1
|
Yang W, Tian S, Du YF, Zeng XL, Liang JJ, Lan WJ, Li H. Genome Mining of the Marine-Derived Fungus Trichoderma erinaceum F1-1 Unearths Bergamotene-Type Sesquiterpenoids. JOURNAL OF NATURAL PRODUCTS 2024; 87:2746-2756. [PMID: 39623525 DOI: 10.1021/acs.jnatprod.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Terpenoids are a vast group of natural products known for their remarkable biological properties and structural diversity. UbiA terpene synthases are increasingly recognized for producing various terpenoids. In this study, we identified a biosynthetic gene cluster (bgt) encoding a UbiA terpene synthase BgtA in the genome of the marine-derived fungus Trichoderma erinaceum F1-1. The gene bgtA was validated to encode the biosynthesis of (-)-α-trans-bergamotene (1). Heterologous expression of the bgt gene cluster in the characterized host Aspergillus nidulans LO8030 activated the biosynthetic pathway, leading to the isolation of eight previously undocumented bergamotene-derived sesquiterpenoids (2-9). Their structures, including the absolute configurations, were elucidated by a combination of spectroscopic analysis, ECD spectra, chemical hydrolysis, single-crystal X-ray diffraction, and biosynthetic considerations. We further demonstrated that the production of these structurally intricate sesquiterpenoids in heterologous expression is attributable to the concerted action of the UbiA terpene synthase BgtA, the cytochrome P450 BgtC, and endogenous enzymes. This study underscores the immense biosynthetic potential of fungal UbiA terpene synthase gene clusters and shows genome mining is a promising strategy for the discovery of novel terpenoids from fungi.
Collapse
Affiliation(s)
- Wencong Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shurong Tian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yi-Fan Du
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xian-Liang Zeng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jia-Jing Liang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen-Jian Lan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hang Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Mo XH, Pu QY, Lübken T, Yu GH, Malay M, D'Agostino PM, Gulder TAM. Discovery and biosynthesis of non-canonical C16-terpenoids from Pseudomonas. Cell Chem Biol 2024; 31:2128-2137.e4. [PMID: 39332411 DOI: 10.1016/j.chembiol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Biosynthesis of sodorifen with a unique C16-bicyclo[3.2.1]octene framework requires an S-adenosyl methionine-dependent methyltransferase SodC and terpene cyclase SodD. While bioinformatic analyses reveal a wide distribution of the sodCD genes organization in bacteria, their functional diversity remains largely unknown. Herein, two sodorifen-type gene clusters, pcch and pcau, from Pseudomonas sp. are heterologously expressed in Escherichia coli, leading to the discovery of two C16 terpenoids. Enzymatic synthesis of these compounds is achieved using the two (SodCD-like) pathway-specific enzymes. Enzyme assays using different combinations of methyltransferases and terpene synthases across the pcch, pcau, and sod pathways reveal a unifying biosynthetic mechanism: all three SodC-like enzymes methylate farnesyl pyrophosphate (FPP) with subsequent cyclization to a common intermediate, pre-sodorifen pyrophosphate. Structural diversification of this joint precursor solely occurs by the subsequently acting individual terpene synthases. Our findings expand basic biosynthetic understanding and structural diversity of unusual C16-terpenoids.
Collapse
Affiliation(s)
- Xu-Hua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Qing-Yin Pu
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Tilo Lübken
- Chair of Organic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Gui-Hong Yu
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Mert Malay
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Paul M D'Agostino
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Natural Product Biotechnology, Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Natural Product Biotechnology, Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
3
|
Cong Z, Mukoma NJ, Yin Q, Zhu B, She L, Hsiang T, Zhang L, Jiang L, Liu X. NPtagM: A Tailoring Enzyme Genome Mining Toolkit and Its Application in Terpenoid P450s from Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27225-27234. [PMID: 39621301 DOI: 10.1021/acs.jafc.4c07653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Terpenoids derived from phytopathogenic fungi are major participants in interactions among microorganisms, plants, and animals. The modifications catalyzed by cytochrome P450s significantly influence the structural and bioactivity diversity of the terpenoids. To conduct genome mining of P450s in pathogenic fungi, in this study, we developed a new software called Natural Products Tailoring Enzymes Genome Mining (NPtagM). By optimizing the workflow and gene prediction software, NPtagM demonstrated a 3-fold increase in the number of predicted P450s and an 8-fold reduction in runtime compared to antiSMASH. We then used it to extract 1189 dereplicated terpenoid P450s from our in-house fungal genomes. Using a sequence similarity network analysis, we identified a family that potentially produced eremophilane-type sesquiterpenoids. The heterologous expression in Aspergillus oryzae resulted in the production of two new and four known eremophilanes. Our results highlight the potential of NPtagM in genome mining for tailoring enzymes from phytopathogenic fungi.
Collapse
Affiliation(s)
- Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Njeru Joe Mukoma
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Qiang Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingwei She
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 100081 Beijing, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210093, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Andreas MP, Giessen TW. The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell. Nat Commun 2024; 15:9715. [PMID: 39521781 PMCID: PMC11550324 DOI: 10.1038/s41467-024-54175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus. Here, we revise the function of EshA, now referred to as Sg Enc, and show that it is a Family 2B encapsulin shell protein. Using cryo-electron microscopy, we find that Sg Enc forms an icosahedral protein shell and encapsulates 2-methylisoborneol synthase (2-MIBS) as a cargo protein. Sg Enc contains a cyclic adenosine monophosphate (cAMP) binding domain (CBD)-fold insertion and a unique metal-binding domain, both displayed on the shell exterior. We show that Sg Enc CBDs do not bind cAMP. We find that 2-MIBS cargo loading is mediated by an N-terminal disordered cargo-loading domain and that 2-MIBS activity and Sg Enc shell structure are not modulated by cAMP. Our work redefines the function of EshA and establishes Family 2B encapsulins as cargo-loaded protein nanocompartments involved in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Griffiths DB, Tiwari RP, Murphy DV, Scott C. Comparative genomics of the highly halophilic Haloferacaceae. Sci Rep 2024; 14:27025. [PMID: 39506039 PMCID: PMC11541754 DOI: 10.1038/s41598-024-78438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
The Haloferacaceae are a family of extremely halophilic archaea with many species producing enzymes and products beneficial for industrial biotechnology. They are, however, relatively under-characterised with regards to genetics and gene products. This study aims to use existing sequence data to highlight genetic diversity, create pangenomes for three genera, and provide secondary metabolite and pathway analysis. This will establish current knowledge and identify key gaps in research. We show that the Haloferacaceae have significant genetic diversity between genera, with numerous gene gain and loss events in key genera. It also found that the model genus, Haloferax, has relatively low identified secondary metabolites compared to other genera within the family. Additionally, this study has identified potential biotechnology targets for heterologous expression in model organisms.
Collapse
Affiliation(s)
- Dana B Griffiths
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia.
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia.
| | - Ravi P Tiwari
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- CSIRO Environment, Canberra, ACT, 2601, Australia
| |
Collapse
|
6
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2024. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
7
|
Tong X, Luo D, Leung MHY, Lee JYY, Shen Z, Jiang W, Mason CE, Lee PKH. Diverse and specialized metabolic capabilities of microbes in oligotrophic built environments. MICROBIOME 2024; 12:198. [PMID: 39415203 PMCID: PMC11484240 DOI: 10.1186/s40168-024-01926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Built environments (BEs) are typically considered to be oligotrophic and harsh environments for microbial communities under normal, non-damp conditions. However, the metabolic functions of microbial inhabitants in BEs remain poorly understood. This study aimed to shed light on the functional capabilities of microbes in BEs by analyzing 860 representative metagenome-assembled genomes (rMAGs) reconstructed from 738 samples collected from BEs across the city of Hong Kong and from the skin surfaces of human occupants. The study specifically focused on the metabolic functions of rMAGs that are either phylogenetically novel or prevalent in BEs. RESULTS The diversity and composition of BE microbiomes were primarily shaped by the sample type, with Micrococcus luteus and Cutibacterium acnes being prevalent. The metabolic functions of rMAGs varied significantly based on taxonomy, even at the strain level. A novel strain affiliated with the Candidatus class Xenobia in the Candidatus phylum Eremiobacterota and two novel strains affiliated with the superphylum Patescibacteria exhibited unique functions compared with their close relatives, potentially aiding their survival in BEs and on human skins. The novel strains in the class Xenobia possessed genes for transporting nitrate and nitrite as nitrogen sources and nitrosative stress mitigation induced by nitric oxide during denitrification. The two novel Patescibacteria strains both possessed a broad array of genes for amino acid and trace element transport, while one of them carried genes for carotenoid and ubiquinone biosynthesis. The globally prevalent M. luteus in BEs displayed a large and open pangenome, with high infraspecific genomic diversity contributed by 11 conspecific strains recovered from BEs in a single geographic region. The versatile metabolic functions encoded in the large accessory genomes of M. luteus may contribute to its global ubiquity and specialization in BEs. CONCLUSIONS This study illustrates that the microbial inhabitants of BEs possess metabolic potentials that enable them to tolerate and counter different biotic and abiotic conditions. Additionally, these microbes can efficiently utilize various limited residual resources from occupant activities, potentially enhancing their survival and persistence within BEs. A better understanding of the metabolic functions of BE microbes will ultimately facilitate the development of strategies to create a healthy indoor microbiome. Video Abstract.
Collapse
Affiliation(s)
- Xinzhao Tong
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, People's Republic of China
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Danli Luo
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Zhiyong Shen
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Wengyao Jiang
- Department of Applied Mathematics, School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, People's Republic of China
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Singh G, Pasinato A, Yriarte ALC, Pizarro D, Divakar PK, Schmitt I, Dal Grande F. Are there conserved biosynthetic genes in lichens? Genome-wide assessment of terpene biosynthetic genes suggests ubiquitous distribution of the squalene synthase cluster. BMC Genomics 2024; 25:936. [PMID: 39375591 PMCID: PMC11457338 DOI: 10.1186/s12864-024-10806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Lichen-forming fungi (LFF) are prolific producers of functionally and structurally diverse secondary metabolites, most of which are taxonomically exclusive and play lineage-specific roles. To date, widely distributed, evolutionarily conserved biosynthetic pathways in LFF are not known. However, this idea stems from polyketide derivatives, since most biochemical research on lichens has concentrated on polyketide synthases (PKSs). Here, we present the first systematic identification and comparison of terpene biosynthetic genes of LFF using all the available Lecanoromycete reference genomes and 22 de novo sequenced ones (111 in total, representing 60 genera and 23 families). We implemented genome mining and gene networking approaches to identify and group the biosynthetic gene clusters (BGCs) into networks of similar BGCs. Our large-scale analysis led to the identification of 724 terpene BGCs with varying degrees of pairwise similarity. Most BGCs in the dataset were unique with no similarity to a previously known fungal or bacterial BGC or among each other. Remarkably, we found two BGCs that were widely distributed in LFF. Interestingly, both conserved BGCs contain the same core gene, i.e., putatively a squalene/phytoene synthase (SQS), involved in sterol biosynthesis. This indicates that early gene duplications, followed by gene losses/gains and gene rearrangement are the major evolutionary factors shaping the composition of these widely distributed SQS BGCs across LFF. We provide an in-depth overview of these BGCs, including the transmembrane, conserved, variable and LFF-specific regions. Our study revealed that lichenized fungi do have a highly conserved BGC, providing the first evidence that a biosynthetic gene may constitute essential genes in lichens.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy.
- Botanical Garden of Padova, University of Padova, Padua, Italy.
| | - Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
| | | | - David Pizarro
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Pradeep K Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt Am Main, 60325, Germany
- Department of Biosciences, Institute of Ecology Evolution and Diversity, Goethe UniversityFrankfurt,, Max-Von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt Am Main, 60325, Germany
| | - Francesco Dal Grande
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
| |
Collapse
|
9
|
Zhou L, Sun X, Iqbal A, Yarra R, Wu Q, Li J, Lv X, Ye J, Yang Y. Revealing the aromatic sonata through terpenoid profiling and gene expression analysis of aromatic and non-aromatic coconut varieties. Int J Biol Macromol 2024; 280:135699. [PMID: 39288860 DOI: 10.1016/j.ijbiomac.2024.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Rajesh Yarra
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiang Lv
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jianqiu Ye
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| |
Collapse
|
10
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Tiwari N, Tripathi AK. Biosynthesis of carotenoids in Azospirillum brasilense Cd is mediated via squalene (C30) route. Biochem Biophys Res Commun 2024; 722:150154. [PMID: 38795456 DOI: 10.1016/j.bbrc.2024.150154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Azospirillum brasilense is a non-photosynthetic α-Proteobacteria, belongs to the family of Rhodospirillaceae and produces carotenoids to protect itself from photooxidative stress. In this study, we have used Resonance Raman Spectra to show similarity of bacterioruberins of Halobacterium salinarum to that of A. brasilense Cd. To navigate the role of genes involved in carotenoid biosynthesis, we used mutational analysis to inactivate putative genes predicted to be involved in carotenoid biosynthesis in A. brasilense Cd. We have shown that HpnCED enzymes are involved in the biosynthesis of squalene (C30), which is required for the synthesis of carotenoids in A. brasilense Cd. We also found that CrtI and CrtP desaturases were involved in the transformation of colorless squalene into the pink-pigmented carotenoids. This study elucidates role of some genes which constitute very pivotal role in biosynthetic pathway of carotenoid in A. brasilense Cd.
Collapse
Affiliation(s)
- Neha Tiwari
- Laboratory of Bacterial Genetics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar Tripathi
- Laboratory of Bacterial Genetics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Park R, Yu MN, Park JH, Kang T, Lee JE. Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp. Cells 2024; 13:1386. [PMID: 39195274 DOI: 10.3390/cells13161386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The presence of the odorant 2-methylisoborneol (2-MIB) in drinking water sources is undesirable. Although 2-MIB production is known to be influenced by temperature, its regulation at the gene level and its relationship with Chlorophyll-a (Chl-a) at different temperatures remain unclear. This study investigates the impact of temperature on 2-MIB production and related gene expression in Pseudanabaena strains PD34 and PD35 isolated from Lake Paldang, South Korea. The strains were cultured at three temperatures (15, 25, and 30 °C) to examine cell growth, 2-MIB production, and mic gene expression levels. 2-MIB production per cell increased with higher temperatures, whereas mic gene expression levels were higher at lower temperatures, indicating a complex regulatory mechanism involving post-transcriptional and enzyme kinetics factors. Additionally, the relationship between Chl-a and 2-MIB involved in metabolic competition was analyzed, suggesting that high temperatures appear to favor 2-MIB synthesis more than Chl-a synthesis. The distinct difference in the total amount of the two products and the proportion of 2-MIB between the two strains partially explains the variations in 2-MIB production. These findings highlight the significant effect of temperature on 2-MIB biosynthesis in Pseudanabaena and provide a valuable background for gene data-based approaches to manage issues regarding 2-MIB in aquatic environments.
Collapse
Affiliation(s)
- Rumi Park
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Mi-Na Yu
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Taegu Kang
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea
| | - Jung-Eun Lee
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Republic of Korea
| |
Collapse
|
13
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Yi Y, Liang L, de Jong A, Kuipers OP. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems. Genomics 2024; 116:110880. [PMID: 38857812 DOI: 10.1016/j.ygeno.2024.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.
Collapse
Affiliation(s)
- Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands
| | | | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands.
| |
Collapse
|
15
|
Doron L, Kerfeld CA. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature's solution for confining challenging catabolic pathways. Biochem Soc Trans 2024; 52:997-1010. [PMID: 38813858 PMCID: PMC11346464 DOI: 10.1042/bst20230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
16
|
Zhu W, Chang L, Zhang M, Chen Q, Sui L, Shen C, Jiang J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024; 27:109907. [PMID: 38812552 PMCID: PMC11135016 DOI: 10.1016/j.isci.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Comprehending the determinants of host-associated microbiota is pivotal in microbial ecology. Yet, the links between climatic factors and variations in host-associated microbiota necessitate further clarification. Mountain-dwelling amphibians, with limited dispersal abilities, serve as valuable models for addressing these questions. Our study, using 126 amphibian-associated microbial samples (64 gut and 62 skin) and 101 environmental microbial samples (51 soil and 50 water) from the eastern Tibetan Plateau, revealed host factors as primary drivers of the variations in host-associated microbiota. However, climatic factors contributed to additional variations in gut microbial beta-diversity and skin microbial function. Water microbiota were identified as a significant contributor to the amphibian-associated microbiomes, with their climate-driven variations mediating an indirect association between the variations in climatic factors and host-associated microbiota. These findings extend our understanding of the assembly of host-associated microbiota in amphibians, emphasizing the significance of microbiota in evaluating the impact of climate change on animals.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
18
|
Medeiros W, Hidalgo K, Leão T, de Carvalho LM, Ziemert N, Oliveira V. Unlocking the biosynthetic potential and taxonomy of the Antarctic microbiome along temporal and spatial gradients. Microbiol Spectr 2024; 12:e0024424. [PMID: 38747631 PMCID: PMC11237469 DOI: 10.1128/spectrum.00244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.
Collapse
Affiliation(s)
- William Medeiros
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Kelly Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Tiago Leão
- Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Miguel de Carvalho
- Center for Computing in Engineering and Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Valeria Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
19
|
Giovannini M, Vieri W, Bosi E, Riccardi C, Lo Giudice A, Fani R, Fondi M, Perrin E. Functional Genomics of a Collection of Gammaproteobacteria Isolated from Antarctica. Mar Drugs 2024; 22:238. [PMID: 38921549 PMCID: PMC11205219 DOI: 10.3390/md22060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.
Collapse
Affiliation(s)
- Michele Giovannini
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Walter Vieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Emanuele Bosi
- Department of Earth, Environment and Life Sciences—DISTAV, University of Genoa, Corso Europa 26, I-16132 Genova, Italy;
| | - Christopher Riccardi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, (CNR.ISP), Spianata San Raineri 86, I-98122 Messina, Italy;
- Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), I-98122 Messina, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| |
Collapse
|
20
|
Machushynets N, Al Ayed K, Terlouw BR, Du C, Buijs NP, Willemse J, Elsayed SS, Schill J, Trebosc V, Pieren M, Alexander FM, Cochrane SA, Liles MR, Medema MH, Martin NI, van Wezel GP. Discovery and Derivatization of Tridecaptin Antibiotics with Altered Host Specificity and Enhanced Bioactivity. ACS Chem Biol 2024; 19:1106-1115. [PMID: 38602492 PMCID: PMC11106739 DOI: 10.1021/acschembio.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.
Collapse
Affiliation(s)
- Nataliia
V. Machushynets
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Karol Al Ayed
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Barbara R. Terlouw
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Ned P. Buijs
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Joost Willemse
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Julian Schill
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Vincent Trebosc
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Michel Pieren
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Francesca M. Alexander
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Stephen A. Cochrane
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Mark R. Liles
- Department
of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Marnix H. Medema
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
- Department
of Microbial Ecology, Netherlands Institute
of Ecology, Wageningen 6700 PB, The Netherlands
| |
Collapse
|
21
|
Cong Z, Yin Q, Tian K, Mukoma NJ, Ouyang L, Hsiang T, Zhang L, Jiang L, Liu X. Genome Mining of Fungal Unique Trichodiene Synthase-like Sesquiterpene Synthases. J Fungi (Basel) 2024; 10:350. [PMID: 38786705 PMCID: PMC11122449 DOI: 10.3390/jof10050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sesquiterpenoids served as an important source for natural product drug discovery. Although genome mining approaches have revealed numerous novel sesquiterpenoids and biosynthetic enzymes, the comprehensive landscape of fungal sesquiterpene synthases (STSs) remains elusive. In this study, 123 previously reported fungal STSs were subjected to phylogenetic analysis, resulting in the identification of a fungi-specific STS family known as trichodiene synthase-like sesquiterpene synthases (TDTSs). Subsequently, the application of hidden Markov models allowed the discovery of 517 TDTSs from our in-house fungi genome library of over 400 sequenced genomes, and these TDTSs were defined into 79 families based on a sequence similarity network. Based on the novelty of protein sequences and the completeness of their biosynthetic gene clusters, 23 TDTS genes were selected for heterologous expression in Aspergillus oryzae. In total, 10 TDTSs were active and collectively produced 12 mono- and sesquiterpenes, resulting in the identification of the first chamipinene synthase, as well as the first fungi-derived cedrene, sabinene, and camphene synthases. Additionally, with the guidance of functionally characterized TDTSs, we found that TDTSs in Family 1 could produce bridged-cyclic sesquiterpenes, while those in Family 2 could synthesize spiro- and bridged-cyclic sesquiterpenes. Our research presents a new avenue for the genome mining of fungal sesquiterpenoids.
Collapse
Affiliation(s)
- Zhanren Cong
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Qiang Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Kunhong Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Njeru Joe Mukoma
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210093, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China (N.J.M.)
| |
Collapse
|
22
|
Coca-Ruiz V, Suárez I, Aleu J, Cantoral JM, González C, Garrido C, Brito N, Collado IG. Unravelling the Function of the Sesquiterpene Cyclase STC3 in the Lifecycle of Botrytis cinerea. Int J Mol Sci 2024; 25:5125. [PMID: 38791163 PMCID: PMC11120764 DOI: 10.3390/ijms25105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.
Collapse
Affiliation(s)
- Víctor Coca-Ruiz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Ivonne Suárez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (J.M.C.); (C.G.)
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Jesús M. Cantoral
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (J.M.C.); (C.G.)
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Celedonio González
- Área de Bioquímica y Biología Molecular, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain;
| | - Carlos Garrido
- Laboratorio de Microbiología, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (J.M.C.); (C.G.)
- Instituto de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Nélida Brito
- Área de Bioquímica y Biología Molecular, Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Spain;
| | - Isidro G. Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; (V.C.-R.); (I.S.); (J.A.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
23
|
Zhang MM, Long Y, Li Y, Cui JJ, Lv T, Luo S, Gao K, Dong SH. Divergent Biosynthesis of Bridged Polycyclic Sesquiterpenoids by a Minimal Fungal Biosynthetic Gene Cluster. JOURNAL OF NATURAL PRODUCTS 2024; 87:893-905. [PMID: 38417166 DOI: 10.1021/acs.jnatprod.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The bridged polycyclic sesquiterpenoids derived from sativene, isosativene, and longifolene have unique structures, and many chemical synthesis approaches with at least 10 steps have been reported. However, their biosynthetic pathway remains undescribed. A minimal biosynthetic gene cluster (BGC), named bip, encoding a sesquiterpene cyclase (BipA) and a cytochrome P450 (BipB) is characterized to produce such complex sesquiterpenoids with multiple carbon skeletons based on enzymatic assays, heterologous expression, and precursor experiments. BipA is demonstrated as a versatile cyclase with (-)-sativene as the dominant product and (-)-isosativene and (-)-longifolene as minor ones. BipB is capable of hydroxylating different enantiomeric sesquiterpenes, such as (-)-longifolene and (+)-longifolene, at C-15 and C-14 in turn. The C-15- or both C-15- and C-14-hydroxylated products are then further oxidized by unclustered oxidases, resulting in a structurally diverse array of sesquiterpenoids. Bioinformatic analysis reveals the BipB homologues as a discrete clade of fungal sesquiterpene P450s. These findings elucidate the concise and divergent biosynthesis of such intricate bridged polycyclic sesquiterpenoids, offer valuable biocatalysts for biotransformation, and highlight the distinct biosynthetic strategy employed by nature compared to chemical synthesis.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yi Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuxin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiao-Jiao Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
24
|
Lu J, Yu D, Li H, Qin P, Chen H, Chen L. Promising natural products targeting protein tyrosine phosphatase SHP2 for cancer therapy. Phytother Res 2024. [PMID: 38558278 DOI: 10.1002/ptr.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Zhu P, Hou J, Xiong Y, Xie R, Wang Y, Wang F. Expanded Archaeal Genomes Shed New Light on the Evolution of Isoprenoid Biosynthesis. Microorganisms 2024; 12:707. [PMID: 38674651 PMCID: PMC11052028 DOI: 10.3390/microorganisms12040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Isoprenoids and their derivatives, essential for all cellular life on Earth, are particularly crucial in archaeal membrane lipids, suggesting that their biosynthesis pathways have ancient origins and play pivotal roles in the evolution of early life. Despite all eukaryotes, archaea, and a few bacterial lineages being known to exclusively use the mevalonate (MVA) pathway to synthesize isoprenoids, the origin and evolutionary trajectory of the MVA pathway remain controversial. Here, we conducted a thorough comparison and phylogenetic analysis of key enzymes across the four types of MVA pathway, with the particular inclusion of metagenome assembled genomes (MAGs) from uncultivated archaea. Our findings support an archaeal origin of the MVA pathway, likely postdating the divergence of Bacteria and Archaea from the Last Universal Common Ancestor (LUCA), thus implying the LUCA's enzymatic inability for isoprenoid biosynthesis. Notably, the Asgard archaea are implicated in playing central roles in the evolution of the MVA pathway, serving not only as putative ancestors of the eukaryote- and Thermoplasma-type routes, but also as crucial mediators in the gene transfer to eukaryotes, possibly during eukaryogenesis. Overall, this study advances our understanding of the origin and evolutionary history of the MVA pathway, providing unique insights into the lipid divide and the evolution of early life.
Collapse
Affiliation(s)
- Pengfei Zhu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Jialin Hou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yixuan Xiong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
26
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
27
|
Li A, Cao T, Feng L, Hu Y, Zhou Y, Yang P. Recent Advances in Metal-Hydride-Based Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5355-5367. [PMID: 38265885 DOI: 10.1021/acsami.3c16668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In comparison to traditional antioxidant treatment methods, the use of hydrogen to eliminate reactive oxygen species from the body has the advantages of high biological safety, strong selectivity, and high clearance rate. As an energy storage material, metal hydrides have been extensively studied and used in transporting hydrogen as clean energy, which can achieve a high hydrogen load and controlled hydrogen release. Considering the antioxidant properties of hydrogen and the delivery ability of metal hydrides, metal-hydride-based disease treatment strategies have attracted widespread attention. Up to now, metal hydrides have been reported for the treatment of tumors and a range of inflammation-related diseases. However, limited by the insufficient investment, the use of metal hydrides in disease treatment still has many shortcomings, such as low targeting efficiency, limited therapeutic activity, and complex material preparation process. Particularly, metal hydrides have been found to have a series of optical, acoustic, and catalytic properties when scaled up to the nanoscale, and these properties are also widely used to promote disease treatment effects. From this new perspective, we comprehensively summarize the very recent research progress on metal-hydride-based disease treatment in this review. Ultimately, the challenges and prospects of such a burgeoning cancer theranostics modality are outlooked to provide inspiration for the further development and clinical translation of metal hydrides.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Tingting Cao
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yaoyu Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yaofeng Zhou
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, People's Republic of China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, People's Republic of China
| |
Collapse
|
28
|
Steele TS, Burkhardt I, Moore ML, de Rond T, Bone HK, Barry K, Bunting VM, Grimwood J, Handley LH, Rajasekar S, Talag J, Michael TP, Moore BS. Biosynthesis of Haloterpenoids in Red Algae via Microbial-like Type I Terpene Synthases. ACS Chem Biol 2024; 19:185-192. [PMID: 38081799 PMCID: PMC10985283 DOI: 10.1021/acschembio.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Red algae or seaweeds produce highly distinctive halogenated terpenoid compounds, including the pentabromochlorinated monoterpene halomon that was once heralded as a promising anticancer agent. The first dedicated step in the biosynthesis of these natural product molecules is expected to be catalyzed by terpene synthase (TS) enzymes. Recent work has demonstrated an emerging class of type I TSs in red algal terpene biosynthesis. However, only one such enzyme from a notoriously haloterpenoid-producing red alga (Laurencia pacifica) has been functionally characterized and the product structure is not related to halogenated terpenoids. Herein, we report 10 new type I TSs from the red algae Portieria hornemannii, Plocamium pacificum, L. pacifica, and Laurencia subopposita that produce a diversity of halogenated mono- and sesquiterpenes. We used a combination of genome sequencing, terpenoid metabolomics, in vitro biochemistry, and bioinformatics to establish red algal TSs in all four species, including those associated with the selective production of key halogenated terpene precursors myrcene, trans-β-ocimene, and germacrene D-4-ol. These results expand on a small but growing number of characterized red algal TSs and offer insight into the biosynthesis of iconic halogenated algal compounds that are not without precedence elsewhere in biology.
Collapse
Affiliation(s)
- Taylor S. Steele
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Immo Burkhardt
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Malia L. Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Tristan de Rond
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Hannah K. Bone
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, JGI-DOE Joint Genome Institute, Berkeley, California 94720, United States
| | - Victoria Mae Bunting
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, United States
| | - Lori H. Handley
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, United States
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Todd P. Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Bradley S. Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
29
|
Debnath T, Bandyopadhyay TK, Vanitha K, Bobby MN, Nath Tiwari O, Bhunia B, Muthuraj M. Astaxanthin from microalgae: A review on structure, biosynthesis, production strategies and application. Food Res Int 2024; 176:113841. [PMID: 38163732 DOI: 10.1016/j.foodres.2023.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.
Collapse
Affiliation(s)
- Taniya Debnath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India
| | | | - Kondi Vanitha
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, India
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Guntur 522213, Andhra Pradesh, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India; Department of Bio Engineering, National Institute of Technology, Agartala-799046, India.
| |
Collapse
|
30
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
31
|
Costa LSAS, de Faria MR, Chiaramonte JB, Mendes LW, Sepo E, de Hollander M, Fernandes JMC, Carrión VJ, Bettiol W, Mauchline TH, Raaijmakers JM, Mendes R. Repeated exposure of wheat to the fungal root pathogen Bipolaris sorokiniana modulates rhizosphere microbiome assembly and disease suppressiveness. ENVIRONMENTAL MICROBIOME 2023; 18:85. [PMID: 38053159 PMCID: PMC10696838 DOI: 10.1186/s40793-023-00529-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/19/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Disease suppressiveness of soils to fungal root pathogens is typically induced in the field by repeated infections of the host plant and concomitant changes in the taxonomic composition and functional traits of the rhizosphere microbiome. Here, we studied this remarkable phenomenon for Bipolaris sorokiniana in two wheat cultivars differing in resistance to this fungal root pathogen. RESULTS The results showed that repeated exposure of the susceptible wheat cultivar to the pathogen led to a significant reduction in disease severity after five successive growth cycles. Surprisingly, the resistant wheat cultivar, initially included as a control, showed the opposite pattern with an increase in disease severity after repeated pathogen exposure. Amplicon analyses revealed that the bacterial families Chitinophagaceae, Anaerolineaceae and Nitrosomonadaceae were associated with disease suppressiveness in the susceptible wheat cultivar; disease suppressiveness in the resistant wheat cultivar was also associated with Chitinophagaceae and a higher abundance of Comamonadaceae. Metagenome analysis led to the selection of 604 Biosynthetic Gene Clusters (BGCs), out of a total of 2,571 identified by AntiSMASH analysis, that were overrepresented when the soil entered the disease suppressive state. These BGCs are involved in the biosynthesis of terpenes, non-ribosomal peptides, polyketides, aryl polyenes and post-translationally modified peptides. CONCLUSION Combining taxonomic and functional profiling we identified key changes in the rhizosphere microbiome during disease suppression. This illustrates how the host plant relies on the rhizosphere microbiome as the first line of defense to fight soil-borne pathogens. Microbial taxa and functions identified here can be used in novel strategies to control soil-borne fungal pathogens.
Collapse
Affiliation(s)
- Lilian S Abreu Soares Costa
- Embrapa Environment, Jaguariúna, Brazil
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Edis Sepo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mattias de Hollander
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Departamento de Microbiología y Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | | | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
32
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
33
|
Marshall B, Amritkar K, Wolfe M, Kaçar B, Landick R. Evolutionary flexibility and rigidity in the bacterial methylerythritol phosphate (MEP) pathway. Front Microbiol 2023; 14:1286626. [PMID: 38029103 PMCID: PMC10663253 DOI: 10.3389/fmicb.2023.1286626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Terpenoids are a diverse class of compounds with wide-ranging uses including as industrial solvents, pharmaceuticals, and fragrances. Efforts to produce terpenoids sustainably by engineering microbes for fermentation are ongoing, but industrial production still largely relies on nonrenewable sources. The methylerythritol phosphate (MEP) pathway generates terpenoid precursor molecules and includes the enzyme Dxs and two iron-sulfur cluster enzymes: IspG and IspH. IspG and IspH are rate limiting-enzymes of the MEP pathway but are challenging for metabolic engineering because they require iron-sulfur cluster biogenesis and an ongoing supply of reducing equivalents to function. Therefore, identifying novel alternatives to IspG and IspH has been an on-going effort to aid in metabolic engineering of terpenoid biosynthesis. We report here an analysis of the evolutionary diversity of terpenoid biosynthesis strategies as a resource for exploration of alternative terpenoid biosynthesis pathways. Using comparative genomics, we surveyed a database of 4,400 diverse bacterial species and found that some may have evolved alternatives to the first enzyme in the pathway, Dxs making it evolutionarily flexible. In contrast, we found that IspG and IspH are evolutionarily rigid because we could not identify any species that appear to have enzymatic routes that circumvent these enzymes. The ever-growing repository of sequenced bacterial genomes has great potential to provide metabolic engineers with alternative metabolic pathway solutions. With the current state of knowledge, we found that enzymes IspG and IspH are evolutionarily indispensable which informs both metabolic engineering efforts and our understanding of the evolution of terpenoid biosynthesis pathways.
Collapse
Affiliation(s)
- Bailey Marshall
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Kaustubh Amritkar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael Wolfe
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
34
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
35
|
Raio A, Brilli F, Neri L, Baraldi R, Orlando F, Pugliesi C, Chen X, Baccelli I. Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1235669. [PMID: 37849842 PMCID: PMC10577304 DOI: 10.3389/fpls.2023.1235669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
The bacterium Stenotrophomonas rhizophila is known to be beneficial for plants and has been frequently isolated from the rhizosphere of crops. In the present work, we isolated from the phyllosphere of an ornamental plant an epiphytic strain of S. rhizophila that we named Ep2.2 and investigated its possible application in crop protection. Compared to S. maltophilia LMG 958, a well-known plant beneficial species which behaves as opportunistic human pathogen, S. rhizophila Ep2.2 showed distinctive features, such as different motility, a generally reduced capacity to use carbon sources, a greater sensitivity to fusidic acid and potassium tellurite, and the inability to grow at the human body temperature. S. rhizophila Ep2.2 was able to inhibit in vitro growth of the plant pathogenic fungi Alternaria alternata and Botrytis cinerea through the emission of volatile compounds. Simultaneous PTR-MS and GC-MS analyses revealed the emission, by S. rhizophila Ep2.2, of volatile organic compounds (VOCs) with well-documented antifungal activity, such as furans, sulphur-containing compounds and terpenes. When sprayed on tomato leaves and plants, S. rhizophila Ep2.2 was able to restrict B. cinerea infection and to prime the expression of Pti5, GluA and PR1 plant defense genes.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Luisa Neri
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Rita Baraldi
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Francesca Orlando
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| |
Collapse
|
36
|
Garbeva P, Avalos M, Ulanova D, van Wezel GP, Dickschat JS. Volatile sensation: The chemical ecology of the earthy odorant geosmin. Environ Microbiol 2023; 25:1565-1574. [PMID: 36999338 DOI: 10.1111/1462-2920.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Geosmin may be the most familiar volatile compound, as it lends the earthy smell to soil. The compound is a member of the largest family of natural products, the terpenoids. The broad distribution of geosmin among bacteria in both terrestrial and aquatic environments suggests that this compound has an important ecological function, for example, as a signal (attractant or repellent) or as a protective specialized metabolite against biotic and abiotic stresses. While geosmin is part of our everyday life, scientists still do not understand the exact biological function of this omnipresent natural product. This minireview summarizes the current general observations regarding geosmin in prokaryotes and introduces new insights into its biosynthesis and regulation, as well as its biological roles in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jeroen S Dickschat
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
37
|
Mukherjee A, Tikariha H, Bandla A, Pavagadhi S, Swarup S. Global analyses of biosynthetic gene clusters in phytobiomes reveal strong phylogenetic conservation of terpenes and aryl polyenes. mSystems 2023; 8:e0038723. [PMID: 37409823 PMCID: PMC10469690 DOI: 10.1128/msystems.00387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
There are gaps in our understandings on how did the evolutionary relationships among members of the phytobiomes shape their ability to produce tremendously complex specialized metabolites under the influence of plant host. To determine these relationships, we investigated the phylogenetic conservation of biosynthetic gene clusters (BGCs) on a global collection of 4,519 high-quality and nonredundant (out of 12,181) bacterial isolates and metagenome-assembled genomes from 47 different plant hosts and soil, by adopting three independent phylogenomic approaches (D-test, Pagel's λ, and consenTRAIT). We report that the BGCs are phylogenetically conserved to varying strengths and depths in their different classes. We show that the ability to produce specialized metabolites qualifies as a complex trait, and the depth of conservation is equivalent to ecologically relevant complex microbial traits. Interestingly, terpene and aryl polyene BGCs had the strongest phylogenetic conservation in the phytobiomes, but not in the soil microbiomes. Furthermore, we showed that terpenes are largely uncharacterized in phytobiomes and pinpointed specific clades that harbor potentially novel terpenes. Taken together, this study sheds light on the evolution of specialized metabolites' biosynthesis potential in phytobiomes under the influence of plant hosts and presents strategies to rationally guide the discovery of potentially novel classes of metabolites. IMPORTANCE This study expands our understandings of the biosynthetic potential of phytobiomes by using such worldwide and extensive collection of microbiomes from plants and soil. Apart from providing such vital resource for the plant microbiome researchers, this study provides fundamental insights into the evolution of biosynthetic gene clusters (BGCs) in phytobiomes under the influence of plant host. Specifically, we report that the strength of phylogenetic conservation in microbiomes varies for different classes of BGCs and is influenced as a result of plant host association. Furthermore, our results indicate that biosynthetic potential of specialized metabolites is deeply conserved equivalent to other complex and ecologically relevant microbial traits. Finally, for the most conserved class of specialized metabolites (terpenes), we identified clades harboring potentially novel class of molecules. Future studies could focus on plant-microbe coevolution and interactions through specialized metabolites building upon these findings.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Hitesh Tikariha
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Aditya Bandla
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Shruti Pavagadhi
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Cao C, Zhang H, Cao X, Kong S, Zhu B, Lin X, Zhou YJ. Construction and Optimization of Nonclassical Isoprenoid Biosynthetic Pathways in Yeast Peroxisomes for (+)-Valencene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437260 DOI: 10.1021/acs.jafc.3c02932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Isoprenoids are a kind of natural product with various activities, but their plant extraction suffers low concentration. The rapid development of synthetic biology offers a sustainable route for supply of high-value-added natural products by engineering microorganisms. However, the complexity of cellular metabolism makes engineering endogenous isoprenoid biosynthetic pathways with metabolic interaction difficult. Here, for the first time, we constructed and optimized three types of isoprenoid pathways (the Haloarchaea-type, Thermoplasma-type, and isoprenoid alcohol pathway) in yeast peroxisomes for the synthesis of sesquiterpene (+)-valencene. In yeast, the Haloarchaea-type MVA pathway is more effective than the classical MVA pathway. MVK and IPK were determined to be the rate-limiting steps of the Haloarchaea-type MVA pathway, and the production of 869 mg/L (+)-valencene under fed-batch fermentation in shake flasks was realized. This work expands isoprenoid synthesis in eukaryotes and provides a more efficient pathway for isoprenoid synthesis.
Collapse
Affiliation(s)
- Chunyang Cao
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Haiyan Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Sijia Kong
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinping Lin
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
39
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
40
|
Li H, Chen L, Wu X, Wu S, Su QZ, Dong B, Li D, Ma T, Zhong H, Wang X, Zheng J, Nerín C. Characterization of volatile organic compounds in food contact paperboards and elucidation of their potential origins from the perspective of the raw materials. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
41
|
Chen N, Zhang R, Zeng T, Zhang X, Wu R. Developing TeroENZ and TeroMAP modules for the terpenome research platform TeroKit. Database (Oxford) 2023; 2023:7173549. [PMID: 37207351 PMCID: PMC10380177 DOI: 10.1093/database/baad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 03/17/2023] [Indexed: 05/21/2023]
Abstract
Terpenoids and their derivatives are collectively known as the terpenome and are the largest class of natural products, whose biosynthesis refers to various kinds of enzymes. To date, there is no terpenome-related enzyme database, which is a desire for enzyme mining, metabolic engineering and discovery of new natural products related to terpenoids. In this work, we have constructed a comprehensive database called TeroENZ (http://terokit.qmclab.com/browse_enz.html) containing 13 462 enzymes involved in the terpenoid biosynthetic pathway, covering 2541 species and 4293 reactions reported in the literature and public databases. At the same time, we classify enzymes according to their catalytic reactions into cyclase, oxidoreductase, transferase, and so on, and also make a classification according to species. This meticulous classification is beneficial for users as it can be retrieved and downloaded conveniently. We also provide a computational module for isozyme prediction. Moreover, a module named TeroMAP (http://terokit.qmclab.com/browse_rxn.html) is also constructed to organize all available terpenoid enzymatic reactions into an interactive network by interfacing with the previously established database of terpenoid compounds, TeroMOL. Finally, all these databases and modules are integrated into the web server TeroKit (http://terokit.qmclab.com/) to shed light on the field of terpenoid research. Database URL http://terokit.qmclab.com/.
Collapse
Affiliation(s)
- Nianhang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
42
|
Courtney DK, Su Y, Jacobson T, Khana D, Ailiani A, Amador-Noguez D, Pfleger BF. Relative Activities of the β-ketoacyl-CoA and Acyl-CoA Reductases Influence Product Profile and Flux in a Reversed β-Oxidation Pathway. ACS Catal 2023; 13:5914-5925. [PMID: 38094510 PMCID: PMC10718561 DOI: 10.1021/acscatal.3c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The β-Oxidation pathway, normally involved in the catabolism of fatty acids, can be functionally made to act as a fermentative, iterative, elongation pathway when driven by the activity of a trans-enoyl-CoA reductase. The terminal acyl-CoA reduction to alcohol can occur on substrates with varied chain lengths, leading to a broad distribution of fermentation products in vivo. Tight control of the average chain length and product profile is desirable as chain length greatly influences molecular properties and commercial value. Lacking a termination enzyme with a narrow chain length preference, we sought alternative factors that could influence the product profile and pathway flux in the iterative pathway. In this study, we reconstituted the reversed β-oxidation (R-βox) pathway in vitro with a purified tri-functional complex (FadBA) responsible for the thiolase, enoyl-CoA hydratase and hydroxyacyl-CoA dehydrogenase activities, a trans-enoyl-CoA reductase (TER), and an acyl-CoA reductase (ACR). Using this system, we determined the rate limiting step of the elongation cycle and demonstrated that by controlling the ratio of these three enzymes and the ratio of NADH and NADPH, we can influence the average chain length of the alcohol product profile.
Collapse
Affiliation(s)
- Dylan K. Courtney
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Tyler Jacobson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | - Daven Khana
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI, USA
| | - Aditya Ailiani
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | | | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
43
|
Kreuzenbeck NB, Dhiman S, Roman D, Burkhardt I, Conlon BH, Fricke J, Guo H, Blume J, Görls H, Poulsen M, Dickschat JS, Köllner TG, Arndt HD, Beemelmanns C. Isolation, (bio)synthetic studies and evaluation of antimicrobial properties of drimenol-type sesquiterpenes of Termitomyces fungi. Commun Chem 2023; 6:79. [PMID: 37095327 PMCID: PMC10126200 DOI: 10.1038/s42004-023-00871-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.
Collapse
Affiliation(s)
- Nina B Kreuzenbeck
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Seema Dhiman
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Dávid Roman
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Immo Burkhardt
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Benjamin H Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15 2100, Copenhagen, Denmark
| | - Janis Fricke
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Janis Blume
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Helmar Görls
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Humboldtstrasse 8, 07743, Jena, Germany
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15 2100, Copenhagen, Denmark
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll-Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
- Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Helmholtz Zentrum für Infektionsforschung (HZI), Campus E8.1, 66123, Saarbrücken, Germany.
- Universität des Saarlandes, Campus E8, 66123, Saarbrücken, Germany.
| |
Collapse
|
44
|
Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M. Broad-Spectrum Antifungal, Biosurfactants and Bioemulsifier Activity of Bacillus subtilis subsp. spizizenii-A Potential Biocontrol and Bioremediation Agent in Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1374. [PMID: 36987062 PMCID: PMC10056679 DOI: 10.3390/plants12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 μg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Tomás López-Gutiérrez
- Facultad de Ciencias Biologicas, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| | - Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Sergio Gómez-Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal Villahermosa-Teapa km 22.5, Villahermosa 86290, Tabasco, Mexico;
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez km 1, Cunduacán 86690, Tabasco, Mexico
| | - Eugenia Zarza
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
- Investigadora CONACyT—El Colegio de la Frontera Sur. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico City, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km 0.5, Villahermosa 86000, Tabasco, Mexico
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| |
Collapse
|
45
|
Zhang Y, Xun H, Gao Q, Qi F, Sun J, Tang F. Chemical Constituents of the Mushroom Dictyophora indusiata and Their Anti-Inflammatory Activities. Molecules 2023; 28:molecules28062760. [PMID: 36985732 PMCID: PMC10052543 DOI: 10.3390/molecules28062760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
As an edible and medicinal fungus, Dictyophora indusiata is well-known for its morphological elegance, distinctive taste, high nutritional value, and therapeutic properties. In this study, eighteen compounds (1-18) were isolated and identified from the ethanolic extract of D. indusiata; four (1-4) were previously undescribed. Their molecular structures and absolute configurations were determined via a comprehensive analysis of spectroscopic data (1D/2D NMR, HRESIMS, ECD, and XRD). Seven isolated compounds were examined for their anti-inflammatory activities using an in vitro model of lipopolysaccharide (LPS)-simulated BV-2 microglial cells. Compound 3 displayed the strongest inhibitory effect on tumor necrosis factor-α (TNF-α) expression, with an IC50 value of 11.9 μM. Compound 16 exhibited the highest inhibitory activity on interleukin-6 (IL-6) production, with an IC50 value of 13.53 μM. Compound 17 showed the most potent anti-inflammatory capacity by inhibiting the LPS-induced generation of nitric oxide (NO) (IC50: 10.86 μM) and interleukin-1β (IL-1β) (IC50: 23.9 μM) and by significantly suppressing induced nitric oxide synthase (iNOS) and phosphorylated nuclear factor-kappa B inhibitor-α (p-IκB-α) expression at concentrations of 5 μM and 20 μM, respectively (p < 0.01). The modes of interactions between the isolated compounds and the target inflammation-related proteins were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential anti-inflammatory activities of metabolites with small molecular weights in the mushroom D. indusiata.
Collapse
Affiliation(s)
- Yingfang Zhang
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Hang Xun
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| | - Quan Gao
- Anhui Key Laboratory of Agricultural Products, School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jia Sun
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
- Eurofins Agroscience Services, Hercules, CA 94547, USA
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
46
|
Li Z, Xu B, Kojasoy V, Ortega T, Adpressa DA, Ning W, Wei X, Liu J, Tantillo DJ, Loesgen S, Rudolf JD. First trans-eunicellane terpene synthase in bacteria. Chem 2023; 9:698-708. [PMID: 36937101 PMCID: PMC10022577 DOI: 10.1016/j.chempr.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Terpenoids are the largest family of natural products, but prokaryotes are vastly underrepresented in this chemical space. However, genomics supports vast untapped biosynthetic potential for terpenoids in bacteria. We discovered the first trans-eunicellane terpene synthase (TS), AlbS from Streptomyces albireticuli NRRL B-1670, in nature. Mutagenesis, deuterium labeling studies, and quantum chemical calculations provided extensive support for its cyclization mechanism. In addition, parallel stereospecific labeling studies with Bnd4, a cis-eunicellane TS, revealed a key mechanistic distinction between these two enzymes. AlbS highlights bacteria as a valuable source of novel terpenoids, expands our understanding of the eunicellane family of natural products and the enzymes that biosynthesize them, and provides a model system to address fundamental questions about the chemistry of 6,10-bicyclic ring systems.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Volga Kojasoy
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | - Teresa Ortega
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | | | - Wenbo Ning
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Xiuting Wei
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Jamin Liu
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | - Sandra Loesgen
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Lead contact
| |
Collapse
|
47
|
Terpene Synthase Gene Amplicons from Subseafloor Sediment. Microbiol Resour Announc 2023; 12:e0103722. [PMID: 36651734 PMCID: PMC9933626 DOI: 10.1128/mra.01037-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this announcement, we present the set of putative terpene synthase (TS) gene fragments detected in a subseafloor sediment sample collected off Shimokita Peninsula, Japan. This data set contains sequences with 72 to 100% identity to TS from actinobacteria and cyanobacteria.
Collapse
|
48
|
Abstract
Covering: 2015 to 2022Fungal terpenoids are of large structural diversity and often exhibit interesting biological activities. Recent work has focused on two main aspects: (1) the discovery and understanding of unknown biosynthetic genes and pathways, and (2) the usage of already known biosynthetic genes in the construction of high yielding production strains. Both aspects will be covered in this review article that aims to summarise the most important work of the past few years.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
49
|
Li XQ, Liu YQ, Li YJ, Han H, Zhang H, Ji MF, Chen ZJ. Enhancing Mechanisms of the Plant Growth-Promoting Bacterial Strain Brevibacillus sp. SR-9 on Cadmium Enrichment in Sweet Sorghum by Metagenomic and Transcriptomic Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16309. [PMID: 36498382 PMCID: PMC9737414 DOI: 10.3390/ijerph192316309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
To explore the mechanism by which the plant growth-promoting bacterium Brevibacillus sp. SR-9 improves sweet sorghum tolerance and enriches soil cadmium (Cd) under pot conditions, the effect of strain SR-9 inoculation on the microbial community of sorghum rhizosphere soil was analyzed by metagenomics. Gene expression in sweet sorghum roots was analyzed using transcriptomics. The results showed that strain SR-9 promoted the growth of sweet sorghum and improved the absorption and enrichment of Cd in the plants. Compared with the uninoculated treatment, the aboveground part and root dry weight in strain SR-9 inoculated with sorghum increased by 21.09% and 17.37%, respectively, and the accumulation of Cd increased by 135% and 53.41%, respectively. High-throughput sequencing showed that strain SR-9 inoculation altered the rhizosphere bacterial community, significantly increasing the relative abundance of Actinobacteria and Firmicutes. Metagenomic analysis showed that after inoculation with strain SR-9, the abundance of genes involved in amino acid transport metabolism, energy generation and conversion, and carbohydrate transport metabolism increased. KEGG functional classification showed that inoculation with strain SR-9 increased the abundance of genes involved in soil microbial metabolic pathways in the rhizosphere soil of sweet sorghum and the activity of soil bacteria. Transcriptome analysis identified 198 upregulated differentially expressed genes in sweet sorghum inoculated with strain SR-9, including those involved in genetic information processing, biological system, metabolism, environmental information processing, cellular process, and human disease. Most of the annotated differentially expressed genes were enriched in the metabolic category and were related to pathways such as signal transduction, carbohydrate metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. This study showed that plant growth-promoting bacteria can alter the rhizosphere bacterial community composition, increasing the activity of soil bacteria and upregulating gene expression in sweet sorghum roots. The findings enhance our understanding of the microbiological and botanical mechanisms by which plant growth-promoting bacterial inoculation improves the remediation of heavy metals by sorghum.
Collapse
|
50
|
Shaffer JP, Nothias LF, Thompson LR, Sanders JG, Salido RA, Couvillion SP, Brejnrod AD, Lejzerowicz F, Haiminen N, Huang S, Lutz HL, Zhu Q, Martino C, Morton JT, Karthikeyan S, Nothias-Esposito M, Dührkop K, Böcker S, Kim HW, Aksenov AA, Bittremieux W, Minich JJ, Marotz C, Bryant MM, Sanders K, Schwartz T, Humphrey G, Vásquez-Baeza Y, Tripathi A, Parida L, Carrieri AP, Beck KL, Das P, González A, McDonald D, Ladau J, Karst SM, Albertsen M, Ackermann G, DeReus J, Thomas T, Petras D, Shade A, Stegen J, Song SJ, Metz TO, Swafford AD, Dorrestein PC, Jansson JK, Gilbert JA, Knight R. Standardized multi-omics of Earth's microbiomes reveals microbial and metabolite diversity. Nat Microbiol 2022; 7:2128-2150. [PMID: 36443458 PMCID: PMC9712116 DOI: 10.1038/s41564-022-01266-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth's environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.
Collapse
Affiliation(s)
- Justin P Shaffer
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Luke R Thompson
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| | - Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Rodolfo A Salido
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sneha P Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Asker D Brejnrod
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Franck Lejzerowicz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Niina Haiminen
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Shi Huang
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Holly L Lutz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Cameron Martino
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - James T Morton
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kai Dührkop
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Sebastian Böcker
- Chair for Bioinformatics, Friedrich Schiller University, Jena, Germany
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Gyeonggi-do, Korea
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Wout Bittremieux
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jeremiah J Minich
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - MacKenzie M Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karenina Sanders
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yoshiki Vásquez-Baeza
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Anupriya Tripathi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laxmi Parida
- IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
| | | | - Kristen L Beck
- IBM Research, Almaden Research Center, San Jose, CA, USA
| | - Promi Das
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Antonio González
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua Ladau
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Søren M Karst
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institute, Copenhagen, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Gail Ackermann
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jeff DeReus
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James Stegen
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Austin D Swafford
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jack A Gilbert
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|