1
|
Gao Z, Zheng X, Dong X, Liu W, Sha J, Bian S, Li J, Cong H, Lee CS, Wang P. A General Strategy for Enhanced Photodynamic Antimicrobial Therapy with Perylenequinonoid Photosensitizers Using a Macrocyclic Supramolecular Carrier. Adv Healthc Mater 2024; 13:e2401778. [PMID: 38979867 DOI: 10.1002/adhm.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Perylenequinonoid natural products are a class of photosensitizers (PSs) that exhibit high reactive oxygen species (ROS) generation and excellent activity for Type I/Type II dual photodynamic therapy. However, their limited activity against gram-negative bacteria and poor water solubility significantly restrict their potential in broad-spectrum photodynamic antimicrobial therapy (PDAT). Herein, a general approach to overcome the limitations of perylenequinonoid photosensitizers (PQPSs) in PDAT by utilizing a macrocyclic supramolecular carrier is presented. Specifically, AnBox·4Cl, a water-soluble cationic cyclophane, is identified as a universal macrocyclic host for PQPSs such as elsinochrome C, hypocrellin A, hypocrellin B, and hypericin, forming 1:1 host-guest complexes with high binding constants (≈107 m -1) in aqueous solutions. Each AnBox·4Cl molecule carries four positive charges that promote strong binding with the membrane of gram-negative bacteria. As a result, the AnBox·4Cl-PQPS complexes can effectively anchor on the surfaces of gram-negative bacteria, while the PQPSs alone cannot. In vitro and in vivo experiments demonstrate that these supramolecular PSs have excellent water solubility and high ROS generation, with broad-spectrum PDAT effect against both gram-negative and gram-positive bacteria. This work paves a new path to enhance PDAT by showcasing an efficient approach to improve PQPSs' water solubility and killing efficacy for gram-negative bacteria.
Collapse
Affiliation(s)
- Zekun Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaishuai Bian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Yin Y, Zeng P, Duan Y, Wang J, Zhou W, Sun P, Li Z, Wang L, Liang H, Chen S. A spermine-responsive supramolecular chemotherapy system constructed from a water-soluble pillar[5]arene and a diphenylanthracene-containing amphiphile for precise chemotherapy. J Mater Chem B 2024; 12:8099-8106. [PMID: 39075949 DOI: 10.1039/d4tb00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Stimuli-responsive supramolecular chemotherapy, particularly in response to cancer biomarkers, has emerged as a promising strategy to overcome the limitations associated with traditional chemotherapy. Spermine (SPM) is known to be overexpressed in certain cancers. In this study, we introduced a novel supramolecular chemotherapy system triggered by SPM. The system featured pyridine salts of a diphenylanthracene derivative (PyEn) and a complementary water-soluble pillar[5]arene (WP5C5) with long alkyl chains. The diphenylanthracene unit of PyEn is effectively encapsulated within the long alkyl chains of WP5C5, resulting in a substantial reduction in the cytotoxicity of PyEn towards normal cells. The therapeutic effect of PyEn is selectively triggered intracellularly through SPM, leading to the endosomal release of PyEn and concurrent in situ cytotoxicity. This supramolecular chemotherapy system exhibits notable tumor inhibition against SPM-overexpressed cancers with reduced side effects on normal tissues. The supramolecular strategy for intracellular activation provides a novel tool with potential applications in chemotherapeutic interventions, offering enhanced selectivity and reduced cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Yongfei Yin
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Pei Zeng
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Yifan Duan
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Jun Wang
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Penghao Sun
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Zhanting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lu Wang
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Huageng Liang
- Department of Urology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1277, Wuhan, Hubei 430022, China.
| | - Shigui Chen
- The Institute for Advanced Studies, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
3
|
Pan YC, Tian JH, Guo DS. Molecular Recognition with Macrocyclic Receptors for Application in Precision Medicine. Acc Chem Res 2023; 56:3626-3639. [PMID: 38059474 DOI: 10.1021/acs.accounts.3c00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Macrocyclic receptors can serve as alternatives to natural recognition systems as recognition tools. They provide effectively preorganized cavities to encapsulate guests via host-guest interactions, thereby affecting the physiochemical properties of the guests. Macrocyclic receptors exhibit chemical and thermal stabilities higher than those of natural receptors and thus are expected to resist degradation inside the body. This reduces the risk of harmful degradation byproducts and ensures optimal levels of effectiveness. Macrocyclic receptors have precise molecular weights and well-defined structures; this ensures their batch-to-batch reproducibility, which is critical for ensuring quality and effectiveness levels. Moreover, macrocyclic receptors exhibit broad modification tunabilities, rendering them adaptable to various guests. Molecular recognition is the basis of numerous biological processes. Macrocyclic receptors may display considerable potential for application in diagnosing and treating diseases, depending on the host-guest recognition of bioactive molecules. However, the binding affinities and selectivities of macrocyclic receptors toward bioactive molecules are generally insufficient, which may lead to problems such as low diagnosis accuracies, off-target leaking, and interference with normal functions. Therefore, addressing the challenge of the strong and specific complexation of bioactive molecules and macrocyclic receptors is imperative.To overcome this challenge, we proposed the innovative strategies of longitudinal cavity extension and coassembled heteromultivalent recognition for application in the recognition of small molecules and biomacromolecules, respectively. The deepened cavity provides a stronger hydrophobic effect and a larger interaction area while maintaining the framework rigidity. By coassembling two macrocyclic amphiphiles into one ensemble, we achieved the desired heteromultivalent recognition. This strategy affords the necessary binding properties while preventing the requirement of tedious steps and site mismatch in covalent synthesis. Using these two strategies, we achieved specific and strong binding of macrocyclic receptors to various bioactive molecules including biomarkers, drugs, and disease-related peptides/proteins. We then applied these macrocyclic receptor-based recognition systems in biosensing and bioimaging, drug delivery, and therapeutics.In this Account, we summarize the strategies we used in the recognition of small molecules and biomacromolecules. Thereafter, we discuss their applications in precision medicine, involving the (1) sensing of biomarkers and imaging of lesion sites, which are critical in the early screening of diseases and accurate diagnoses; (2) precise loading and targeted delivery of drugs, which are crucial in improving their therapeutic efficacies and reducing their side effects; and (3) capture and removal of disease-related biomacromolecules, which are significant for precise intervention in life processes. Finally, we propose recommendations for the further development of macrocyclic receptor-based recognition systems in biomedicine. Macrocyclic receptors exhibit considerable potential for research, and continued investigation may not only expand the applications of supramolecular chemistry but also open novel avenues for the development of precision medicine.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jia-Hong Tian
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Chen J, Tabaie EZ, Hickey BL, Gao Z, Raz AAP, Li Z, Wilson EH, Hooley RJ, Zhong W. Selective Molecular Recognition and Indicator Displacement Sensing of Neurotransmitters in Cellular Environments. ACS Sens 2023; 8:3195-3204. [PMID: 37477362 DOI: 10.1021/acssensors.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Flexible, water-soluble hosts are capable of selective molecular recognition in cellular environments and can detect neurotransmitters such as choline in cells. Both cationic and anionic water-soluble self-folded deep cavitands can recognize suitable styrylpyridinium dyes in cellular interiors. The dyes selectively accumulate in nucleotide-rich regions of the cell nucleus and cytoplasm. The hosts bind the dyes and promote their relocation to the outer cell membrane: the lipophilic cavitands predominantly reside in membrane environments but are still capable of binding suitable targets in other cellular organelles. Incubating the cells with structurally similar biomarkers such as choline, cholamine, betaine, or butyrylcholine illustrates the selective recognition. Choline and butyrylcholine can be bound by the hosts, but minimal binding is seen with betaine or cholamine. Varying the dye allows control of the optical detection method, and both "turn-on" sensing and "turn-off" sensing are possible.
Collapse
|
5
|
Bartocci A, Pereira G, Cecchini M, Dumont E. Capturing the Recognition Dynamics of para-Sulfonato-calix[4]arenes by Cytochrome c: Toward a Quantitative Free Energy Assessment. J Chem Inf Model 2022; 62:6739-6748. [PMID: 36054284 DOI: 10.1021/acs.jcim.2c00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calix[n]arenes' selective recognition of protein surfaces covers a broad range of timely applications, from controlling protein assembly and crystallization to trapping partially disordered proteins. Here, the interaction of para-sulfonated calix-[4]-arenes with cytochrome c is investigated through all-atom, explicit water molecular dynamics simulations which allow characterization of two binding sites in quantitative agreement with experimental evidence. Free energy calculations based on the MM-PBSA and the attach-pull-release (APR) methods highlight key residues implicated in the recognition process and provide binding free energy results in quantitative agreement with isothermal titration calorimetry. Our study emphasizes the role of MD simulations to capture and describe the "walk" of sulfonated calix-[4]-arenes on the cytochrome c surface, with the arginine R13 as a pivotal interacting residue. Our MD investigation allows, through the quasi-harmonic multibasin (QHMB) method, probing an allosteric reinforcement of several per-residue interactions upon calixarene binding, which suggests a more complex mode of action of these supramolecular auxiliaries.
Collapse
Affiliation(s)
- Alessio Bartocci
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Gilberto Pereira
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France.,Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), CNRS & University of Lyon, 7 Passage du Vercors, 69007 Lyon, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg 67083, France
| | - Elise Dumont
- Laboratoire de Chimie, Ecole Normale Superieure de Lyon, F-69342 Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| |
Collapse
|
6
|
Quan X, Yan B. Eu(III) Functionalized Crystalline Polyimide Hydrogel Film as a Multifunctional Platform for Consecutive Sensing of Spermine and Copper Ions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49072-49081. [PMID: 36281977 DOI: 10.1021/acsami.2c12822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a novel Eu(III) functionalized crystalline polyimide hydrogel film (Eu-1) is fabricated by incorporating highly stable polyimide (PI) into a sodium alginate (SA) matrix, followed by cross-linking reaction with Eu3+ ions. Based on different fluorescence responses, Eu-1 is used for the consecutive detection of spermine (Spm) and copper ions (Cu2+). Eu-1 can be employed as a sensor for polyamine, especially for Spm with significant fluorescence enhancement based on the "turn on" mode. The fluorescent sensor Eu-1@Spm constructed by the Eu-1 and Spm can be further used as a "turn off" sensor to quantitatively monitor Cu2+. The good selectivity combined with the low detection limit of the sensor meets the requirements for monitoring Cu2+. The possible luminescence response mechanisms to Spm and Cu2+ have been studied through experimental data and theoretical calculations. In addition, a back-propagation neural network (BPNN) model based on an Eu-1@Spm sensor is constructed, which can accurately distinguish Cu2+ concentrations by deep machine learning (ML). This work not only puts forward a facile method to prepare a novel Eu-functionalized PI-based hybrid film but also demonstrates the potential of PI-based film materials for fluorescence detection.
Collapse
Affiliation(s)
- Xueping Quan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
7
|
Bhosle AA, Banerjee M, Hiremath SD, Sisodiya DS, Naik VG, Barooah N, Bhasikuttan AC, Chattopadhyay A, Chatterjee A. A combination of a graphene quantum dots-cationic red dye donor-acceptor pair and cucurbit[7]uril as a supramolecular sensor for ultrasensitive detection of cancer biomarkers spermine and spermidine. J Mater Chem B 2022; 10:8258-8273. [PMID: 36134699 DOI: 10.1039/d2tb01269c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a unique approach, the combination of a donor-acceptor pair of hydroxy graphene quantum dots (GQDs-OH) and a red-emissive donor-two-acceptor (D-2-A) type dye with pyridinium units (BPBP) and the well-known host cucurbit[7]uril (CB[7]) has been exploited as a supramolecular sensing assembly for the detection of cancer biomarkers spermine and spermidine in aqueous media at the sub-ppb level based on the affinity-driven exchange of guests from the CB[7] portal. In the binary conjugate, green fluorescent GQDs-OH transfers energy to trigger the emission of the dye BPBP and itself remains in the turn-off state. CB[7] withdraws the dye from the surface of GQDs-OH by strong host-guest interactions with its portal, making GQDs-OH fluoresce again to produce a ratiometric response. In the presence of spermine (SP) or spermidine (SPD), their strong affinity with CB[7] forces the ejection of the fluorophore to settle on the GQDs-OH surface, and the strong green emission of GQDs-OH turns off to device a supramolecular sensor for the detection of SP/SPD. The DFT studies revealed interesting excited-state charge-transfer conjugate formation between BPBP and GQDs leading to turn-on emission of the dye, and further supported the stronger binding modes of BPBP-CB[7], indicating the retrieval of the emission of GQDs. The assembly-disassembly based sensing mechanism was also established by Job's plot analysis, particle size analysis, zeta potential, time-resolved spectroscopy, ITC studies, microscopic studies, etc. The supramolecular sensing assembly is highly selective to SP and SPD, and showed nominal interference from other biogenic amines, amino acids, various metal ions, and anions. The limits of detection (LODs) were 0.1 ppb and 0.9 ppb for spermine and spermidine, respectively. The potential for the real-world application of this sensing assembly was demonstrated by spiking SP and SPD in human urine and blood serum with a high %recovery.
Collapse
Affiliation(s)
- Akhil A Bhosle
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Sharanabasava D Hiremath
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Dilawar S Sisodiya
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Viraj G Naik
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Anjan Chattopadhyay
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| |
Collapse
|
8
|
Novel gluconate stabilized gold nanoparticles as a colorimetric sensor for quantitative evaluation of spermine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Lu B, Wang L, Ran X, Tang H, Cao D. Recent Advances in Fluorescent Methods for Polyamine Detection and the Polyamine Suppressing Strategy in Tumor Treatment. BIOSENSORS 2022; 12:bios12080633. [PMID: 36005029 PMCID: PMC9405807 DOI: 10.3390/bios12080633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The biogenic aliphatic polyamines (spermine, spermidine, and putrescine) are responsible for numerous cell functions, including cell proliferation, the stabilization of nucleic acid conformations, cell division, homeostasis, gene expression, and protein synthesis in living organisms. The change of polyamine concentrations in the urine or blood is usually related to the presence of malignant tumors and is regarded as a biomarker for the early diagnosis of cancer. Therefore, the detection of polyamine levels in physiological fluids can provide valuable information in terms of cancer diagnosis and in monitoring therapeutic effects. In this review, we summarize the recent advances in fluorescent methods for polyamine detection (supramolecular fluorescent sensing systems, fluorescent probes based on the chromophore reaction, fluorescent small molecules, and fluorescent nanoparticles). In addition, tumor polyamine-suppressing strategies (such as polyamine conjugate, polyamine analogs, combinations that target multiple components, spermine-responsive supramolecular chemotherapy, a combination of polyamine consumption and photodynamic therapy, etc.) are highlighted. We hope that this review promotes the development of more efficient polyamine detection methods and provides a comprehensive understanding of polyamine-based tumor suppressor strategies.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
10
|
Tian JH, Hu XY, Hu ZY, Tian HW, Li JJ, Pan YC, Li HB, Guo DS. A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems. Nat Commun 2022; 13:4293. [PMID: 35879312 PMCID: PMC9314354 DOI: 10.1038/s41467-022-31986-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Differential sensing, which discriminates analytes via pattern recognition by sensor arrays, plays an important role in our understanding of many chemical and biological systems. However, it remains challenging to develop new methods to build a sensor unit library without incurring a high workload of synthesis. Herein, we propose a supramolecular approach to construct a sensor unit library by taking full advantage of recognition and assembly. Ten sensor arrays are developed by replacing the building block combinations, adjusting the ratio between system components, and changing the environment. Using proteins as model analytes, we examine the discriminative abilities of these supramolecular sensor arrays. Then the practical applicability for discriminating complex analytes is further demonstrated using honey as an example. This sensor array construction strategy is simple, tunable, and capable of developing many sensor units with as few syntheses as possible.
Collapse
Affiliation(s)
- Jia-Hong Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Wang L, Xu M, Zhou H, Yan K, Duan S, Xue D, Wang Y, Di B, Hu C. Teaching PCR for Simultaneous Sensing of Gene Transcription and Downstream Metabolites by Cucurbit[8]uril-Mediated Intervention of Polymerase Activity. Anal Chem 2022; 94:8715-8723. [PMID: 35671188 DOI: 10.1021/acs.analchem.2c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The target of typical PCR analysis is restricted to nucleic acids. To this end, we report here a novel strategy to simultaneously detect genetic and metabolic markers using commercial PCR kits with cucurbit[8]urils (CB[8]) implemented to manipulate the activity of Taq DNA polymerase. CB[8] binds with the nonionic surfactants and displaces them from the polymerase surface, resulting in decreased enzyme activity. Meanwhile, the inhibited enzyme can be reversibly activated when spermine, the downstream metabolite of ornithine decarboxylase (ODC), is present in the sample, which competitively binds to CB[8] and recovers polymerase activity. CB[8] was implemented in conventional PCR kits not only to reduce false-positive results but also to extend the detection range of PCR technology. With this novel method to detect ODC in cell lysates containing both the nucleotides and intracellular metabolites, positive results were only observed in highly active HEK 293T cells, whereas silent cells treated with ODC inhibitor showed negative readouts, therefore providing a simple but elegant dual-modality PCR method for precision diagnosis.
Collapse
Affiliation(s)
- Lancheng Wang
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Mingjie Xu
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Huimin Zhou
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Kun Yan
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Shiqi Duan
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Dandan Xue
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, No. 18 Dongbeiwang West Road, Beijing 100193, China
| | - Bin Di
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Chi Hu
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| |
Collapse
|
12
|
Tian HW, Xu Z, Li HB, Hu XY, Guo DS. Study on assembling compactness of amphiphilic calixarenes by fluorescence anisotropy. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2087523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Zhe Xu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Wang C, Chang YX, Chen X, Bai L, Wang H, Pan YC, Zhang C, Guo DS, Xue X. A Calixarene Assembly Strategy of Combined Anti-Neuroinflammation and Drug Delivery Functions for Traumatic Brain Injury Therapy. Molecules 2022; 27:2967. [PMID: 35566317 PMCID: PMC9101726 DOI: 10.3390/molecules27092967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Excessive inflammatory reaction aggravates brain injury and hinders the recovery of neural function in nervous system diseases. Microglia, as the major players of neuroinflammation, control the progress of the disease. There is an urgent need for effective non-invasive therapy to treat neuroinflammation mediated by microglia. However, the lack of specificity of anti-inflammatory agents and insufficient drug dose penetrating into the brain lesion area are the main problems. Here, we evaluated a series of calixarenes and found that among them the self-assembling architecture of amphiphilic sulfonatocalix[8]arene (SC8A12C) had the most potent ability to suppress neuroinflammation in vitro and in vivo. Moreover, SC8A12C assemblies were internalized into microglia through macropinocytosis. In addition, after applying the SC8A12C assemblies to the exposed brain tissue, we observed that SC8A12C assemblies penetrated into the brain parenchyma and eliminated the inflammatory factor storm, thereby restoring neurobiological functions in a mouse model of traumatic brain injury.
Collapse
Affiliation(s)
- Chunxiao Wang
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Yu-Xuan Chang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Poad, Tianjin 300071, China; (Y.-X.C.); (Y.-C.P.)
| | - Xi Chen
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Lihuan Bai
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Heping Wang
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Yu-Chen Pan
- Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Poad, Tianjin 300071, China; (Y.-X.C.); (Y.-C.P.)
| | - Chunqiu Zhang
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| | - Dong-Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Poad, Tianjin 300071, China; (Y.-X.C.); (Y.-C.P.)
| | - Xue Xue
- Laboratory of Theranostical Nanomedicine, State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China; (C.W.); (X.C.); (L.B.); (H.W.); (C.Z.)
| |
Collapse
|