1
|
Li E, Siniard KM, Yang Z, Dai S. Porous liquids: an integrated platform for gas storage and catalysis. Chem Sci 2024:d4sc04288c. [PMID: 39430938 PMCID: PMC11487929 DOI: 10.1039/d4sc04288c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Porous liquids (PLs) represent a new frontier in materials design, combining the unique features of fluidity in liquids and permanent porosity in solids. By engineering well-defined pores into liquids via designed structure modification techniques, the greatly improved free volume significantly enhances the gas transport and storage capability of PL sorbents. Triggered by the promising applications of PLs in gas separation, PLs are further explored in catalysis particularly to integrate the gas storage and catalytic transformation procedure. This emerging field has demonstrated promising progress to advance catalytic procedures using PLs as catalysts, with performance surpassing that of the pure liquid and porous host counterparts. In this perspective article, the recent discoveries and progress in the field of integrated gas storage and catalysis by leveraging the PL platforms will be summarized, particularly compared with the traditional homogeneous or heterogeneous catalytic procedures. The unique features of PLs endow them with combined merits from liquid and solid catalysts and beyond which will be illustrated first. This will be followed by the unique techniques being utilized to probe the porosity and active sites in PLs and the structural evolution during the catalytic procedures. The catalytic application of PLs will be divided by the reaction categories, including CO2-involving transformation, O2-involving reaction, H2S conversion, hydrogenation reaction, and non-gas involving cascade reactions. In each reaction type, the synthesis approaches and structure engineering techniques of PLs, structure characterization, catalytic performance evaluation, and reaction mechanism exploration will be discussed, highlighting the structure-performance relationship and the advancement benefiting from the unique features of PLs.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Kevin M Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
2
|
Ilbeygi H, Jaafar J. Recent Progress on Functionalized Nanoporous Heteropoly Acids: From Synthesis to Applications. CHEM REC 2024; 24:e202400043. [PMID: 38874111 DOI: 10.1002/tcr.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.
Collapse
Affiliation(s)
- Hamid Ilbeygi
- Battery Research and Innovation Hub, Institute of Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
3
|
Li H, Fu W, Yin J, Zhang J, Ran H, Zhang M, Jiang W, Zhu W, Li H, Dai S. Porous ionic liquids for oxidative desulfurization influenced by electrostatic solvent effect. J Colloid Interface Sci 2024; 662:160-170. [PMID: 38340515 DOI: 10.1016/j.jcis.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Developing a highly efficient strategy for the stabilization of the solid-liquid interface is a persistent pursuit for researchers. Herein, porous ionic liquids based on UiO-66 (Zr) porous materials were synthesized and applied to the selective desulfurization catalysis, which integrates the permanent pores of porous solids with the exceptional properties of ionic liquids. Results show that porous ionic liquids possess high activity and selectivity for dibenzothiophene. Experimental analysis and density functional theory calculations revealed that the ionic liquids moiety served as an extractant to enrich dibenzothiophene into the porous ionic liquids phase through the π···π and CH···π interactions. Additionally, the electrostatic solvent effect in the porous ionic liquids contributes to the stabilization solid-liquid interface, which was favorable for UiO-66 moiety to catalytically activate hydrogen peroxide (H2O2) to generate ·OH radicals, and subsequently oxidized dibenzothiophene to the corresponding sulfone. It is hoped that the development of porous ionic liquids could pave a new route to the stabilization of the solid-liquid interface for catalytic oxidation.
Collapse
Affiliation(s)
- Hongping Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wendi Fu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Yin
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinrui Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongshun Ran
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ming Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenshuai Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville, TN 37996, United States; Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
4
|
Yu G, Dai C, Liu N, Xu R, Wang N, Chen B. Hydrocarbon Extraction with Ionic Liquids. Chem Rev 2024; 124:3331-3391. [PMID: 38447150 DOI: 10.1021/acs.chemrev.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.
Collapse
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
5
|
Avila J, Corsini C, Correa CM, Rosenthal M, Padua A, Costa Gomes M. Porous Ionic Liquids Go Green. ACS NANO 2023; 17:19508-19513. [PMID: 37812175 DOI: 10.1021/acsnano.3c06343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This Perspective points toward pathways to prepare porous ionic liquids using easily accessible materials, aiming for reduced environmental impact. We demonstrate that suspensions of porous solids are stable in eutectic mixtures, underscoring their potential for the preparation of porous ionic liquids. Porous ionic liquids retain the wide electrochemical window observed in their precursor pure ionic liquids, rendering them well-suited for green electrochemical reactions, particularly those involving gases whose solubility is enhanced in the porous suspensions. Moreover, their capacity as gas-rich media points to sustainable biomedical and pharmaceutical applications, provided nontoxic, biocompatible ionic liquids and porous solids are utilized.
Collapse
Affiliation(s)
- Jocasta Avila
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Chiara Corsini
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Cintia M Correa
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Dual-Belgian-Beamline (DUBBLE), European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Agilio Padua
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
6
|
Viana AM, Leonardes F, Corvo MC, Balula SS, Cunha-Silva L. Effective Combination of the Metal Centers in MOF-Based Materials toward Sustainable Oxidation Catalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3133. [PMID: 37109968 PMCID: PMC10145539 DOI: 10.3390/ma16083133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
A successful encapsulation of Keggin-type polyoxomolybdate (H3[PMo12O40], PMo12) into metal-organic framework (MOF) materials with an identical framework but distinct metal centers (ZIF-8 with Zn2+ and ZIF-67 with Co2+) was accomplished by a straightforward room-temperature procedure. The presence of Zn2+ in the composite material PMo12@ZIF-8 instead of Co2+ in PMo12@ZIF-67 caused a remarkable increase in the catalytic activity that achieved a total oxidative desulfurization of a multicomponent model diesel under moderate and friendly conditions (oxidant: H2O2 and solvent: ionic liquid, IL). Interestingly, the parent ZIF-8-based composite with the Keggin-type polyoxotungstate (H3[PW12O40], PW12), PW12@ZIF-8, did not show the relevant catalytic activity. The ZIF-type supports present an appropriate framework to accommodate active polyoxometalates (POMs) into their cavities without leaching, but the nature of the metallic center from the POM and the metal present in the ZIF framework were vital for the catalytic performance of the composite materials.
Collapse
Affiliation(s)
- Alexandre M. Viana
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.M.V.); (F.L.)
| | - Francisca Leonardes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.M.V.); (F.L.)
| | - Marta C. Corvo
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Salete S. Balula
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.M.V.); (F.L.)
| | - Luís Cunha-Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (A.M.V.); (F.L.)
| |
Collapse
|
7
|
Xing XX, Guo HL, Feng T, He TM, Zhu WS, Li HM, Pang JY, Bai Y, Dang DB. Design and Synthesis of Amphiphilic Catalyst [C 16mim] 5VW 12O 40Br and Its Application in Deep Desulfurization with Superior Cyclability at Room Temperature. Inorg Chem 2023; 62:5780-5790. [PMID: 36976898 DOI: 10.1021/acs.inorgchem.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Achieving long-term stable deep desulfurization at room temperature and recovering high value-added sulfone products is a challenge at present. Herein, a series of catalysts [Cnmim]5VW12O40Br (CnVW12, 1-alkyl-3-methylimidazolium bromide tungstovanadate, n = 4, 8, 16) were presented for the room temperature catalytic oxidation of dibenzothiophene (DBT) and its derivatives. Factors affecting the reaction process, such as the amount of catalyst, oxidant, and temperature, were systematically discussed. C16VW12 showed higher catalytic performance, and 100% conversion and selectivity could be achieved in 50 min with only 10 mg. The mechanism study showed that the hydroxyl radical was the active radical in the reaction. Benefiting from the "polarity strategy", the sulfone product accumulated after 23 cycles in a C16VW12 system, and the yield and purity were about 84% and 100%, respectively.
Collapse
Affiliation(s)
- Xiao-Xiao Xing
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Hui-Li Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tong Feng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tian-Meng He
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen-Shuai Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, P. R. China
| | - Hua-Ming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing-Yu Pang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Dong-Bin Dang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
8
|
Fernandes S, Flores D, Silva D, Santos-Vieira I, Mirante F, Granadeiro CM, Balula SS. Lindqvist@Nanoporous MOF-Based Catalyst for Effective Desulfurization of Fuels. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2887. [PMID: 36014754 PMCID: PMC9414597 DOI: 10.3390/nano12162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 05/14/2023]
Abstract
An effective and sustainable oxidative desulfurization process for treating a multicomponent model fuel was successfully developed using as a heterogeneous catalyst a composite material containing as an active center the europium Lindqvist [Eu(W5O18)2]9- (abbreviated as EuW10) encapsulated into the nanoporous ZIF-8 (zeolitic imidazolate framework) support. The EuW10@ZIF-8 composite was obtained through an impregnation procedure, and its successful preparation was confirmed by various characterization techniques (FT-IR, XRD, SEM/EDS, ICP-OES). The catalytic activity of the composite and the isolated EuW10 was evaluated in the desulfurization of a multicomponent model fuel containing dibenzothiophene derivatives (DBT, 4-MDBT and 4,6-DMDBT) with a total sulfur concentration of 1500 ppm. Oxidative desulfurization was performed using an ionic liquid as extraction solvent and aqueous hydrogen peroxide as oxidant. The catalytic results showed a remarkable desulfurization performance, with 99.5 and 94.7% sulfur removal in the first 180 min, for the homogeneous active center EuW10 and the heterogeneous EuW10@ZIF-8 catalysts, respectively. Furthermore, the stability of the nanocomposite catalyst was investigated by reusing and recycling processes. A superior retention of catalyst activity in consecutive desulfurization cycles was observed in the recycling studies when compared with the reusing experiments. Nevertheless, the nanostructure of ZIF-8 incorporating the active POM (polyoxometalate) was shown to be highly suitable for guaranteeing the absence of POM leaching, although structural modification was found for ZIF-8 after catalytic use that did not influenced catalytic performance.
Collapse
Affiliation(s)
- Simone Fernandes
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniela Flores
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniel Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Santos-Vieira
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Mirante
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carlos M. Granadeiro
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Salete S. Balula
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Li X, Zhang J, Su F, Wang D, Yao D, Zheng Y. Construction and Application of Porous Ionic Liquids. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|