1
|
Du J, Ma W, Li G, Wu J, Chang W. Vegetation degradation and its progressive impact on soil nitrogen mineralization in the Qinghai-Tibet Plateau's alpine wetlands: Insights from a three-year study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123668. [PMID: 39689532 DOI: 10.1016/j.jenvman.2024.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
The soil nitrogen (N) cycle in the alpine wetland of the Qinghai-Tibet Plateau (QTP) has been strongly affected by vegetation degradation caused by climate change and human activities, subsequently impacting ecosystem functions. However, previous studies have rarely addressed how varying degrees of vegetation degradation affect soil net nitrogen mineralization rates and their temporal dynamics in these sensitive ecosystems. Therefore, we conducted a three-year field-based soil core in situ incubation mineralization experiment on the northeastern margin of the Tibetan Plateau from 2019 to 2021 to assess the variations in soil net ammonification, nitrification, and mineralization rates during the growing season (June to October). The main aim was to determine the dynamic effects of different degrees of vegetation degradation (non-degraded, lightly degraded, moderately degraded, and severely degraded) on soil net nitrogen transformation processes, as well as the impact of seasonal fluctuations in soil temperature and moisture on net nitrogen mineralization. Results indicated that vegetation degradation significantly reduced the net ammonification rate by 22.09%-97.10%, significantly increased the net nitrification rate by 45.38%, and significantly decreased the net mineralization rate by 9.49%-16.25%. Redundancy analysis (RDA) and random forest models revealed the supportive role of soil water content in the soil nitrogen transformation processes, particularly in promoting nitrification, while soil temperature was identified as a positive regulator of N cycling enzyme activity, indirectly affecting net nitrogen mineralization rates.
Collapse
Affiliation(s)
- Jianan Du
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Weiwei Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Guang Li
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianghua Wu
- Environment and Sustainability, School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada
| | - Wenhua Chang
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
2
|
Biswas J, Sanden S, Bhardwaj P, Siegmund D, Kumar P, Apfel UP. A terpyridine-based copper complex for electrochemical reduction of nitrite to nitric oxide. Dalton Trans 2024. [PMID: 39670725 DOI: 10.1039/d4dt02777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In biological systems, nitrite reductase enzymes (NIRs) are responsible for reduction of nitrite (NO2-) to nitric oxide (NO). These NIRs have mostly Cu- or Fe-containing active sites, surrounded by amine-containing ligands. Therefore, mononuclear Cu complexes with N-donor ligands are highly relevant in the development of NIR model systems and in the mechanistic investigation of the nitrite reduction reaction. Herein, we report on a terpyridine-based CuII complex with square planar geometry for H+-assisted electrochemical reduction of NO2-. Through electrochemical measurements, spectroscopic characterization and isotope-labelling experiments we propose a mechanistic reaction pathway involving an unstable HNO2 state. The CuI intermediate, formed electrochemically, was isolated and its molecular structure was deduced, showing linkage isomerism of the nitrite ligand. Moreover, qualitative and quantitative product analysis by GC-MS shows N2O formed as a side product along with the main product NO. Furthermore, by obtaining single crystals and conducting structural analysis we were able to determine the structural arrangement and redox state of the complex after electrochemical treatment.
Collapse
Affiliation(s)
- Jyotiprokash Biswas
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Sebastian Sanden
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Daniel Siegmund
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
- Department of Electrosynthesis, Fraunhofer UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
3
|
Karmakar S, Patra S, Halder R, Karmakar S, Majumdar A. Reduction of Nitrite in an Iron(II)-Nitrito Compound by Thiols and Selenol Produces Dinitrosyl Iron Complexes via an {FeNO} 7 Intermediate. Inorg Chem 2024; 63:23202-23220. [PMID: 39569438 DOI: 10.1021/acs.inorgchem.4c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Reaction of an Fe(II) complex, [Fe(6-COO--tpa)]1+ (1), with PhE- and NO2- produced [Fe(6-COO--tpa)(EPh)] (E = S, 2a; Se, 3) and [Fe(6-COO--tpa)(κ2-O,O'-NO2)] (4), respectively (6-COOH-tpa is bis(2-pyridylmethyl)(6-carboxyl-2-pyridylmethyl)amine). Treatment of 4 with 2 equiv of PhEH (E = S, Se) produced NO in ∼40% yields, respectively, along with 1 and the DNICs, [Fe(EPh)2(NO)2]1- (E = S, Se). Treatment of 4 with excess PhEH produced NO in similar yields, while 4 was converted to the same DNICs and 2a/3 (instead of 1). The DNICs have been proposed to be generated via the reaction of PhE- with an in situ generated, unstable {FeNO}7 intermediate, [Fe(6-COO--tpa)(NO)]1+ (6), which has also been synthesized separately. Compound 6 reacts with PhS- to generate [Fe(SPh)2(NO)2]1-, thus supporting the proposed reaction pathway. Finally, while the treatment of two unique compounds, featuring inbuilt proton sources, [Fe(6-COO--tpa)(S-C6H4-p-COOH)] (7) and [Fe(6-COO--tpa)(S-C6H4-o-OH)] (8), with 0.5 and 1 equiv of NO2- could produce NO only in 8-26% yields, treatment of 4 with HS-C6H4-p-COOH and HS-C6H4-o-OH produced NO in much higher yields (65-77%). The combined results delineated the importance of coordination of NO2- for the proton-assisted reduction of NO2- to generate NO.
Collapse
Affiliation(s)
- Soumik Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ritapravo Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suchismita Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
Moore JM, Fout AR. Tetrapodal iron complexes invoke observable intermediates in nitrate and nitrite reduction. Chem Sci 2024:d4sc06570k. [PMID: 39650219 PMCID: PMC11622133 DOI: 10.1039/d4sc06570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigates the mechanistic pathways of nitrate and nitrite reduction by the tetrapodal iron complex [Py2Py(afamcyp)2Fe]OTf2, revealing key intermediates to elucidate the reaction process. Using UV-Vis, IR, mass and NMR spectroscopies, stable binding of oxyanions to the iron centre was observed, supporting the formation of the iron(iii)-hydroxide intermediate [Py2Py(afamcyp)2Fe(OH)]OTf2. This intermediate is less stable than in previous systems, providing insights into the behaviour of metalloenzymes. A bimetallic mechanism is proposed for nitrogen oxyanion reduction where additional iron is required to drive the complete reaction, resulting in the formation of the final nitrosyl complex, Py2Py(pimcyp)2Fe(NO), and water. Our findings enhance the understanding of iron-based reduction processes and contribute to the broader knowledge of oxyanion reduction mechanisms.
Collapse
Affiliation(s)
- Jewelianna M Moore
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Alison R Fout
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
5
|
Li J, Niu Z, Li L, Zhou S. Optimizing nitrogen removal in advanced wastewater treatment using biological aerated filters. Front Bioeng Biotechnol 2024; 12:1463544. [PMID: 39669419 PMCID: PMC11635964 DOI: 10.3389/fbioe.2024.1463544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Reducing total nitrogen (TN) presents a significant challenge for numerous wastewater treatment facilities. In order to address this issue, the current study employed a biological aerated filter for the treatment of wastewater containing low nitrogen concentrations. Both lab-scale and pilot-scale biofilters were constructed to investigate the denitrification performance and maximum denitrification load. The findings indicated that the anaerobic denitrification process of established biofilm adhered to pseudo-first-order kinetics. The results of batch testing and continuous-flow experiments confirmed that the minimum hydraulic retention time (HRT) required for mature biofilm was determined to be 0.5 h. The optimal operating parameters were found to be as follows: influent NO3 --N concentration of 25 mg/L, HRT of 0.5 h, resulting in effluent TN levels below 1 mg/L. Under these conditions, the denitrifying load for the lab-scale I-BAF system was calculated to be 1.26 kg (TN)/(m3·d). Furthermore, it was observed that the maximum denitrifying load could reach 2.2 kg (TN)/(m3·d) when the influent NO3 --N concentration was increased to 50 mg/L while maintaining an HRT of 0.5 h. For the mature biofilter, the appropriate HRT ranged from 2 h to 0.5 h. Microbial diversity analysis revealed that the genus Enterobacter was dominant in all denitrification systems, followed by Comamonas and Rhodococcus. The operational parameters described in the paper could be recommended for a full-scale wastewater treatment facility.
Collapse
Affiliation(s)
- Juan Li
- Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China
- Shaanxi Engineering Research Center of Land Consolidation, Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an, China
| | - Ziru Niu
- Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China
- Shaanxi Engineering Research Center of Land Consolidation, Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an, China
| | - Lei Li
- Kweichow Moutai Winery (Group) Health Wine Co., LTD., Renhuai, China
| | - Shuting Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
6
|
Padmanaban S, Chun J, Lee Y, Cho KB, Choi J, Lee Y. Nitrate Upcycling Mediated by Organonickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408457. [PMID: 38853142 DOI: 10.1002/anie.202408457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nitrogen oxides (NOx) are major environmental pollutants and to neutralize this long-term environmental threat, new catalytic methods are needed. Although there are biological denitrification processes involving four different enzymatic reactions to convert nitrate (NO3 -) into dinitrogen (N2), it is unfortunately difficult to apply in industry due to the complexity of the processes. In particular, nitrate is difficult to functionalize because of its chemical stability. Thus, there is no organometallic catalysis to convert nitrate into useful chemicals. Herein, we present a nickel pincer complex that is effective as a bifunctional catalyst to stepwise deoxygenate NO3 - by carbonylation and further through C-N coupling. By using this nickel catalysis, nitrate salts can be selectively transformed into various oximes (>20 substrates) with excellent conversion (>90 %). Here, we demonstrate for the first time that the highly inert nitrate ion can be functionalized to produce useful chemicals by a new organonickel catalysis. Our results show that the NOx conversion and utilization (NCU) technology is a successful pathway for environmental restoration coupled with value-added chemical generation.
Collapse
Affiliation(s)
- Sudakar Padmanaban
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewon Chun
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngseob Lee
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jonghoon Choi
- Department of Chemistry Education, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
7
|
Biswas J, Kulbir F, Bhardwaj P, Ghosh S, Chandra Sahoo S, Apfel UP, Kumar P. Acid-catalyzed Transformation of Nitrite to Nitric Oxide on Copper(II)-Cobalt(II) Centers in a Bimetallic Complex. Chemistry 2024; 30:e202402295. [PMID: 38985519 DOI: 10.1002/chem.202402295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Nitrite (NO2 -) serves as a pool of nitric oxide (NO) in biological systems under hypoxic conditions, and it is transformed to NO by nitrite reductase (NiR) enzyme in the presence of acid (H+ ions). However, NO synthases (NOSs) generate NO via L-arginine oxidation in normoxic conditions. Previously, acid-induced NO2 - reduction chemistry was modeled on mono-metallic 3d-metals, generating metal-nitrosyls or NO(g) with H2O or H2O2 products. Herein, to understand the relative potency of a bimetallic system, we report the acid-induced reductive conversion of η2-bound NO2 - to NO on CuII-CoII centers of a hetero-bimetallic CuII-nitrito-CoII complex, [(LN8H)CuII-NO2 --CoII]3+ (CuII-NO2 --CoII, 2) bearing an octadentate N8-cryptand ligand (LN8H). The CuII-NO2 --CoII generates [CuII(LN8H)CoII]4+ (1) upon reaction with one equiv. acid (HClO4, H+ ions source) with NO(g) via a presumed transient nitrousacid (ONOH) intermediate species. Likewise, this NO2 - reduction was found to form H2O, which is believed to be from the decomposition of H2O2, an intermediate species. In addition, complex 2, in the presence of more than one equiv. H+ ions also showed the formation of NO(g) with H2O. Mechanistic investigations, using 15N-labeled-15NO2 -, 18O-labeled-18O14N16O- and 2H-labeled-DClO4 (D+ source), revealed that the N-atom and O-atom in the 14/15NO and 14N18O gases are derived from NO2 - ligand and H-atom in H2O derived from H+-source, respectively.
Collapse
Affiliation(s)
- Jyotiprokash Biswas
- Ruhr-Universität Bochum, Inorganic Chemistry I Universität Strasse 150, NC 1/71a, 44801, Bochum, Germany
| | - Fnm/ Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | | | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Inorganic Chemistry I Universität Strasse 150, NC 1/71a, 44801, Bochum, Germany
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
8
|
Becceneri AB, Martin MT, Graminha AE, Cominetti MR, Ford PC, Santana da Silva R. The effect of light irradiation on a nitro-ruthenium porphyrin complex in the induced death of lung cancer cells in two- and three-dimensional cultures: Insights into the effect of nitric oxide. Dalton Trans 2024; 53:11264-11275. [PMID: 38695514 DOI: 10.1039/d4dt00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Efforts to find compounds selectively affecting cancer cells while sparing normal ones have continued to grow. Nitric oxide (NO) is critical in physiology and pathology, including cancer. It influences cellular processes like proliferation, apoptosis, and angiogenesis. The intricate interaction of NO with cancer cells offers innovative treatment possibilities, but its effects can vary by concentration and site. Ruthenium complexes capable of releasing NO upon stimulation show for this purpose. These versatile compounds can also enhance photodynamic therapy (PDT), a light-activated approach, which induces cellular damage. Ruthenium-based photosensitizers (PSs), delivering NO and producing reactive oxygen species (ROS), offer a novel strategy for improved cancer treatments. In this study, a nitro-ruthenium porphyrin conjugate: {TPyP[Ru(NO2)(bpy)2]4}(PF6)4, designated RuNO2TPyP, which releases NO upon irradiation, was investigated for its effects on lung cells (non-tumor MRC-5 and tumor A549) in 2D and 3D cell cultures. The findings suggest that this complex has potential for PDT treatment in lung cancer, as it exhibits photocytotoxicity at low concentrations without causing cytotoxicity to normal lung cells. Moreover, treatment of cells with RuNO2TPyP followed by light irradiation (4 J cm-2) can induce apoptosis, generate ROS, promote intracellular NO formation, and has anti-migratory effects. Additionally, the complex can modify tumor cell structures and induce photocytotoxicity and apoptosis in a 3D culture. These outcomes are attributed to the internalization of the complex and its subsequent activation upon light irradiation, resulting in NO release and singlet oxygen production.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Matheus Torelli Martin
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Angelica Ellen Graminha
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
- Institute of Chemistry, São Paulo State University, Av. Prof. Francisco Degni, 55, 14800-900, Araraquara, São Paulo, Brazil
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, USA
| | - Roberto Santana da Silva
- Laboratory of Photochemistry and Bioinorganic Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93110-9510, USA
| |
Collapse
|
9
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
10
|
Silva-Cunha M, Lacchini R, Tanus-Santos JE. Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:691. [PMID: 38929130 PMCID: PMC11200996 DOI: 10.3390/antiox13060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often associated with impaired nitric oxide (NO) bioavailability, a critical pathophysiological alteration in CVDs and an important target for therapeutic interventions. Recent studies have revealed the potential of inorganic nitrite and nitrate as sources of NO, offering promising alternatives for managing various cardiovascular conditions. It is now becoming clear that taking advantage of enzymatic pathways involved in nitrite reduction to NO is very relevant in new therapeutics. However, recent studies have shown that nitrite may be bioactivated in the acidic gastric environment, where nitrite generates NO and a variety of S-nitrosating compounds that result in increased circulating S-nitrosothiol concentrations and S-nitrosation of tissue pharmacological targets. Moreover, transnitrosation reactions may further nitrosate other targets, resulting in improved cardiovascular function in patients with CVDs. In this review, we comprehensively address the mechanisms and relevant effects of nitrate and nitrite-stimulated gastric S-nitrosothiol formation that may promote S-nitrosation of pharmacological targets in various CVDs. Recently identified interfering factors that may inhibit these mechanisms and prevent the beneficial responses to nitrate and nitrite therapy were also taken into consideration.
Collapse
Affiliation(s)
- Mila Silva-Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto 14040-902, Brazil;
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil;
| |
Collapse
|
11
|
Das S, Kumar P. Exploring the carbonic anhydrase-mimetic [(PMDTA) 2ZnII2(OH -) 2] 2+ for nitric oxide monooxygenation. Dalton Trans 2024; 53:6173-6177. [PMID: 38501600 DOI: 10.1039/d4dt00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In biology, nitrite (NO2-) serves as a storage pool of nitric oxide (NO); however, the formation of NO2- from NO is still under investigation. Here, we report the NO monooxygenation (NOM) reaction of a ZnII-hydroxide complex (1), producing a ZnII-nitrito complex {2, (ZnII-NO2-)} + H2.
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
12
|
Yu NN, Park G. Nitric Oxide in Fungi: Production and Function. J Fungi (Basel) 2024; 10:155. [PMID: 38392826 PMCID: PMC10889981 DOI: 10.3390/jof10020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Nitric oxide (NO) is synthesized in all kingdoms of life, where it plays a role in the regulation of various physiological and developmental processes. In terms of endogenous NO biology, fungi have been less well researched than mammals, plants, and bacteria. In this review, we summarize and discuss the studies to date on intracellular NO biosynthesis and function in fungi. Two mechanisms for NO biosynthesis, NO synthase (NOS)-mediated arginine oxidation and nitrate- and nitrite-reductase-mediated nitrite reduction, are the most frequently reported. Furthermore, we summarize the multifaceted functions of NO in fungi as well as its role as a signaling molecule in fungal growth regulation, development, abiotic stress, virulence regulation, and metabolism. Finally, we present potential directions for future research on fungal NO biology.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
13
|
Atta S, Mandal A, Saha R, Majumdar A. Reduction of nitrite to nitric oxide and generation of reactive chalcogen species by mononuclear Fe(II) and Zn(II) complexes of thiolate and selenolate. Dalton Trans 2024; 53:949-965. [PMID: 38126213 DOI: 10.1039/d3dt03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Comparative reactivity of a series of new Zn(II) and Fe(II) compounds, [(Py2ald)M(ER)] (E = S, R = Ph: M = Zn, 1aZn; M = Fe, 1aFe; E = S, R = 2,6-Me2-C6H3: M = Zn, 1bZn; M = Fe, 1bFe; E = Se, R = Ph: M = Zn, 2Zn; M = Fe, 2Fe), and [(Py2ald)M]22+ (M = Zn, 5Zn; M = Fe, 5Fe) is presented. Compound 1aZn could react with nitrite (NO2-) to produce [(Py2ald)Zn(ONO)] (3Zn), which, upon treatment with thiols and PhSeH (proton source), could regenerate either 1aZn/5Zn and 2Zn respectively, along with the production of nitric oxide (NO) where the yield of NO increases in the order tBuSH ≪ PhCH2SH < PhSH < PhSeH. In contrast to this, 1aFe, 2Fe and 5Fe could affect the direct reduction of NO2- in the absence of protons to generate NO and [{(Py2ald)(ONO)Fe}2-μ2-O] (8Fe). Moreover, 8Fe could regenerate 5Fe and 1aFe/2Fe upon treatment with 4 and 6 equiv. of PhEH (E = S/Se), respectively, along with the generation of NO. Finally, a comparative study of the mononuclear Zn(II) and Fe(II) compounds for the transfer of the coordinated thiolate/selenolate and the generation and transfer of reactive sulfur/selenium species (RES-, E = Se, S) to a series of organic substrates has been provided.
Collapse
Affiliation(s)
- Sayan Atta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Amit Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Rahul Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| | - Amit Majumdar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India.
| |
Collapse
|
14
|
C S AK, Das S, Kulbir, Bhardwaj P, Sk MP, Kumar P. Mechanistic insights into nitric oxide oxygenation (NOO) reactions of {CrNO} 5 and {CoNO} 8. Dalton Trans 2023; 52:16492-16499. [PMID: 37874255 DOI: 10.1039/d3dt03177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Here, we report the nitric oxide oxygenation (NOO) reactions of two distinct metal nitrosyls {Co-nitrosyl (S = 0) vs. Cr-nitrosyl (S = 1/2)}. In this regard, we synthesized and characterized [(BPMEN)Co(NO)]2+ ({CoNO}8, 1) to compare its NOO reaction with that of [(BPMEN)Cr(NO)(Cl-)]+ ({CrNO}5, 2), having a similar ligand framework. Kinetic measurements showed that {CrNO}5 is thermally more stable than {CoNO}8. Complexes 1 and 2, upon reaction with the superoxide anion (O2˙-), generate [(BPMEN)CoII(NO2-)2] (CoII-NO2-, 3) and [(BPMEN)CrIII(NO2-)Cl-]+ (CrIII-NO2-, 4), respectively, with O2 evolution. Furthermore, analysis of these NOO reactions and tracking of the N-atom using 15N-labeled NO (15NO) revealed that the N-atoms of 3 (CoII-15NO2-) and 4 (CrIII-15NO2-) derive from the nitrosyl (15NO) moieties of 1 and 2, respectively. This work represents a comparative study of oxidation reactions of {CoNO}8vs. {CrNO}5, showing different rates of the NOO reactions due to different thermal stability. To complete the NOM cycle, we reacted 3 and 4 with NO, and surprisingly, only 3 generated {CoNO}8 species, while 4 was unreactive towards NO. Furthermore, the phenol ring nitration test, performed using 2,4-di-tert-butylphenol (2,4-DTBP), suggested the presence of a proposed peroxynitrite (PN) intermediate in the NOO reactions of 1 and 2.
Collapse
Affiliation(s)
- Akshaya Keerthi C S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University (AMU) Aligarh, Uttar Pradesh 202001, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
15
|
Sahana T, Valappil AK, Amma ASPR, Kundu S. NO Generation from Nitrite at Zinc(II): Role of Thiol Persulfidation in the Presence of Sulfane Sulfur. ACS ORGANIC & INORGANIC AU 2023; 3:246-253. [PMID: 37810413 PMCID: PMC10557059 DOI: 10.1021/acsorginorgau.3c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/10/2023]
Abstract
Nitrite-to-NO transformation is of prime importance due to its relevance in mammalian physiology. Although such a one-electron reductive transformation at various redox-active metal sites (e.g., Cu and Fe) has been illustrated previously, the reaction at the [ZnII] site in the presence of a sacrificial reductant like thiol has been reported to be sluggish and poorly understood. Reactivity of [(Bn3Tren)ZnII-ONO](ClO4) (1), a nitrite-bound model of the tripodal active site of carbonic anhydrase (CA), toward various organic probes, such as 4-tert-butylbenzylthiol (tBuBnSH), 2,4-di-tert-butylphenol (2,4-DTBP), and 1-fluoro-2,4-dinitrobenzene (F-DNB), reveals that the ONO-moiety in the [ZnII]-nitrite coordination motif of complex 1 acts as a mild electrophile. tBuBnSH reacts mildly with nitrite at a [ZnII] site to provide S-nitrosothiol tBuBnSNO prior to the release of NO in 10% yield, whereas the phenolic substrate 2,4-DTBP does not yield the analogous O-nitrite compound (ArONO). The presence of sulfane sulfur (S0) species such as elemental sulfur (S8) and organic polysulfides (tBuBnSnBntBu) during the reaction of tBuBnSH and [ZnII]-nitrite (1) assists the nitrite-to-NO conversion to provide NO yields of 65% (for S8) and 76% (for tBuBnSnBntBu). High-resolution mass spectrometry (HRMS) analyses on the reaction of [ZnII]-nitrite (1), tBuBnSH, and S8 depict the formation of zinc(II)-persulfide species [(Bn3Tren)ZnII-Sn-BntBu]+ (where n = 2, 3, 4, 5, and 6). Trapping of the persulfide species (tBuBnSS-) with 1-fluoro-2,4-dinitrobenzene (F-DNB) confirms its intermediacy. The significantly higher nucleophilicity of persulfide species (relative to thiol/thiolate) is proposed to facilitate the reaction with the mildly electrophilic [ZnII]-nitrite (1) complex. Complementary analyses, including multinuclear NMR, electrospray ionization-MS, UV-vis, and trapping of reactive S-species, provide mechanistic insights into the sulfane sulfur-assisted reactions between thiol and nitrite at the tripodal [ZnII]-site. These findings suggest the critical influential roles of various reactive sulfur species, such as sulfane sulfur and persulfides, in the nitrite-to-NO conversion.
Collapse
Affiliation(s)
- Tuhin Sahana
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| | - Adwaith K. Valappil
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| | - Anaswar S. P. R. Amma
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| | - Subrata Kundu
- School of Chemistry, Indian
Institute of Science Education and Research Thiruvananthapuram
(IISER-TVM), Thiruvananthapuram 695551, India
| |
Collapse
|
16
|
Ghosh P, Stauffer M, Ahmed ME, Bertke JA, Staples RJ, Warren TH. Thiol and H 2S-Mediated NO Generation from Nitrate at Copper(II). J Am Chem Soc 2023; 145:12007-12012. [PMID: 37224264 PMCID: PMC10367543 DOI: 10.1021/jacs.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reduction of nitrate is an essential, yet challenging chemical task required to manage this relatively inert oxoanion in the environment and biology. We show that thiols, ubiquitous reductants in biology, convert nitrate to nitric oxide at a Cu(II) center under mild conditions. The β-diketiminato complex [Cl2NNF6]Cu(κ2-O2NO) engages in O-atom transfer with various thiols (RSH) to form the corresponding copper(II) nitrite [CuII](κ2-O2N) and sulfenic acid (RSOH). The copper(II) nitrite further reacts with RSH to give S-nitrosothiols RSNO and [CuII]2(μ-OH)2 en route to NO formation via [CuII]-SR intermediates. The gasotransmitter H2S also reduces nitrate at copper(II) to generate NO, providing a lens into NO3-/H2S crosstalk. The interaction of thiols with nitrate at copper(II) releases a cascade of N- and S-based signaling molecules in biology.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Molly Stauffer
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Md Estak Ahmed
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy H Warren
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D. C. 20057, United States
| |
Collapse
|
17
|
Keerthi C S A, Beegam S, Das S, Bhardwaj P, Ansari M, Singh K, Kumar P. Nitric Oxide Oxygenation Reactions of Cobalt-Peroxo and Cobalt-Nitrosyl Complexes. Inorg Chem 2023; 62:7385-7392. [PMID: 37126425 DOI: 10.1021/acs.inorgchem.3c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Here, we report a comparative study of nitric oxide oxidation (NOO) reactions of CoIII-peroxo (CoIII-O22-) and Co-nitrosyl ({CoNO}8) complexes bearing the same N4-donor ligand (HMTETA) framework. In this regard, we prepared and characterized two new [(HMTETA)CoIII(O22-)]+ (2, S = 2) and [(HMTETA)Co(NO)]2+ (3, S = 1) complexes from [(HMTETA)CoII(CH3CN)2]2+ (1). Both complexes (2 and 3) are characterized by different spectroscopic measurements, including their DFT-optimized structures. Complex 2 produces CoII-nitrato [(HMTETA)CoII(NO3-)]+ (CoII-NO3-, 4) complex in the presence of NO. In contrast, when 3 reacted with a superoxide (O2•-) anion, it generated CoII-nitrito [(HMTETA)CoII(NO2-)]+ (CoII-NO2-, 5) with O2 evolution. Experiments performed using 18/16O-labeled superoxide (18O2•-/16O2•-) showed that O2 originated from the O2•- anion. Both the NOO reactions are believed to proceed via a presumed peroxynitrite (PN) intermediate. Although we did not get direct spectral evidence for the proposed PN species, the mechanistic investigation using 2,4-di-tert-butylphenol indirectly suggests the formation of a PN intermediate. Furthermore, tracking the source of the N-atom in the above NOO reactions using 15N-labeled nitrogen (15NO) revealed N-atoms in 4 (CoII-15NO3-) and 5 (CoII-15NO2-) derived from the 15NO moiety.
Collapse
Affiliation(s)
- Akshaya Keerthi C S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Sulthana Beegam
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology (IIT), Bombay 400076, India
| | - Kuldeep Singh
- Department of Applied Chemistry, Amity University, Gwalior 474005, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| |
Collapse
|
18
|
Kulbir, Das S, Devi T, Ghosh S, Chandra Sahoo S, Kumar P. Acid-induced nitrite reduction of nonheme iron(ii)-nitrite: mimicking biological Fe-NiR reactions. Chem Sci 2023; 14:2935-2942. [PMID: 36937601 PMCID: PMC10016336 DOI: 10.1039/d2sc06704h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nitrite reductase (NiR) catalyzes nitrite (NO2 -) to nitric oxide (NO) transformation in the presence of an acid (H+ ions/pH) and serves as a critical step in NO biosynthesis. In addition to the NiR enzyme, NO synthases (NOSs) participate in NO production. The chemistry involved in the catalytic reduction of NO2 -, in the presence of H+, generates NO with a H2O molecule utilizing two H+ + one electron from cytochromes and is believed to be affected by the pH. Here, to understand the effect of H+ ions on NO2 - reduction, we report the acid-induced NO2 - reduction chemistry of a nonheme FeII-nitrito complex, [(12TMC)FeII(NO2 -)]+ (FeII-NO2 -, 2), with variable amounts of H+. FeII-NO2 - upon reaction with one-equiv. of acid (H+) generates [(12TMC)Fe(NO)]2+, {FeNO}7 (3) with H2O2 rather than H2O. However, the amount of H2O2 decreases with increasing equivalents of H+ and entirely disappears when H+ reaches ≅ two-equiv. and shows H2O formation. Furthermore, we have spectroscopically characterized and followed the formation of H2O2 (H+ = one-equiv.) and H2O (H+ ≅ two-equiv.) and explained why bio-driven NiR reactions end with NO and H2O. Mechanistic investigations, using 15N-labeled-15NO2 - and 2H-labeled-CF3SO3D (D+ source), revealed that the N atom in the {Fe14/15NO}7 is derived from the NO2 - ligand and the H atom in H2O or H2O2 is derived from the H+ source, respectively.
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
19
|
Mondal A, Reddy KP, Som S, Chopra D, Kundu S. Nitrate and Nitrite Reductions at Copper(II) Sites: Role of Noncovalent Interactions from Second-Coordination-Sphere. Inorg Chem 2022; 61:20337-20345. [DOI: 10.1021/acs.inorgchem.2c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Aditesh Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISERTVM), Thiruvananthapuram 695551, India
| | - Kiran P. Reddy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISERTVM), Thiruvananthapuram 695551, India
| | - Shubham Som
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal Bypass Road, Bhauri, Bhopal 462066, India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISERTVM), Thiruvananthapuram 695551, India
| |
Collapse
|
20
|
Gupta S, Vijayan S, Bertke JA, Kundu S. NO Generation from the Cross-Talks between Ene-diol Antioxidants and Nitrite at Metal Sites. Inorg Chem 2022; 61:8477-8483. [PMID: 35612531 DOI: 10.1021/acs.inorgchem.2c00364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The one-electron reduction of nitrite (NO2-) to nitric oxide (NO) and ene-diol oxidation are two important biochemical transformations. Employing mononuclear cobalt-nitrite complexes with CoIII and CoII oxidation states, [(Bz3Tren)CoIII(nitrite)2](ClO4) (1) and [(Bz3Tren)CoII(nitrite)](ClO4) (2), this report illustrates NO release coupled to stepwise oxidation of ene-diol antioxidants such as l-ascorbic acid (AH2) and catechol. Analysis of the AH2 end-product reveals that the reaction with complex 1 affords dehydroascorbic acid. Intriguingly, a controlled oxidation of AH2 with complex 2 results in a [CoII]-bound ascorbyl radical-anion (8). Finally, NO release with the concomitant generation of metal-bound 3,5-di-tert-butyl-semiquinone radical anion from the reactions of 3,5-di-tert-butyl-catechol and [(Bz3Tren)MII(nitrite)](ClO4) (2, M = Co; 4, M = Zn) provides mechanistic insights into the cross-talk between nitrite and ene-diols at the metal sites.
Collapse
Affiliation(s)
- Shourya Gupta
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Swathy Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, District of Columbia 20057, United States
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram 695551, India
| |
Collapse
|
21
|
Das S, Ray S, Devi T, Ghosh S, Harmalkar SS, Dhuri SN, Mondal P, Kumar P. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction. Chem Sci 2022; 13:1706-1714. [PMID: 35282634 PMCID: PMC8827119 DOI: 10.1039/d1sc06803b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
Small molecule activation & their transfer reactions in biological or catalytic reactions are greatly influenced by the metal-centers and the ligand frameworks. Here, we report the metal-directed nitric oxide (NO)...
Collapse
Affiliation(s)
- Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Soumyadip Ray
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Sunder N Dhuri
- School of Chemical Sciences, Goa University Goa-403206 India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
22
|
Beagan DM, Cabelof AC, Pepin R, Pink M, Carta V, Caulton KG. An Integrated View of Nitrogen Oxyanion Deoxygenation in Solution Chemistry and Electrospray Ion Production. Inorg Chem 2021; 60:17241-17248. [PMID: 34705459 DOI: 10.1021/acs.inorgchem.1c02591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There has been an increasing interest in chemistry involving nitrogen oxyanions, largely due to the environmental hazards associated with increased concentrations of these anions leading to eutrophication and aquatic "dead zones". Herein, we report the synthesis and characterization of a suite of MNOx complexes (M = Co, Zn: x = 2, 3). Reductive deoxygenation of cobalt bis(nitrite) complexes with bis(boryl)pyrazine is faster for cobalt than previously reported nickel, and pendant O-bound nitrito ligand is still readily deoxygenated, despite potential implication of an isonitrosyl primary product. Deoxygenation of zinc oxyanion complexes is also facile, despite zinc being unable to stabilize a nitrosyl ligand, with liberation of nitric oxide and nitrous oxide, indicating N-N bond formation. X-ray photoelectron spectroscopy is effective for discriminating the types of nitrogen in these molecules. ESI mass spectrometry of a suite of M(NOx)y (x = 2, 3 and y = 1, 2) shows that the primary form of ionization is loss of an oxyanion ligand, which can be alleviated via the addition of tetrabutylammonium (TBA) as a nonintuitive cation pair for the neutral oxyanion complexes. We have shown these complexes to be subject to deoxygenation, and there is evidence for nitrogen oxyanion reduction in several cases in the ESI plume. The attractive force between cation and neutral is explored experimentally and computationally and attributed to hydrogen bonding of the nitrogen oxyanion ligands with ammonium α-CH2 protons. One example of ESI-induced reductive dimerization is mimicked by bulk solution synthesis, and that product is characterized by X-ray diffraction to contain two Co(NO)2+ groups linked by a highly conjugated diazapolyene.
Collapse
Affiliation(s)
- Daniel M Beagan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Alyssa C Cabelof
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Robert Pepin
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Kenneth G Caulton
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|