and ILP with time and temperature beyond the initial stage.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Shankar Khanal
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Miroslav Veverka
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Jana Vejpravova
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| |
Collapse
|