1
|
Tian Y, Li L, Wu L, Xu Q, Li Y, Pan H, Bing T, Bai X, Finko AV, Li Z, Bian J. Recent Developments in 14-3-3 Stabilizers for Regulating Protein-Protein Interactions: An Update. J Med Chem 2025; 68:2124-2146. [PMID: 39902774 DOI: 10.1021/acs.jmedchem.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
14-3-3 proteins play a crucial role in the regulation of protein-protein interactions, impacting various cellular processes and disease mechanisms. Recent advancements have led to the development of stabilizers that enhance the binding of 14-3-3 proteins to clients, presenting promising therapeutic potentials. This perspective provides an updated overview of the latest developments in the field of 14-3-3 stabilizers, with a focus on their design, synthesis, and biological evaluation. We discuss the structural basis for the interaction between 14-3-3 proteins and their ligands, highlighting key modifications that enhance binding affinity and selectivity. Additionally, we explore the therapeutic applications of 14-3-3 stabilizers across major therapeutic areas such as cancer, metabolic disorders, and neurodegenerative diseases. By summarizing recent research findings and technological advancements, this perspective aims to shed light on the current state of 14-3-3 stabilizer developments and outline future directions for optimizing these compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Longjing Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojie Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huawei Pan
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Tiejun Bing
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Xiumei Bai
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Oberheide A, van den Oetelaar MCM, Scheele JJA, Borggräfe J, Engelen SFH, Sattler M, Ottmann C, Cossar PJ, Brunsveld L. Site-specific molecular glues for the 14-3-3/Tau pS214 protein-protein interaction via reversible covalent imine tethering. RSC Med Chem 2025:d4md00833b. [PMID: 40070456 PMCID: PMC11892739 DOI: 10.1039/d4md00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Protein-protein interactions (PPIs) are key regulators of various cellular processes. Modulating PPIs with small molecules has gained increasing attention in drug discovery, particularly targeting the 14-3-3 protein family, which interacts with several hundred client proteins and plays a central role in cellular networks. However, targeting a specific PPI of the hub protein 14-3-3, with its plethora of potential client proteins, poses a significant selectivity challenge. This not only involves the selectivity of 14-3-3 PPIs with other client proteins, but also the selective stabilization of a specific 14-3-3 binding site within a protein partner featuring several binding sites. The interaction of 14-3-3 with Tau, characterized by different phospho-site driven binding modes, forms a valuable, disease-relevant, 14-3-3 multivalent model PPI to explore this selectivity issue. This work presents the identification and early-stage optimization of small molecule fragment-like stabilizers for a specific binding site of the 14-3-3/Tau PPI. Using different biophysical assays, the stabilizing potency of the imine-bond forming molecules was mapped and X-ray crystallography studies provided structural data on the binding mode of the ternary complexes. Exploiting the unique topologies and functionalities of the different binding sites enabled the engineering of selectivity for this initial molecular glue matter for the pS214 binding site, over a second 14-3-3 binding site in Tau (pS324). These reversible covalent tool compounds will allow for the further exploration of the role of 14-3-3 in Tau aggregation.
Collapse
Affiliation(s)
- Ansgar Oberheide
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Jakob J A Scheele
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology Ingolstädter Landstrasse 1 85764 Neuherberg Germany
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience Lichtenbergstrasse 4 85747 Garching Germany
| | - Semmy F H Engelen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology Ingolstädter Landstrasse 1 85764 Neuherberg Germany
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience Lichtenbergstrasse 4 85747 Garching Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| |
Collapse
|
3
|
Nishiyama K, Aihara Y, Suzuki T, Takahashi K, Kinoshita T, Dohmae N, Sato A, Hagihara S. Discovery of a Plant 14-3-3 Inhibitor Possessing Isoform Selectivity and In Planta Activity. Angew Chem Int Ed Engl 2024; 63:e202400218. [PMID: 38658314 DOI: 10.1002/anie.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
4
|
Vickery HR, Virta JM, Konstantinidou M, Arkin MR. Development of a NanoBRET assay for evaluation of 14-3-3σ molecular glues. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100165. [PMID: 38797286 PMCID: PMC11774552 DOI: 10.1016/j.slasd.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
We report the development of a 384-well formatted NanoBRET assay to characterize molecular glues of 14-3-3/client interactions in living cells. The seven isoforms of 14-3-3 are dimeric hub proteins with diverse roles including transcription factor regulation and signal transduction. 14-3-3 interacts with hundreds of client proteins to regulate their function and is therefore an ideal therapeutic target when client selectivity can be achieved. We have developed the NanoBRET system for three 14-3-3σ client proteins CRAF, TAZ, and estrogen receptor α (ERα), which represent three specific binding modes. We have measured stabilization of 14-3-3σ/client complexes by molecular glues with EC50 values between 100 nM and 1 μM in cells, which align with the EC50 values calculated by fluorescence anisotropy in vitro. Developing this NanoBRET system for the hub protein 14-3-3σ allows for a streamlined approach, bypassing multiple optimization steps in the assay development process for other 14-3-3σ clients. The NanoBRET system allows for an assessment of PPI stabilization in a more physiologically relevant, cell-based environment using full-length proteins. The method is applicable to diverse protein-protein interactions (PPIs) and offers a robust platform to explore libraries of compounds for both PPI stabilizers and inhibitors.
Collapse
Affiliation(s)
- Holly R Vickery
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Johanna M Virta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA.
| |
Collapse
|
5
|
Pitasse-Santos P, Hewitt-Richards I, Abeywickrama Wijewardana Sooriyaarachchi MD, Doveston RG. Harnessing the 14-3-3 protein-protein interaction network. Curr Opin Struct Biol 2024; 86:102822. [PMID: 38685162 DOI: 10.1016/j.sbi.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.
Collapse
Affiliation(s)
- Paulo Pitasse-Santos
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Isaac Hewitt-Richards
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Richard G Doveston
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
6
|
Wu Q, Centorrino F, Guillory X, Wolter M, Ottmann C, Cossar PJ, Brunsveld L. Discovery of 14-3-3 PPI Stabilizers by Extension of an Amidine-Substituted Thiophene Fragment. Chembiochem 2024; 25:e202300636. [PMID: 37902676 DOI: 10.1002/cbic.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Protein-protein interaction (PPI) modulation is a promising approach in drug discovery with the potential to expand the 'druggable' proteome and develop new therapeutic strategies. While there have been significant advancements in methodologies for developing PPI inhibitors, there is a relative scarcity of literature describing the 'bottom-up' development of PPI stabilizers (Molecular Glues). The hub protein 14-3-3 and its interactome provide an excellent platform for exploring conceptual approaches to PPI modulation, including evolution of chemical matter for Molecular Glues. In this study, we employed a fragment extension strategy to discover stabilizers for the complex of 14-3-3 protein and an Estrogen Receptor alpha-derived peptide (ERα). A focused library of analogues derived from an amidine-substituted thiophene fragment enhanced the affinity of the 14-3-3/ERα complex up to 6.2-fold. Structure-activity relationship (SAR) analysis underscored the importance of the newly added, aromatic side chain with a certain degree of rigidity. X-ray structural analysis revealed a unique intermolecular π-π stacking binding mode of the most active analogues, resulting in the simultaneous binding of two molecules to the PPI binding pocket. Notably, analogue 11 displayed selective stabilization of the 14-3-3/ERα complex.
Collapse
Affiliation(s)
- Qi Wu
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Federica Centorrino
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Tanaka K, Hatano Y, Ohkanda J. Isoform-Selective Fluorescent Labeling of 14-3-3σ by Acrylamide-Containing Fusicoccins. Chemistry 2023; 29:e202301059. [PMID: 37170712 DOI: 10.1002/chem.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
The 14-3-3 family of proteins is central to the regulation of signaling pathways driven by serine/threonine kinases. In humans, 14-3-3 consists of seven highly conserved isoforms, yet the function of each isoform remains to be fully elucidated. Synthetic agents capable of isoform-specific fluorescent labeling of 14-3-3 would provide a useful tool for studying in depth the biological roles of isoforms. In this study, the 14-3-3σ isoform was evaluated, which possesses a unique Cys38, and a natural product-based fluorescent labeling agent was designed by introducing an acrylamide group and a fluorescent dye to fusicoccin (FC). In vitro evaluation demonstrated that 12-hydroxy 1 and 2 exhibit 14-3-3σ selective labeling activity over 14-3-3ζ in the presence of a mode-3 phospholigand. Furthermore, 2 was shown to label 14-3-3σ in cell lysate in the presence of a C-terminal mode-3 phosphopeptide derived from ERα, with no apparent nonspecific labeling. These results indicate that 2 is capable of selective fluorescent detection of 14-3-3σ upon binding to mode-3 phospholigand under biologically relevant conditions.
Collapse
Affiliation(s)
- Kenta Tanaka
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Yoshiya Hatano
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| |
Collapse
|
8
|
Verhoef CJA, Kay DF, van Dijck L, Doveston RG, Brunsveld L, Leney AC, Cossar PJ. Tracking the mechanism of covalent molecular glue stabilization using native mass spectrometry. Chem Sci 2023; 14:6756-6762. [PMID: 37350830 PMCID: PMC10284121 DOI: 10.1039/d3sc01732j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Molecular glues are powerful tools for the control of protein-protein interactions. Yet, the mechanisms underlying multi-component protein complex formation remain poorly understood. Native mass spectrometry (MS) detects multiple protein species simultaneously, providing an entry to elucidate these mechanisms. Here, for the first time, covalent molecular glue stabilization was kinetically investigated by combining native MS with biophysical and structural techniques. This approach elucidated the stoichiometry of a multi-component protein-ligand complex, the assembly order, and the contributions of covalent versus non-covalent binding events that govern molecular glue activity. Aldehyde-based molecular glue activity is initially regulated by cooperative non-covalent binding, followed by slow covalent ligation, further enhancing stabilization. This study provides a framework to investigate the mechanisms of covalent small molecule ligation and informs (covalent) molecular glue development.
Collapse
Affiliation(s)
- Carlo J A Verhoef
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Danielle F Kay
- School of Biosciences, University of Birmingham Birmingham B15 2TT UK
| | - Lars van Dijck
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Richard G Doveston
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Aneika C Leney
- School of Biosciences, University of Birmingham Birmingham B15 2TT UK
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| |
Collapse
|
9
|
Kenanova D, Visser EJ, Virta JM, Sijbesma E, Centorrino F, Vickery HR, Zhong M, Neitz RJ, Brunsveld L, Ottmann C, Arkin MR. A Systematic Approach to the Discovery of Protein-Protein Interaction Stabilizers. ACS CENTRAL SCIENCE 2023; 9:937-946. [PMID: 37252362 PMCID: PMC10214524 DOI: 10.1021/acscentsci.2c01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Dysregulation of protein-protein interactions (PPIs) commonly leads to disease. PPI stabilization has only recently been systematically explored for drug discovery despite being a powerful approach to selectively target intrinsically disordered proteins and hub proteins, like 14-3-3, with multiple interaction partners. Disulfide tethering is a site-directed fragment-based drug discovery (FBDD) methodology for identifying reversibly covalent small molecules. We explored the scope of disulfide tethering for the discovery of selective PPI stabilizers (molecular glues) using the hub protein 14-3-3σ. We screened complexes of 14-3-3 with 5 biologically and structurally diverse phosphopeptides derived from the 14-3-3 client proteins ERα, FOXO1, C-RAF, USP8, and SOS1. Stabilizing fragments were found for 4/5 client complexes. Structural elucidation of these complexes revealed the ability of some peptides to conformationally adapt to make productive interactions with the tethered fragments. We validated eight fragment stabilizers, six of which showed selectivity for one phosphopeptide client, and structurally characterized two nonselective hits and four fragments that selectively stabilized C-RAF or FOXO1. The most efficacious fragment increased 14-3-3σ/C-RAF phosphopeptide affinity by 430-fold. Disulfide tethering to the wildtype C38 in 14-3-3σ provided diverse structures for future optimization of 14-3-3/client stabilizers and highlighted a systematic method to discover molecular glues.
Collapse
Affiliation(s)
- Dyana
N. Kenanova
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Emira J. Visser
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Johanna M. Virta
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Eline Sijbesma
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Federica Centorrino
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Holly R. Vickery
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Mengqi Zhong
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco 94143, United States
| |
Collapse
|
10
|
Thurairajah B, Hudson AJ, Doveston RG. Contemporary biophysical approaches for studying 14-3-3 protein-protein interactions. Front Mol Biosci 2022; 9:1043673. [PMID: 36425654 PMCID: PMC9679655 DOI: 10.3389/fmolb.2022.1043673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2024] Open
Abstract
14-3-3 proteins are a family of regulatory hubs that function through a vast network of protein-protein interactions. Their dysfunction or dysregulation is implicated in a wide range of diseases, and thus they are attractive drug targets, especially for molecular glues that promote protein-protein interactions for therapeutic intervention. However, an incomplete understanding of the molecular mechanisms that underpin 14-3-3 function hampers progress in drug design and development. Biophysical methodologies are an essential element of the 14-3-3 analytical toolbox, but in many cases have not been fully exploited. Here, we present a contemporary review of the predominant biophysical techniques used to study 14-3-3 protein-protein interactions, with a focus on examples that address key questions and challenges in the 14-3-3 field.
Collapse
Affiliation(s)
| | | | - Richard G. Doveston
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|