1
|
Liu X, Akay C, Köpke J, Kümmel S, Richnow HH, Imfeld G. Direct Phototransformation of Sulfamethoxazole Characterized by Four-Dimensional Element Compound Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10322-10333. [PMID: 38822809 DOI: 10.1021/acs.est.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses. At pH 7, the primary TPs were sulfanilic acid and 3A5MI, followed by sulfanilamide and (5-methylisoxazol-3-yl)-sulfamate, whereas at pH 3, a photoisomer was the dominant product, followed by sulfanilic acid and 3A5MI. Isotope fractionation patterns revealed normal 13C, 34S, and inverse 15N isotope fractionation, which exhibited significant differences between pH 7 and 3. This indicates a pH-dependent transformation process in SMX direct phototransformation. The hydrogen isotopic composition of SMX remained stable during direct phototransformation at both pH levels. Moreover, there was no variation observed in 33S between the two pH levels, indicating that the 33S mass-independent process remains unaffected by changes in pH. The analysis of main TPs and single-element isotopic fractionation suggests varying combinations of bond cleavages at different pH values, resulting in distinct patterns of isotopic fractionation. Conversely, dual-element isotope values at different pH levels did not significantly differ, indicating cleavage of several bonds in parallel. Hence, prudent interpretation of dual-element isotope analysis in these systems is warranted. These findings highlight the potential of multielement compound-specific isotope analysis in characterizing pH-dependent direct phototransformation of SMX, thereby facilitating the evaluation of its natural attenuation through sunlight photolysis in the environment.
Collapse
Affiliation(s)
- Xiao Liu
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Caglar Akay
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jimmy Köpke
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| |
Collapse
|
2
|
Yun HY, Kim IS, Shin KH. Compound-Specific Isotope Analysis Provides Direct Evidence for Identifying the Source of Residual Pesticides Diazinon and Procymidone in the Soil-Plant System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11980-11989. [PMID: 38758169 DOI: 10.1021/acs.jafc.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Compound-specific isotope analysis stands as a promising tool for unveiling the behavior of pesticides in agricultural environments. Using the commercial formulations of persistent fungicide procymidone (PRO) and less persistent insecticide diazinon (DIA), respectively, we analyzed the concentration and carbon isotope composition (δ13C) of the residual pesticides through soil incubation experiments in a greenhouse (for 150 days) and lab conditions (for 50-70 days). Our results showed that the magnitude of δ13C variation depends on pesticide specificity, in which PRO in the soil exhibited little variation in δ13C values over the entire incubation times, while DIA demonstrated an increased δ13C value, with the extent of δ13C variability affected by different spiking concentrations, plant presence, and light conditions. Moreover, the pesticides extracted from soils were isotopically overlapped with those from crop lettuce. Ultimately, the isotope composition of pesticides could infer the degradation and translocation processes and might contribute to identifying the source(s) of pesticide formulation in agricultural fields.
Collapse
Affiliation(s)
- Hee Young Yun
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| | - In-Seon Kim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Kyung-Hoon Shin
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
3
|
Masbou J, Payraudeau S, Guyot B, Imfeld G. Dimethomorph degradation in vineyards examined by isomeric and isotopic fractionation. CHEMOSPHERE 2023; 313:137341. [PMID: 36423721 DOI: 10.1016/j.chemosphere.2022.137341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the degradation extent and pathways of fungicides in the environment is scarce. Fungicides may have isomers with distinct fungal-control efficiency, toxicity and fate in the environment, requiring specific approaches to follow up the degradation of individual isomers. Here we examined the degradation of the widely used fungicide dimethomorph (DIM) in a vineyard catchment using ratios of carbon stable isotopes (δ13C) and E/Z isomer fractionation (IF(Z)). In a microcosm laboratory experiment, DIM degradation half-life in soil was 20 ± 3 days, and was associated with significant isomeric (ΔIF(Z) = +30%) and isotopic (Δδ13C up to 7‰) fractionation. This corresponds to an isomer enrichment factor of εIR = -54 ± 6%, suggesting isomer selectivity and similar carbon stable isotopic fractionation values of εDIM-(Z) = -1.6 ± 0.2‰ and εDIM-(E) = -1.5 ± 0.2‰. Isomeric and isotopic fractionation values were used to estimate DIM degradation in topsoil and transport in a vineyard catchment over two wine-growing seasons. DIM concentrations following DIM application were up to 3 μg g-1 in topsoil and 29 μg L-1 in runoff water at the catchment outlet. Accordingly, the IF(Z) and δ13C values of DIM in soil were similar to those observed in DIM commercial formulations. The gradual enrichments in DIM-(Z) and 13C of the residual DIM in soil indicated DIM biodegradation over time. DIM biodegradation estimated based on E/Z isomer and carbon stable isotope ratios in topsoil and runoff water ranged from 0% after DIM application up to 100% at the end of the wine-growing season. DIM biodegradation was overestimated compared to conventional approaches relying on DIM mass balance, field concentrations and half-lives. Altogether, our study highlights the usefulness of combining carbon stable isotopes, E/Z isomers and classical approaches to estimate fungicide degradation at the catchment scale, and uncovers difficulties in using laboratory-derived values in field studies.
Collapse
Affiliation(s)
- Jérémy Masbou
- Université de Strasbourg, CNRS, ENGEES, ITES UMR7063, F-67084, Strasbourg, France
| | - Sylvain Payraudeau
- Université de Strasbourg, CNRS, ENGEES, ITES UMR7063, F-67084, Strasbourg, France
| | - Benoit Guyot
- Université de Strasbourg, CNRS, ENGEES, ITES UMR7063, F-67084, Strasbourg, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS, ENGEES, ITES UMR7063, F-67084, Strasbourg, France.
| |
Collapse
|
4
|
Yun HY, Won EJ, Choi J, Cho Y, Lim DJ, Kim IS, Shin KH. Stable Isotope Analysis of Residual Pesticides via High Performance Liquid Chromatography and Elemental Analyzer-Isotope Ratio Mass Spectrometry. Molecules 2022; 27:molecules27238587. [PMID: 36500680 PMCID: PMC9736523 DOI: 10.3390/molecules27238587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
To broaden the range of measurable pesticides for stable isotope analysis (SIA), we tested whether SIA of the anthranilic diamides cyantraniliprole (CYN) and chlorantraniliprole (CHL) can be achieved under elemental analyzer/isotope ratio mass spectrometry with compound purification in high-performance liquid chromatography (HPLC). Using this method, carbon isotope compositions were measured in pesticide residues extracted from plants (lettuce) grown indoors in potting soil that were treated with 500 mg/kg CHL and 250 mg/kg CYN and were followed up for 45 days. Our results show that the CYN and CHL standard materials did not have significant isotope differences before and after clean-up processing in HPLC. Further, when applied to the CYN product and CHL product in soil, stable isotope differences between the soil and plant were observed at <1.0‱ throughout the incubation period. There was a slight increase in the variability of pesticide isotope ratio detected with longer-term incubation (CHL, on average 1.5‱). Overall, we measured the carbon isotope ratio of target pesticides from HPLC fraction as the purification and pre-concentration step for environmental and biological samples. Such negligible isotopic differences in pesticide residues in soils and plants 45 days after application confirmed the potential of CSIA to quantify pesticide behavior in environments.
Collapse
Affiliation(s)
- Hee Young Yun
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Jisoo Choi
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Yusang Cho
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Da-Jung Lim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Seon Kim
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyung-Hoon Shin
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
- Correspondence: ; Tel.: +82-31-400-5536
| |
Collapse
|
5
|
Chen C, Luo J, Shu X, Dai W, Guan M, Ma L. Spatio-temporal variations and ecological risks of organochlorine pesticides in surface waters of a plateau lake in China. CHEMOSPHERE 2022; 303:135029. [PMID: 35605728 DOI: 10.1016/j.chemosphere.2022.135029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Qilu Lake is one of the 9 plateau lakes in Yunnan, China, with a lake surface altitude of 1796.62 m above sea level. In spite of the importance and agriculturally-intensive phenomenon in Qilu Lake Basin, few studies have provided a modern evaluation of pesticide residues and potential effects to local aquatic organisms. The primary goal of this study was to determine the spatio-temporal variations of organochlorine pesticides (OCPs) in this area, and to further assess the related ecological risks. Of the 25 OCPs analyzed, 14 were detected, and the concentrations of ∑25OCPs were highest in the upstream of rivers, followed by regions close to the lake shore, and the lowest concentrations were found in Qilu Lake in every season except winter. The concentrations of ∑25OCPs were the highest in summer, and the lowest in winter. OCP concentrations in spring and in autumn were similar. 4,4'-DDD, γ-HCH, HCB, trans-chlordane, and cis-chlordane were 5 OCPs with relatively high risk in Qilu Lake Basin. Interestingly, higher OCP concentrations do not necessarily correspond to higher ecological risk levels. Low predicted no-effect concentration (PNEC) values and relatively high toxicity of these OCPs led to their high risk quotient (RQ) values. This work further illustrated that although OCPs have been banned for many years, they were still frequently detected in surface waters, and caused risks to aquatic animals.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiahong Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xingquan Shu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Wenshao Dai
- Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Mengsha Guan
- Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, 650501, PR China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Martins DCDS, Resende IT, da Silva BJR. Degradation features of pesticides: a review on (metallo)porphyrin-mediated catalytic processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42384-42403. [PMID: 35357647 DOI: 10.1007/s11356-022-19737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Pesticides have been used to kill pests such as insects, fungi, rodents, and unwanted plants. Since these compounds are potentially toxic to the target organisms, they could also be harmful to human health and the environment. Several chronic adverse effects have been identified even after months or years of exposure. A few pesticide degradation processes have been studied including adsorption, homogeneous and heterogeneous (photo)catalytic oxidation, and biological methods. Although these methods have been playing a significant part in the pesticide's degradation, there are still gaps in many aspects. Here, we review the catalytic degradation of these pollutants by (metallo)porphyrins. To evaluate the P450 cytochrome's biomimetic behavior of these catalysts, various synthesized porphyrins have been used since 1999 and their activities were summarized in this manuscript. The porphyrins appear to act as good catalysts for the degradation of pesticides; in fact, they also have been shown as a useful tool for the elucidation of their degradation products. Achieving pesticide mineralization without intermediate products is still challenging, although the ability of this kind of catalysts to conduct the formation of some lower toxic products comparing their precursors has been verified.
Collapse
Affiliation(s)
- Dayse Carvalho da Silva Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | - Iasmin Tavares Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruno José Rocha da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
7
|
Zhang L, Tian H, Zhang M, Wu L, Guo W, Fang F, Sun X, Zhong Z, Du L, Liu Z. Preparation and Properties of Bio-Based Polyurethane Controlled Release Urea Coating with Photosensitivity. ACS OMEGA 2022; 7:8558-8569. [PMID: 35309463 PMCID: PMC8928513 DOI: 10.1021/acsomega.1c06432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 05/25/2023]
Abstract
In order to improve the photodegradation ability of fertilizer coating material and realize the sustainability of fertilizers, in this study, the commercially available photosensitive iron stearate (FeSt3) was wet-ground into submicrometer FeSt3 (SFeSt3) particles and used in preparation of a SFeSt3-modified bio-based polyurethane (PU)-coated controlled release urea (PU-SFe-CRU). The results showed that after 1 month photodegradation, the coating material had significant yellowing, the oxygen content of SFeSt3-modified PU (PU-SFe) increased by 56.89%, and its structure became more porous and looser than PU. The thermal stability of PU-SFe decreased, and more intermediate products were produced after exposure to UV light. The germination experiment showed that PU-SFe before and after photodegradation (up to 60 mg/L) had no adverse effect on the seed germination and bud growth of rice. Additionally, PU-SFe had a significantly higher Cr adsorption capacity after photodegradation due to the increase of the oxygen-containing group and specific surface. This study provides a theoretical basis for the research and development of photodegradable environment-friendly controlled release urea.
Collapse
Affiliation(s)
- Lina Zhang
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| | - Hongyu Tian
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| | - Min Zhang
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| | - Liang Wu
- Key
Laboratory of Crop Specific Fertilizer, Ministry of Agriculture and
Rural Affairs, Xinyangfeng Agricultural
Technology Co Ltd., Jingmen, Hubei 448001, China
| | - Wusong Guo
- Key
Laboratory of Crop Specific Fertilizer, Ministry of Agriculture and
Rural Affairs, Xinyangfeng Agricultural
Technology Co Ltd., Jingmen, Hubei 448001, China
| | - Fuli Fang
- Key
Laboratory of Crop Specific Fertilizer, Ministry of Agriculture and
Rural Affairs, Xinyangfeng Agricultural
Technology Co Ltd., Jingmen, Hubei 448001, China
| | - Xiao Sun
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| | - Zijing Zhong
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| | - Longxu Du
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| | - Zhiguang Liu
- National
Engineering Research Center for Efficient Utilization of Soil and
Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|