1
|
Zhang J, Li R, Yu J, Bai H, Lu M, Wang B. Three-dimensional gel network structure of agarose interlayer dispersed Pd nanoparticles in copper foam electrode for electrocatalytic degradation of doxycycline hydrochloride. Int J Biol Macromol 2024; 279:135348. [PMID: 39270913 DOI: 10.1016/j.ijbiomac.2024.135348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In this study, we successfully prepared palladium/agarose/copper foam (Pd/AG/CF) composite electrodes by utilizing the three-dimensional network structure agarose (AG), a green material derived from biomass, and homogeneously immobilizing palladium (Pd) atoms on a copper foam (CF) substrate through a facile route. The electrode showed excellent performance in the electrocatalytic degradation of doxycycline (DOX), with a high DOX degradation rate of 92.19 % in 60 min. In-depth studies revealed that palladium can form metal-metal interactions with the CF substrates, which enhances the electron transfer on the catalyst surface. In addition, the introduction of agarose effectively prevented the agglomeration of palladium nanoparticles. In addition, the hydroxyl functional groups in the molecular structure of agarose facilitate interactions between water molecules and the electrode interface through the formation of hydrogen bonds, thereby further enhancing the efficiency of the electrocatalytic reaction. In addition to good stability and reusability. Microbial toxicity test results show that the degraded wastewater has minimal impact on the environment. Also, possible degradation pathways of DOX were explored in this study. Finally, a novel continuous flow reactor was designed, featuring a unique design that ensures full contact between wastewater and the composite electrodes, thereby achieving continuous and efficient treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Ruoyi Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jiaqi Yu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Haina Bai
- School of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China.
| | - Muchen Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Bing Wang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
2
|
Mirzahedayat B, Kalvani N, Mehrasbi MR, Assadi A. Advances in photocatalytic degradation of tetracycline using graphene-based composites in water: a systematic review and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35359-3. [PMID: 39455515 DOI: 10.1007/s11356-024-35359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
In this study, a comprehensive systematic review was conducted to better recognize the applicability of graphene-based photocatalytic processes for the degradation of tetracycline (TC) from water. A broad search strategy was developed for English language articles available in PubMed, Scopus, and Web of Science. The effect of parameters such as pH, TC concentration, photocatalyst dose, radiation source intensity, and the effect of graphene on the process, kinetics, and reuse of the photocatalyst were investigated. A total of 63 out of a possible 3498 retrieved records met inclusion criteria. The results showed that most related studies have increased since 2019. About 46.7% of the articles showed 90-100% TC removal efficiency and 59.52% of the studies had optimal pH equal to 5 and 6. Also, the widespread use of visible light had a significant trend. The effect of the dose of graphene in the catalyst was one of the most important and effective factors on the process; hence, the difference in efficiency with and without graphene was completely evident. This review indicated that the presence of graphene has been able to have a positive effect on increasing the efficiency of oxidation processes, and it can be used for environmental pollutants remediation.
Collapse
Affiliation(s)
- Bahare Mirzahedayat
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Nima Kalvani
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Mohammad Reza Mehrasbi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran
| | - Ali Assadi
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, P.O. Box 4515713656, Zanjan, Iran.
| |
Collapse
|
3
|
Khalid H, Haq AU, Fawad Zahoor A, Irfan A, Zaki MEA. An investigation of Ca-doped MgO nanoparticles for the improved catalytic degradation of thiamethoxam pesticide subjected to visible light irradiation. Sci Rep 2024; 14:1126. [PMID: 38212536 PMCID: PMC10784470 DOI: 10.1038/s41598-024-51738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
The remediation of pesticides from the environment is one of the most important technology nowadays. Herein, magnesium oxide (MgO) nanoparticles and calcium-doped magnesium oxide (Ca-doped MgO) nanoparticles were synthesized by the co-precipitation method and were used for the degradation of thiamethoxam pesticide in aqueous media. Characterization of the MgO and Ca-doped MgO nanoparticles were performed by XRD, SEM, EDX, and FT-IR analysis to verify the synthesis and variations in chemical composition. The band gap energy and crystalline size of MgO and Ca-doped MgO nanoparticles were found to be 4.8 and 4.7 eV and 33 and 34 nm respectively. The degradation of thiamethoxam was accomplished regarding the impact of catalyst dosage, contact time, temperature, pH, and initial pesticide concentration. The pH study indicates that degradation of thiamethoxam depends on pH and maximum degradation (66%) was obtained at pH 5 using MgO nanoparticles. In contrast, maximum degradation (80%) of thiamethoxam was observed at pH 8 employing Ca-doped MgO nanoparticles. The percentage degradation of thiamethoxam was initially increasing but decreased at higher doses of the catalysts. The degradation of the pesticide was observed to be increased with an increase in contact time while high at room temperature but decreased with a temperature rise. The effect of the initial concertation of pesticide indicates that degradation of pesticide increases at low concentrations but declines at higher concentrations. This research study reveals that doping of MgO nanoparticles with calcium enhanced the degradation of thiamethoxam pesticide in aqueous media.
Collapse
Affiliation(s)
- Huma Khalid
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Atta Ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13623, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Perween S, Wissel K, Dallos Z, Weiss M, Ikeda Y, Vasala S, Strobel S, Schützendübe P, Jeschenko PM, Kolb U, Marschall R, Grabowski B, Glatzel P. Topochemical Fluorination of LaBaInO 4 to LaBaInO 3F 2, Their Optical Characterization, and Photocatalytic Activities for Hydrogen Evolution. Inorg Chem 2023; 62:16329-16342. [PMID: 37756217 DOI: 10.1021/acs.inorgchem.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.
Collapse
Affiliation(s)
- Shama Perween
- Institute for Materials Science, Materials Synthesis Group, University of Stuttgart, Heisenbergstrasse 3, Stuttgart 70569, Germany
- Institute for Materials Science, Technical University of Darmstadt, Alarich-Weiss-Straße 2, Darmstadt 64287, Germany
| | - Kerstin Wissel
- Institute for Materials Science, Materials Synthesis Group, University of Stuttgart, Heisenbergstrasse 3, Stuttgart 70569, Germany
| | - Zsolt Dallos
- Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, Darmstadt 64287, Germany
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Morten Weiss
- Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95447, Germany
| | - Yuji Ikeda
- Institute for Materials Science, Department of Materials Design, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Sami Vasala
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Sabine Strobel
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Peter Schützendübe
- Max Planck Institute for Intelligent Systems, Stuttgart D-70569, Germany
| | | | - Ute Kolb
- Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstrasse 9, Darmstadt 64287, Germany
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Roland Marschall
- Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, Bayreuth 95447, Germany
| | - Blazej Grabowski
- Institute for Materials Science, Department of Materials Design, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Pieter Glatzel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
5
|
Alhammadi S, Rabie AM, Sayed MS, Kang D, Shim JJ, Kim WK. Highly effective direct decomposition of organic pollutants via Ag-Zn co-doped In 2S 3/rGO photocatalyst. CHEMOSPHERE 2023:139125. [PMID: 37277002 DOI: 10.1016/j.chemosphere.2023.139125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Currently, novel photocatalysts have attracted increasing attention to effectively utilizing abundant solar energy to meet the energy demands of humans and mitigate environmental burdens. In this work, we developed a novel and highly efficient photocatalyst consisting of In2S3 doped with two elements (Ag and Zn) and decorated with reduced graphene oxide (rGO) sheets. The crystal structure, morphology, electrical properties, and optical properties of the prepared materials were studied using various analytical techniques, and their photocatalytic activity was thoroughly investigated. It was confirmed that within 10 min, over 97% decomposition of organic dyes was achieved by using Ag-Zn co-doped In2S3/rGO catalyst, while only 50 and 60% decompositions were achieved by conventional pure In2S3 and In2S3/rGO nanocomposite, respectively. Its photoelectrochemical (PEC) water-splitting performance was also significantly improved (∼120%) compared with pure In2S3 nanoparticles. This study provides a new vision of using Ag-Zn:In2S3 decorated on rGO sheets as an efficient photocatalyst under solar light irradiation for environmental remediation and hydrogen production.
Collapse
Affiliation(s)
- Salh Alhammadi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Mostafa S Sayed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt
| | - Dohyung Kang
- Department of Future Energy Convergence, Seoul National University of Science & Technology, Seoul, 01811, Republic of Korea.
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
6
|
Golmohammadi M, Sabbagh Alvani AA, Sameie H, Mei B, Salimi R, Poelman D, Rosei F. Photocatalytic nanocomposite membranes for environmental remediation. NANOTECHNOLOGY 2022; 33:465701. [PMID: 35921794 DOI: 10.1088/1361-6528/ac8682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We report the design and one-pot synthesis of Ag-doped BiVO4embedded in reduced graphene oxide (BiVO4:Ag/rGO) nanocomposites via a hydrothermal processing route. The binary heterojunction photocatalysts exhibited high efficiency for visible light degradation of model dyes and were correspondingly used for the preparation of photocatalytic membranes using polyvinylidene fluoride (PVDF) or polyethylene glycol (PEG)-modified polyimide (PI), respectively. The surface and cross-section images combined with elemental mapping illustrated the effective distribution of the nanocomposites within the polymeric membranes. Photocatalytic degradation efficiencies of 61% and 70% were achieved after 5 h of visible light irradiation using BiVO4:Ag/rGO@PVDF and BiVO4:Ag/rGO@PI (PEG-modified) systems, respectively. The beneficial photocatalytic performance of the BiVO4:Ag/rGO@PI (PEG-modified) membrane is explained by the higher hydrophilicity due to the PEG modification of the PI membrane. This work may provide a rational and effective strategy to fabricate highly efficient photocatalytic nanocomposite membranes with well-contacted interfaces for environmental purification.
Collapse
Affiliation(s)
- Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran 1591634311, Iran
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran 1591634311, Iran
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
- Standard Research Institute (SRI), Karaj, 31745-139, Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
- MESA + Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 217, The Netherlands
| | - Bastian Mei
- MESA + Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 217, The Netherlands
| | - Reza Salimi
- Color & Polymer Research Center (CPRC), Amirkabir University of Technology, Tehran 1591634311, Iran
- MESA + Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 217, The Netherlands
| | - Dirk Poelman
- Department of Solid State Sciences, Lumilab, Ghent University, Krijgslaan 281-S1, 9000 Ghent, Belgium
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|