1
|
Zeng Z, Qasem AMA, Blagbrough IS, Woodman TJ. Intramolecular through-space NMR spectroscopic effect of steric compression on 1H NMR spectroscopy. Org Biomol Chem 2024; 22:7915-7935. [PMID: 39248501 DOI: 10.1039/d4ob01108b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The intramolecular through-space NMR spectroscopic effect of steric compression is related to intramolecular through-space van der Waals repulsion. The electron cloud of a proton can be pushed away by the electron cloud of a nearby proton or functional group. As the electron population of the sterically compressed proton is decreased (therefore deshielded), the chemical shift sharply moves downfield, which may result in ambiguity for the proton signal assignment. Also, the conformation of the local area of the sterically compressed proton can be altered by the steric repulsion, therefore, the coupling constant/coupling pattern of a sterically compressed proton could be influenced. This review summarizes and presents the impacts on the chemical shift and coupling constant by the 1H NMR spectroscopic effect of steric compression extracted from the reported examples from the 1950s to 2021.
Collapse
Affiliation(s)
- Ziyu Zeng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Ashraf M A Qasem
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Jordan.
| | | | | |
Collapse
|
2
|
Hu Y, Chen L, Huang L, Wang G. The expression of AcIDI1 reveals diterpenoid alkaloids' allocation strategies in the roots of Aconitum carmichaelii Debx. Gene 2024; 920:148529. [PMID: 38703864 DOI: 10.1016/j.gene.2024.148529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Isopentenyl diphosphate isomerase (IDI), a key enzyme in the biosynthetic pathway of diterpenoid alkaloids (DAs), plays an essential regulatory role in the synthesis and accumulation of DAs. In this study, the coding sequence (CDS) of AcIDI1 was isolated from the mother roots of Aconitum carmichaelii Debx. (GeneBank accession number OR915879). Bioinformatics analysis showed that the CDS of AcIDI1 was 894 bp, encoding a protein with 297 amino acids and the putative protein localized in the chloroplast. AcIDI1 exhibited significant homology with sequences encoding IDI in other species, and was most closely related to Aconitum vilmorinianum. Furthermore, the fusion protein has been successfully expressed in Escherichia coli (E. coli), providing a basis for future functional studies of AcIDI1. The expression pattern of AcIDI1 was analyzed by real-time quantitative PCR (qPCR), which demonstrates that AcIDI1 is a tissue-specific gene in the roots of A. carmichaelii and exhibits high expression in both daughter and mother roots. By comparing the expression levels of AcIDI1 in three tissues of the roots of A. carmichaelii at different growth stages, we propose that the mother roots (MRs) are the centers of resources allocation. The roots of A. carmichaelii continuously absorb the energy from external environment, while resources transfer behavior from MRs to both daughter roots (DRs) and axillary buds (ABs) occurs as the plant grows. This study establishes a foundation for applying the IDI gene to regulate the biosynthesis and accumulation of DAs in A. carmichaelii.
Collapse
Affiliation(s)
- Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Zheng J, Jiang H, Yan Y, Yin T. Overview of the chemistry and biological activities of natural atisine-type diterpenoid alkaloids. RSC Adv 2024; 14:22882-22893. [PMID: 39040692 PMCID: PMC11261430 DOI: 10.1039/d4ra03305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Atisine-type C20-diterpenoid alkaloids (DAs) are a very important class of diterpenoid alkaloids, which play an important role in the biosynthesis of DAs. To date, 87 atisine-type DAs and 11 bis-DAs containing an atisine unit have been reported from five genera in two families. The genus Spiraea in Rosaceae family could be regarded as the richest resource for atisine-type DAs, followed by the genera Delphinium and Aconitum in the Ranunculaceae family. Among the reported atisine-type DAs, several possess unprecedented skeletons. Natural atisine-type DAs have a wide range of biological activities, including antitumor, antiplatelet aggregation, biological control, and anti-inflammatory, analgesic, antiarrhythmic, and cholinesterase inhibitory effects, which are closely related to their structures. In particular, the antiparasitic effect of atisine-type DAs is more prominent than that of other types of DAs, which highlights their potential in antiparasite drug discovery. In summary, the high chemical and biological diversity of atisine-type DAs indicates their great potential as a vast resource for drug discovery.
Collapse
Affiliation(s)
- Jiaqi Zheng
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Hongjun Jiang
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Yuanfeng Yan
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| | - Tianpeng Yin
- School of Bioengineering, Zunyi Medical University 519041 Zhuhai China
| |
Collapse
|
4
|
Pocock IA, Doulcet J, Rice CR, Sweeney JB, Gill DM. Stereocontrolled synthesis of the aconitine D ring from D-glucose. Org Biomol Chem 2024; 22:4347-4352. [PMID: 38726909 DOI: 10.1039/d4ob00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The synthesis of a fully oxygenated aconitine D ring precursor from (D)-(+)-glucose is described. The route features a highly diastereoselective alkynyl Grignard ketone addition and a base-mediated enelactone to 1,3-diketone rearrangement.
Collapse
Affiliation(s)
- Ian A Pocock
- Department of Chemical Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| | - Julien Doulcet
- Department of Chemical Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
- Department of Chemistry, University of Lancaster, Lancaster, LA1 4YB, UK
| | - Craig R Rice
- Department of Chemical Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| | - Joseph B Sweeney
- Department of Chemical Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Duncan M Gill
- Department of Chemical Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| |
Collapse
|
5
|
Yan YF, Wang YR, Jiang HJ, Ding ZB, Yin TP. New diterpenoid alkaloids from Delphinium pachycentrum Hemsl. Nat Prod Res 2024; 38:1487-1493. [PMID: 36469674 DOI: 10.1080/14786419.2022.2152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Six diterpenoid alkaloids, namely, pachycentine (1), deacetylswinanine A (2), siwanine A (3), tatsiensine (4), deacetyltatsiensine (5), and 6-deoxydeltamine (6), were isolated from a China-specific Delphinium plant (family Ranunculaceae), Delphinium pachycentrum Hemsl. Their structures were established via detailed spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR techniques. Pachycentine (1) is a previously undescribed hetisine-type C20-diterpenoid alkaloid, and compounds 5 and 6 were synthetic intermediates newly identified as natural products. In addition, compounds 2-4 were isolated from this species for the first time. The chemotaxonomic significance of all the isolates was summarized. Moreover, the new compound was evaluated for its potential anti-inflammatory effect using LPS-stimulated RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Yuan-Feng Yan
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, P.R. China
| | - Ya-Rong Wang
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, P.R. China
| | - Hong-Jun Jiang
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, P.R. China
| | - Zong-Bao Ding
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, P.R. China
| | - Tian-Peng Yin
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, P.R. China
| |
Collapse
|
6
|
Zhang R, Xiang N, Qian C, Liu S, Zhao Y, Zhang G, Wei P, Li J, Yuan T. Comparative analysis of the organelle genomes of Aconitum carmichaelii revealed structural and sequence differences and phylogenetic relationships. BMC Genomics 2024; 25:260. [PMID: 38454328 PMCID: PMC10921738 DOI: 10.1186/s12864-024-10136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Changjiang Qian
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianfeng Li
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China.
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China.
| | - Tao Yuan
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Li Q, Wang ZW, Wang MX, Yu HL, Chen L, Cai Z, Zhang Y, Gu MM, Shao YL, Han HP, Liao ZX. Brunonianines A-C, C 20-diterpenoid alkaloids with cyano group from Delphinium brunonianum Royle. PHYTOCHEMISTRY 2024; 219:113987. [PMID: 38218306 DOI: 10.1016/j.phytochem.2024.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Cyano tends to have better biological activity, but it is rarely reported in natural products, especially in the C20-diterpene alkaloids. Herein, three unprecedented C20-diterpenoid alkaloids, brunonianines A-C (1-3), possessing rare cyano functional group as well as an atisine backbone constructed from a phenethyl substituent and a tetrahydropyran ring, along with four C19-alkaloids (4-7) and one amide alkaloids (8), were isolated from the whole plant of Delphinium brunonianum Royle. Compounds 1-3 are also the first atisine type diterpenoid alkaloids with cyano group obtained from nature. The structures of the previously undescribed compounds were elucidated by HR-ESI-MS, 1D/2D NMR spectroscopic data and electronic circular dichroism calculations and single-crystal X-ray diffraction. Reasonable speculations have also been made regarding the biogenic synthetic pathways of compounds 1-3. In addition, the inhibitory activity of all compounds was also tested against four tumor lines: A549, Caco-2, H460 and Skov-3, where compound 2 (IC50 2.20 ± 0.21 μM) showed better inhibitory activity against Skov-3 cells than the hydroxycamptothecin. Using flow cytometry, cell staining, migration and invasion analysis, and Western blot, compound 2 was found to arrest cells in the G2/M phase and was able to effectively inhibit cell motility to achieve potent anti-tumor effects. In addition, compound 2 can effectively induce apoptosis by activating the Bax/Bcl-2/Caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Qing Li
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhi-Wei Wang
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Mu-Xuan Wang
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hao-Lin Yu
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Lei Chen
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhuoer Cai
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yu Zhang
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Min-Min Gu
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yuan-Ling Shao
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong-Ping Han
- . the Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, China
| | - Zhi-Xin Liao
- . Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
8
|
Tang Q, Shen X, Hao YK, Yang SY, Fu JT, Wu TY, Zhao HY, Qin B, Li YL, Zhang YB, Wang GC. Diterpenoid Alkaloids from Delphinium ajacis and Their Anti-inflammatory Activity. Chem Biodivers 2024; 21:e202301958. [PMID: 38130145 DOI: 10.1002/cbdv.202301958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Three novel diterpenoid alkaloids, comprising two C19 -diterpenoid alkaloids (1 and 2) and one C20 -diterpenoid alkaloid (3), were isolated from Delphinium ajacis, alongside the six known compounds (4-9). Their structures were elucidated by spectroscopic methods (MS, UV, IR, 1D and 2D NMR) and chemical properties. Simultaneously, the anti-inflammatory properties of all compounds (1-9) was conducted, focusing on nitric oxide (NO) production in LPS-induced BV-2 cells. The results indicated compounds 1-3, 7, and 8 have potential anti-inflammatory activity.
Collapse
Affiliation(s)
- Qing Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| | - Xi Shen
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632
| | - Yi-Kun Hao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| | - Si-Yu Yang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632
| | - Jin-Tao Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| | - Tian-Yuan Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| | - Hai-Yue Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| | - Baifu Qin
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632
| | - Yao-Lan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| | - Yu-Bo Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632
| | - Guo-Cai Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632
| |
Collapse
|
9
|
Mares C, Udrea AM, Buiu C, Staicu A, Avram S. Therapeutic Potentials of Aconite-like Alkaloids: Bioinformatics and Experimental Approaches. Mini Rev Med Chem 2024; 24:159-175. [PMID: 36994982 DOI: 10.2174/1389557523666230328153417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 03/31/2023]
Abstract
Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.
Collapse
Affiliation(s)
- Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, 50567, Romania
| | - Catalin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Angela Staicu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| |
Collapse
|
10
|
Jing D, Zhang Y, Gong C, Du K, Wang Y, Lai L, Meng D. Kamaonensine A-G: Lycaconitine-type C 19-diterpenoid alkaloids with anti-inflammatory activities from Delphinium kamaonense Huth. PHYTOCHEMISTRY 2023; 215:113822. [PMID: 37574118 DOI: 10.1016/j.phytochem.2023.113822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Delphinium kamaonense Huth is a sort of folkloric plant resource which is cultivated and planted with great ornamental and medicinal values. In this work, seven undescribed lycaconitine-type C19-diterpenoid alkaloids, especially a rare skeleton with -CH=N and N-oxide moieties, along with ten known compounds, were isolated from D. kamaonense, of which the structures were determined by various spectroscopic data, combined with calculated electronic circular dichroism (ECD) and single-crystal X-ray diffraction analysis. In vitro nitric oxide inhibitory activities assay of these compounds indicated that lycaconitine-type C19-diterpenoid alkaloids had significant anti-inflammatory inhibitory activities, with kamaonensine E being the most potent (0.9 ± 0.2 μM) stronger than positive (9.0 ± 1.3 μM). In the network pharmacology studies, binding three key targets mitogen-activated protein kinase 8 (MAPK8), mitogen-activated protein kinase 14 (MAPK14), and heat shock protein HSP 90-alpha (HSP90α), the anti-inflammatory mechanism might be related to MAPK signaling pathways. Furthermore, the molecular docking results revealed that the uncommon amides and methylenedioxy groups might be the most two promising pharmacophores for lycaconitine-type C19-diterpenoid alkaloids.
Collapse
Affiliation(s)
- Di Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yunhong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Chang Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kaicheng Du
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Lantao Lai
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
11
|
Zhao D, Zhang Y, Ren H, Shi Y, Dong D, Li Z, Cui G, Shen Y, Mou Z, Kennelly EJ, Huang L, Ruan J, Chen S, Yu D, Cun Y. Multi-omics analysis reveals the evolutionary origin of diterpenoid alkaloid biosynthesis pathways in Aconitum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2320-2335. [PMID: 37688324 DOI: 10.1111/jipb.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.
Collapse
Affiliation(s)
- Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Ya Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Huanxing Ren
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yana Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ding Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Zonghang Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, 10468, New York, USA
- Graduate Center, City University of New York, Bronx, 10468, New York, USA
| | - Luqi Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Suiyun Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yupeng Cun
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
12
|
Qasem AA, Rowan MG, Sanders VR, Millar NS, Blagbrough IS. Synthesis and Antagonist Activity of Methyllycaconitine Analogues on Human α7 Nicotinic Acetylcholine Receptors. ACS BIO & MED CHEM AU 2023; 3:147-157. [PMID: 37096031 PMCID: PMC10119942 DOI: 10.1021/acsbiomedchemau.2c00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 04/26/2023]
Abstract
Methyllycaconitine (MLA), 1, is a naturally occurring norditerpenoid alkaloid that is a highly potent (IC50 = 2 nM) selective antagonist of α7 nicotinic acetylcholine receptors (nAChRs). Several structural factors affect its activity such as the neopentyl ester side-chain and the piperidine ring N-side-chain. The synthesis of simplified AE-bicyclic analogues 14-21 possessing different ester and nitrogen side-chains was achieved in three steps. The antagonist effects of synthetic analogues were examined on human α7 nAChRs and compared to that of MLA 1. The most efficacious analogue (16) reduced α7 nAChR agonist responses [1 nM acetylcholine (ACh)] to 53.2 ± 1.9% compared to 3.4 ± 0.2% for MLA 1. This demonstrates that simpler analogues of MLA 1 possess antagonist effects on human α7 nAChRs but also indicates that further optimization may be possible to achieve antagonist activity comparable to that of MLA 1.
Collapse
Affiliation(s)
| | | | - Victoria R. Sanders
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Neil S. Millar
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Ian S. Blagbrough
- School
of Pharmacy, University of Bath, Bath BA2 7AY, U.K.
- Tel: 1225-386795.
| |
Collapse
|
13
|
Xu K, Song Z, Liu J, Yang L, Sun G, Lei L, Huang S, Gao F, Chen L, Zhou X. Compositions analysis and insecticidal activity of Aconitum polycarpum Chang ex W.T.Wang petroleum ether fractions and essential oils. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115989. [PMID: 36509259 DOI: 10.1016/j.jep.2022.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Aconitum genus plants as a natural pesticide for insecticide and rodent control has been recorded in Chinese folk. However, the insecticide effect, mechanism, and active composition of Aconitum polycarpum Chang ex W.T.Wang have not been studied further. AIM OF THE STUDY This study was designed to analyze the chemical composition, evaluate contact toxicity of petroleum ether extracts (PEEs) and essential oils (EOs) of A. polycarpum, and further explore their possible insecticidal mechanism. MATERIALS AND METHODS The roots of A. polycarpum were extracted with 90% methanol, and then extracted with petroleum ether to obtain PEEs; the EOs was extracted by distillation. The chemical compositions of PEEs and EOs were analyzed by GC-MS. Contact toxicity was evaluated by the immersion method. Exploring insecticidal mechanisms through in vitro enzyme inhibitory activity. RESULTS 12 compounds were identified from PEEs by GC-MS, mainly including aliphatic (94.8%), the main compositions were Octadecadienol (ODO) (aliphatic, 53.2%) and L-Ascorbyl dipalmitate (LADP) (aliphatic, 36.1%). 24 compounds were identified in EOs. About 44.6% of the identified components were terpenoids and their derivatives, and the rest were mainly aliphatic (34.7%) and phenols (3.0%). The main chemical components were L (-)-Borneol (LB) (terpenoid, 28.3%), LADP (aliphatic, 19.1%), and Isoborneol (terpenoid, 9.1%). The contact toxicity indicated that the PEEs showed great contact toxicity against Spodoptera exigua (LC50 = 126.2 mg/L). Meanwhile, LADP (LC50 = 128.1 mg/L) and ODO (LC50 = 121.3 mg/L) was similar to that of Cyhalothrin (LC50 = 124.2 mg/L) in contact toxicity. In addition, we found that LADP and ODO exhibited excellent inhibitory activity against CarE (IC50 = 58.0, 56.1 mg/L, respectively) by measuring in vitro enzyme inhibitory activity, which was superior than Cyhalothrin (IC50 = 68.1 mg/L). CONCLUSIONS The chemical compositions and contact toxicity of EOs and PEEs of A. polycarpum were analyzed and evaluated, and their insecticidal mechanisms were preliminarily discussed for the first time. It proved PEEs of A. polycarpum and its main components (LADP and ODO) exhibited excellent contact toxicity against S. exigua, and CarE was identified as a potential target for contact toxicity. This study indicated that the insecticidal activity of petroleum ether extracts from A. polycarpum is quite promising, and provides a practical and scientific basis for the development and application of botanical pesticides.
Collapse
Affiliation(s)
- Ke Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Ziyu Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Junqi Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Liu Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Guoqing Sun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Lijie Lei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Lin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; Affiliated Hospital of Southwest Jiaotong University & the Third People Hospital of Chengdu, Chengdu 610031, Sichuan, PR China.
| |
Collapse
|
14
|
Shimakawa T, Nakamura S, Asai H, Hagiwara K, Inoue M. Total Synthesis of Puberuline C. J Am Chem Soc 2023; 145:600-609. [PMID: 36538394 DOI: 10.1021/jacs.2c11259] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Puberuline C (1) is an architecturally complex C19-diterpenoid alkaloid with a unique ring fusion pattern. The 6/7/5/6/6/6-membered rings (ABCDEF-rings) contain one tertiary amine and six oxygen functionalities, and possess 12 contiguously aligned stereocenters, three of which are quaternary. These structural features of 1 make its chemical construction exceptionally challenging. Here, we disclose the first total synthesis of 1. The synthesis was accomplished from 2-cyclohexenone (9) by integrating radical cascade and Mukaiyama aldol reactions as the key transformations. A double Mannich reaction fused the A- and E-rings, and Sonogashira coupling attached the C-ring, efficiently leading to ACE-rings with the requisite 19 carbons of 1. The chemically stable tertiary chloride of the ACE-ring structure was then transformed to the corresponding bridgehead radical, which participated in the simultaneous cyclization of the B- and F-rings via a highly organized radical cascade process. This unusual step installed five contiguous stereocenters, including two quaternary carbons, without damaging the preexisting multiple polar functionalities. Subsequently, the intramolecular Mukaiyama aldol reaction between silyl enol ether and acetal was realized by applying a combination of SnCl4 and ZnCl2, forging the last remaining D-ring of the hexacycle. Finally, 3 was elaborated into 1 through regio- and stereoselective functionalizations of the BCD-rings. Our novel radical-based strategy achieved the total synthesis of 1 in 32 total steps from simple 9, demonstrating the power of the radical cascade reaction to streamline the assembly of highly complex molecules.
Collapse
Affiliation(s)
- Tsukasa Shimakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shu Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hibiki Asai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
15
|
Jiang Z, Deng C, Zhou L, Wang Z, Wang F, Wu X, Ma X, Nan Z. High‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry for profiling diterpenoid alkaloids in Aconitum species. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhi‐Bo Jiang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
- Ningxia Low‐grade Resource High‐value Utilization and Environmental Chemical Integration Technology Innovation Team Project Yinchuan P. R. China
| | - Chao‐Fan Deng
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Le‐Ru Zhou
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Zhen‐Zhen Wang
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Fang Wang
- Shandong Academy of Pharmaceutical Sciences Jinan P. R. China
| | - Xiu‐Li Wu
- College of Pharmacy Ningxia Medical University Yinchuan P. R. China
| | - Xiao‐Li Ma
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| | - Ze‐Dong Nan
- Department of Pharmaceutical Engineering School of Chemistry and Chemical Engineering Key Laboratory of Chemical Engineering and Technology of State Ethnic Affairs Commission North Minzu University Yinchuan P. R. China
| |
Collapse
|
16
|
Qasem AA, Rowan MG, Blagbrough IS. Effect of Position 1 Substituent and Configuration on APCI-MS Fragmentation of Norditerpenoid Alkaloids Including 1- epi-Condelphine. ACS OMEGA 2022; 7:40493-40501. [PMID: 36385853 PMCID: PMC9647891 DOI: 10.1021/acsomega.2c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Norditerpenoid alkaloids (NDA) are hexacyclic highly oxygenated compounds, and the analysis of their 3D configuration is important as it helps to interpret their bioactive conformations. High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/MS-APCI) is a promising technique to investigate NDA stereochemistry. The effect of the alpha (α)-substituent at carbon 1 and its configuration on the stability of NDA in the mass spectrometer was studied. It was observed that 1-OH NDA are more stable compared to 1-OMe NDA due to the intramolecular H-bonding that exists in 1-OH NDA. In addition, 1-epi-condelphine 9 was found to be less stable in the mass spectrometer compared to condelphine 7 as the nitrogen is no longer hydrogen-bonded to the β-hydroxyl at position 1, which highlights the importance of the substituent configuration at carbon 1.
Collapse
|
17
|
Qasem AMA, Rowan MG, Blagbrough IS. Poisonous Piperidine Plants and the Biodiversity of Norditerpenoid Alkaloids for Leads in Drug Discovery: Experimental Aspects. Int J Mol Sci 2022; 23:12128. [PMID: 36292987 PMCID: PMC9603787 DOI: 10.3390/ijms232012128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
There are famous examples of simple (e.g., hemlock, Conium maculatum L.) and complex (e.g., opium poppy, Papaver somniferum L., Papaveraceae) piperidine-alkaloid-containing plants. Many of these are highly poisonous, whilst pepper is well-known gastronomically, and several substituted piperidine alkaloids are therapeutically beneficial as a function of dose and mode of action. This review covers the taxonomy of the genera Aconitum, Delphinium, and the controversial Consolida. As part of studying the biodiversity of norditerpenoid alkaloids (NDAS), the majority of which possess an N-ethyl group, we also quantified the fragment occurrence count in the SciFinder database for NDA skeletons. The wide range of NDA biodiversity is also captured in a review of over 100 recently reported isolated alkaloids. Ring A substitution at position 1 is important to determine the NDA skeleton conformation. In this overview of naturally occurring highly oxygenated NDAs from traditional Aconitum and Delphinium plants, consideration is given to functional effect and to real functional evidence. Their high potential biological activity makes them useful candidate molecules for further investigation as lead compounds in the development of selective drugs.
Collapse
|
18
|
Yan Y, Jiang H, Yang X, Ding Z, Yin T. Grandiflolines A–F, new anti-inflammatory diterpenoid alkaloids isolated from Delphinium grandiflorum. Front Chem 2022; 10:1012874. [PMID: 36199660 PMCID: PMC9527285 DOI: 10.3389/fchem.2022.1012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Delphinium grandiflorum L. (family Ranunculaceae), one of the most important and widely distributed Delphinium species, has received considerable interest due to its extremely high medicinal value. The discovery of novel metabolites from D. grandiflorum supported and broadened its application as an herbal medicine. In this study, the whole herb of D. grandiflorum was phytochemically investigated to obtain fourteen C19-lycaconitine-type diterpenoid alkaloids (1–14), including six undescribed alkaloids, grandiflolines A–F (1–6). The structural elucidation of them was accomplished by detailed spectroscopic analyses, mainly including HR-MS, 1D and 2D NMR (1H–1H COSY, NOESY, HMBC and HSQC), and IR spectra. New alkaloids 1–3 and 5 possess a characteristic △2,3 functional group in the A ring, while compounds 5 and 6 feature a rare OH-16 substituent. In addition, known compounds 7–12 were isolated from D. grandiflorum for the first time. Moreover, according to its medicinal use, new alkaloids 1–6 were estimated for their potential in vitro anti-inflammatory effects, and some of them exhibited inhibitory effects on NO production in LPS-activated RAW 264.7 macrophages. Our work enriched the chemical diversity of D. grandiflorum and the genus Delphinium and presented beneficial information for further investigations.
Collapse
|
19
|
In Vitro and In Silico Investigation of Diterpenoid Alkaloids Isolated from Delphinium chitralense. Molecules 2022; 27:molecules27144348. [PMID: 35889221 PMCID: PMC9325274 DOI: 10.3390/molecules27144348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
This study reports the isolation of three new C20 diterpenoid alkaloids, Chitralinine A–C (1–3) from the aerial parts of Delphinium chitralense. Their structures were established on the basis of latest spectral techniques and single crystal X-rays crystallographic studies of chitralinine A described basic skeleton of these compounds. All the isolated Compounds (1–3) showed strong, competitive type inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in comparison to standard allanzanthane and galanthamine however, chitralinine-C remained the most potent with IC50 value of 11.64 ± 0.08 μM against AChE, and 24.31 ± 0.33 μM against BChE, respectively. The molecular docking reflected a binding free energy of −16.400 K Cal-mol−1 for chitralinine-C, having strong interactions with active site residues, TYR334, ASP72, SER122, and SER200. The overall findings suggest that these new diterpenoid alkaloids could serve as lead drugs against dementia-related diseases including Alzheimer’s disease.
Collapse
|