1
|
Garrido M, Naranjo A, Pérez EM. Characterization of emerging 2D materials after chemical functionalization. Chem Sci 2024; 15:3428-3445. [PMID: 38455011 PMCID: PMC10915849 DOI: 10.1039/d3sc05365b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical modification of 2D materials has proven a powerful tool to fine tune their properties. With this motivation, the development of new reactions has moved extremely fast. The need for speed, together with the intrinsic heterogeneity of the samples, has sometimes led to permissiveness in the purification and characterization protocols. In this review, we present the main tools available for the chemical characterization of functionalized 2D materials, and the information that can be derived from each of them. We then describe examples of chemical modification of 2D materials other than graphene, focusing on the chemical description of the products. We have intentionally selected examples where an above-average characterization effort has been carried out, yet we find some cases where further information would have been welcome. Our aim is to bring together the toolbox of techniques and practical examples on how to use them, to serve as guidelines for the full characterization of covalently modified 2D materials.
Collapse
|
2
|
Rodríguez González MC, Ibarburu IM, Rebanal C, Sulleiro MV, Sasikumar R, Naranjo A, Ayani CG, Garnica M, Calleja F, Pérez EM, Vázquez de Parga AL, De Feyter S. Clicking beyond suspensions: understanding thiol-ene chemistry on solid-supported MoS 2. NANOSCALE 2024; 16:3749-3754. [PMID: 38298095 DOI: 10.1039/d3nr05236b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Molecular functionalization of MoS2 has attracted a lot of attention due to its potential to afford fine-tuned hybrid materials that benefit from the power of synthetic chemistry and molecular design. Here, we report on the on-surface reaction of maleimides on bulk and molecular beam epitaxy grown single-layer MoS2, both in ambient conditions as well as ultrahigh vacuum using scanning probe microscopy.
Collapse
Affiliation(s)
- Miriam C Rodríguez González
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Área de Química Física, Departamento de Química, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Iván M Ibarburu
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | - Clara Rebanal
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | - Rahul Sasikumar
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | - Cosme G Ayani
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | | | | - Amadeo L Vázquez de Parga
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
- IMDEA Nanociencia, Faraday 9, 28049 Madrid, Spain.
- IFIMAC, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Ismail PM, Ali S, Ali S, Li J, Liu M, Yan D, Raziq F, Wahid F, Li G, Yuan S, Wu X, Yi J, Chen JS, Wang Q, Zhong L, Yang Y, Xia P, Qiao L. Photoelectron "Bridge" in Van Der Waals Heterojunction for Enhanced Photocatalytic CO 2 Conversion Under Visible Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303047. [PMID: 37363951 DOI: 10.1002/adma.202303047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Constructing Van der Waals heterojunction is a crucial strategy to achieve excellent photocatalytic activity. However, in most Van der Waals heterojunctions synthesized by ex situ assembly, electron transfer encounters huge hindrances at the interface between the two components due to the large spacing and potential barrier. Herein, a phosphate-bridged Van der Waals heterojunction of cobalt phthalocyanine (CoPc)/tungsten disulfide (WS2 ) bridged by phosphate (xCoPc-nPO4 - -WS2 ) is designed and prepared by the traditional wet chemistry method. By introducing a small phosphate molecule into the interface of CoPc and WS2 , creates an electron "bridge", resulting in a compact combination and eliminating the space barrier. Therefore, the phosphate (PO4 - ) bridge can serve as an efficient electron transfer channel in heterojunction and can efficiently transmit photoelectrons from WS2 to CoPc under excited states. These excited photoelectrons are captured by the catalytic central Co2+ in CoPc and subsequently convert CO2 molecules into CO and CH4 products, achieving 17-fold enhancement on the 3CoPc-0.6PO4 - -WS2 sample compared to that of pure WS2 . Introducing a small molecule "bridge" to create an electron transfer channel provides a new perspective in designing efficient photocatalysts for photocatalytic CO2 reduction into valuable products.
Collapse
Affiliation(s)
- Pir Muhammad Ismail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sajjad Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Sharafat Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jiahao Li
- State Key Laboratory of Physical Chemistry of Solid, Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Min Liu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Dong Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fazal Raziq
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fazli Wahid
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Guojing Li
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Shuhua Yuan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Li Zhong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid, Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Pengfei Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou, 313001, P. R. China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
4
|
Cheng Y, Li Z, Tang T, Wang X, Hu X, Xu K, Hung Chu M, Hoa ND, Xie H, Yu H, Chen H, Ou JZ. 3D self-assembled indium sulfide nanoreactor for in-situ surface covalent functionalization: Towards high-performance room-temperature NO 2 sensing. J Colloid Interface Sci 2023; 645:86-95. [PMID: 37146382 DOI: 10.1016/j.jcis.2023.04.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Thiol functionalization of two-dimensional (2D) metal sulfides has been demonstrated as an effective approach to enhance the sensing performances. However, most thiol functionalization is realized by multiple-step approaches in liquid medium and depends on the dispersity of 2D materials. Here, we utilize a three-dimensional (3D) In2S3 nano-porous structure that self-assembled from 2D components as the nanoreactor, in which the surface-absorbed thiol molecules from the chemical residues of the nanoreactor are used for the in-situ covalent functionalization. Such functionalization is realized by facile heat the nanoreactor at 100 °C, leading to the recombing sulfur vacancies with thiol-terminated groups. The NO2 sensing performances of such functionalized nanoreactor are investigated at room temperature, in which In2S3-100 exhibits a response magnitude of 21.5 towards 10 ppm NO2 with full reversibility, high selectivity, and excellent repeatability. Such high-performance gas sensors can be attributed to the additional electrons that transferring from the functional group into the host, thus significantly modifying the electronic band structure. This work provides a guideline for the facile in-situ functionalization of metal sulfides and an efficient strategy for the high performances gas sensors without external stimulus.
Collapse
Affiliation(s)
- Yinfen Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China.
| | - Tao Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xuanxing Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinyi Hu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Manh Hung Chu
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 10000, Viet Nam
| | - Nguyen Duc Hoa
- International Training Institute for Materials Science, Hanoi University of Science and Technology, Hanoi 10000, Viet Nam
| | - Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hao Yu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Engineering, RMIT University, Melbourne 3000, Australia.
| |
Collapse
|
5
|
Martín-Pérez L, Medina Rivero S, Vázquez Sulleiro M, Naranjo A, Gómez IJ, Ruíz-González ML, Castellanos-Gomez A, Garcia-Hernandez M, Pérez EM, Burzurí E. Direct Magnetic Evidence, Functionalization, and Low-Temperature Magneto-Electron Transport in Liquid-Phase Exfoliated FePS 3. ACS NANO 2023; 17:3007-3018. [PMID: 36651757 PMCID: PMC9933618 DOI: 10.1021/acsnano.2c11654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Magnetism and the existence of magnetic order in a material is determined by its dimensionality. In this regard, the recent emergence of magnetic layered van der Waals (vdW) materials provides a wide playground to explore the exotic magnetism arising in the two-dimensional (2D) limit. The magnetism of 2D flakes, especially antiferromagnetic ones, however, cannot be easily probed by conventional magnetometry techniques, being often replaced by indirect methods like Raman spectroscopy. Here, we make use of an alternative approach to provide direct magnetic evidence of few-layer vdW materials, including antiferromagnets. We take advantage of a surfactant-free, liquid-phase exfoliation (LPE) method to obtain thousands of few-layer FePS3 flakes that can be quenched in a solvent and measured in a conventional SQUID magnetometer. We show a direct magnetic evidence of the antiferromagnetic transition in FePS3 few-layer flakes, concomitant with a clear reduction of the Néel temperature with the flake thickness, in contrast with previous Raman reports. The quality of the LPE FePS3 flakes allows the study of electron transport down to cryogenic temperatures. The significant through-flake conductance is sensitive to the antiferromagnetic order transition. Besides, an additional rich spectra of electron transport excitations, including secondary magnetic transitions and potentially magnon-phonon hybrid states, appear at low temperatures. Finally, we show that the LPE is additionally a good starting point for the mass covalent functionalization of 2D magnetic materials with functional molecules. This technique is extensible to any vdW magnetic family.
Collapse
Affiliation(s)
- Lucía Martín-Pérez
- IMDEA
Nanociencia C/Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | - Samara Medina Rivero
- IMDEA
Nanociencia C/Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | | | - Alicia Naranjo
- IMDEA
Nanociencia C/Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | - I. Jénnifer Gómez
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | | | - Andres Castellanos-Gomez
- 2D
Foundry, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas
(CSIC), 28049 Madrid, Spain
| | - Mar Garcia-Hernandez
- 2D
Foundry, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas
(CSIC), 28049 Madrid, Spain
| | - Emilio M. Pérez
- IMDEA
Nanociencia C/Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | - Enrique Burzurí
- IMDEA
Nanociencia C/Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Física de la Materia Condensada and Condensed Matter Physics
Center (IFIMAC), Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Palacios-Corella M, Muñoz J, Pumera M. Molecularly "clicking" active moieties to germanium-based inorganic 2D materials. NANOSCALE 2022; 14:18167-18174. [PMID: 36453619 DOI: 10.1039/d2nr04955d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two dimensional materials beyond graphene are in forefront research. Two dimensional analogues of graphene of group 14, germanene, are of high importance for their electronic and optical properties. The commonly used deintercalation fabrication approach has reached a major bottleneck in the field due to the lack of versatility derived from the limited library of precursors available for 2D-Ge functionalization with terminal groups. Thus, a chemical procedure that would allow for the on-demand synthesis of functional 2D-Ge derivatives with tuned physicochemical features for task-specific applications is of utmost importance to advance in the field. To fill this gap, click chemistry is herein presented as a straightforward "one-pot" synthetic strategy to simply reach functional 2D-Ge derivatives by covalently assembling ad hoc thiol-rich active molecular components (R'-SH) upon commercially available allyl 2D-Ge (2D-Ge-CH2CHCH2) by taking advantage of a photoinduced thiol-ene click reaction. Consequently, the combination of molecular engineering and Ge-based 2D materials through click chemistry supposes a step forward towards the achievement of a new family of smart 2D-Ge-CH2CH2CH2S-R' derivatives with different (supra)molecular responsiveness, which goes beyond the state-of-the-art in the field. This approach of functionalization of 2D monoelemental post-graphene material germanene is highly innovative and shall provide universal way of functionalization of germananes.
Collapse
Affiliation(s)
- Mario Palacios-Corella
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Jose Muñoz
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
7
|
Fabrication of devices featuring covalently linked MoS2–graphene heterostructures. Nat Chem 2022; 14:695-700. [DOI: 10.1038/s41557-022-00924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
|
8
|
Martín-Pérez L, Burzurí E. Optimized Liquid-Phase Exfoliation of Magnetic van der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices. Molecules 2021; 26:molecules26237371. [PMID: 34885953 PMCID: PMC8658876 DOI: 10.3390/molecules26237371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Van der Waals magnetic materials are promising candidates for spintronics and testbeds for exotic magnetic phenomena in low dimensions. The two-dimensional (2D) limit in these materials is typically reached by mechanically breaking the van der Waals interactions between layers. Alternative approaches to producing large amounts of flakes rely on wet methods such as liquid-phase exfoliation (LPE). Here, we report an optimized route for obtaining monolayers of magnetic cylindrite by LPE. We show that the selection of exfoliation times is the determining factor in producing a statistically significant amount of monolayers while keeping relatively big flake areas (~1 µm2). We show that the cylindrite lattice is preserved in the flakes after LPE. To study the electron transport properties, we have fabricated field-effect transistors based on LPE cylindrite. Flakes are deterministically positioned between nanoscale electrodes by dielectrophoresis. We show that dielectrophoresis can selectively move the larger flakes into the devices. Cylindrite nanoscale flakes present a p-doped semiconducting behaviour, in agreement with the mechanically exfoliated counterparts. Alternating current (AC) admittance spectroscopy sheds light on the role played by potential barriers between different flakes in terms of electron transport properties. The present large-scale exfoliation and device fabrication strategy can be extrapolated to other families of magnetic materials.
Collapse
Affiliation(s)
- Lucía Martín-Pérez
- IMDEA Nanociencia, Campus de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain;
| | - Enrique Burzurí
- IMDEA Nanociencia, Campus de Cantoblanco, Calle Faraday 9, 28049 Madrid, Spain;
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
10
|
Zschiesche H, Aygar AM, Langelier B, Szkopek T, Botton GA. Atomic scale chemical ordering in franckeite-a natural van der Waals superlattice. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:055403. [PMID: 34783682 DOI: 10.1088/1361-648x/ac3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The mineral franckeite is a naturally occurring van der Waals superlattice which has recently attracted attention for future applications in optoelectronics, biosensors and beyond. Furthermore, its stacking of incommensurately modulated 2D layers, the pseudo tetragonal Q-layer and the pseudo hexagonal H-layer, is an experimentally accessible prototype for the development of synthetic van der Waals materials and of advanced characterization methods to reveal new insights in their structure and chemistry at the atomic scale that is crucial for deep understanding of its properties. While some experimental studies have been undertaken in the past, much is still unknown on the correlation between local atomic structure and chemical composition within the layers. Here we present an investigation of the atomic structure of franckeite using state-of-the-art high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) and atom probe tomography (APT). With atomic-number image contrast in HAADF STEM direct information about both the geometric structure and its chemistry is provided. By imaging samples under different zone axes within the van der Waals plane, we propose refinements to the structure of the Q-layer and H-layer, including several chemical ordering effects that are expected to impact electronic structure calculations. Additionally, we observe and characterize stacking faults which are possible sources of differences between experimentally determined properties and calculations. Furthermore, we demonstrate advantages and discuss current limitations and perspectives of combining TEM and APT for the atomic scale characterization of incommensurately modulated von der Waals materials.
Collapse
Affiliation(s)
- Hannes Zschiesche
- McMaster University, Department of Materials Science and Engineering, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Ayse Melis Aygar
- McGill University, Department of Electrical and Computer Engineering, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Brian Langelier
- McMaster University, Canadian Center for Electron microscopy, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Thomas Szkopek
- McGill University, Department of Electrical and Computer Engineering, 3480 Rue University, Montreal, QC H3A 2A7, Canada
| | - Gianluigi A Botton
- McMaster University, Department of Materials Science and Engineering, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|