1
|
Wang H, Abe I. Recent developments in the enzymatic modifications of steroid scaffolds. Org Biomol Chem 2024; 22:3559-3583. [PMID: 38639195 DOI: 10.1039/d4ob00327f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Tang Y, Han Z, Zhang H, Che L, Liao G, Peng J, Lin Y, Wang Y. Characterization of Calculus bovis by principal component analysis assisted qHNMR profiling to distinguish nefarious frauds. J Pharm Biomed Anal 2023; 228:115320. [PMID: 36871364 DOI: 10.1016/j.jpba.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
A new approach is developed for the reliable classification of Calculus bovis along with the identification of willfully contaminated C. bovis species and the quantification of unclaimed adulterants. Guided by a principal component analysis, NMR data mining achieved a near-holistic chemical characterization of three types of authenticated C. bovis, including natural C. bovis (NCB), in vitro cultured C. bovis (Ivt-CCB), and artificial C. bovis (ACB). In addition, species-specific markers used for quality evaluation and species classification were confirmed. That is, the content of taurine in NCB is near negligible, while choline and hyodeoxycholic acid are characteristic for identifying Ivt-CCB and ACB, respectively. Besides, the peak shapes and chemical shifts of H2-25 of glycocholic acid could assist in the recognition of the origins of C. bovis. Based on these discoveries, a set of commercial NCB samples, macroscopically identified as problematic species, was examined with deliberately added sugars and outliers discovered. Absolute quantification of the identified sugars was realized by qHNMR using a single, nonidentical internal calibrant (IC). This study represents the first systematic study of C. bovis metabolomics via an NMR-driven methodology, which advances the toolbox for quality control of TCM and provides a more definitive reference point for future chemical and biological studies of C. bovis as a valuable materia medica.
Collapse
Affiliation(s)
- Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Zhu Han
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Han Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Genjie Liao
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Jun Peng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Yi Y, Zhang M, Xue H, Yu R, Bao YO, Kuang Y, Chai Y, Ma W, Wang J, Shi X, Li W, Hong W, Li J, Muturi E, Wei H, Wlodarz J, Roszak S, Qiao X, Yang H, Ye M. Schaftoside inhibits 3CL pro and PL pro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Acta Pharm Sin B 2022; 12:4154-4164. [PMID: 35968270 PMCID: PMC9361578 DOI: 10.1016/j.apsb.2022.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 02/02/2023] Open
Abstract
It is an urgent demand worldwide to control the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) are key targets to discover SARS-CoV-2 inhibitors. After screening 12 Chinese herbal medicines and 125 compounds from licorice, we found that a popular natural product schaftoside inhibited 3CLpro and PLpro with IC50 values of 1.73 ± 0.22 and 3.91 ± 0.19 μmol/L, respectively, and inhibited SARS-CoV-2 virus in Vero E6 cells with EC50 of 11.83 ± 3.23 μmol/L. Hydrogen-deuterium exchange mass spectrometry analysis, quantum mechanics/molecular mechanics calculations, together with site-directed mutagenesis indicated the antiviral activities of schaftoside were related with non-covalent interactions with H41, G143 and R188 of 3CLpro, and K157, E167 and A246 of PLpro. Moreover, proteomics analysis and cytokine assay revealed that schaftoside also regulated immune response and inflammation of the host cells. The anti-inflammatory activities of schaftoside were confirmed on lipopolysaccharide-induced acute lung injury mice. Schaftoside showed good safety and pharmacokinetic property, and could be a promising drug candidate for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Heng Xue
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Chai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elishiba Muturi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joachim Wlodarz
- Faculty of Science and Technology, University of Silesia, Katowice 40-007, Poland
| | - Szczepan Roszak
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|