1
|
Liu H, Ren J, Mao L, Xiong C, Zhang X, Wang S, Huang WH, Chen MM. Flexible and Stretchable Photoelectrochemical Sensing toward True-to-Life Monitoring of Hydrogen Peroxide Regulation in Endothelial Mechanotransduction. Anal Chem 2024; 96:16825-16833. [PMID: 39382083 DOI: 10.1021/acs.analchem.4c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Hydrogen peroxide (H2O2) levels play a vital role in redox regulation and maintaining the physiological balance of living cells, especially in cell mechanotransduction. Despite the achievements on strain-induced cellular H2O2 monitoring, the applied voltage for H2O2 electrooxidation possibly gave rise to an abnormal expression and inadequate accuracy, which was still an inescapable concern. Hence, we decorated an interlaced CuO@TiO2 nanowires (NWs) semiconductor meshwork onto a polydimethylsiloxane film-supported gold nanotubes substrate (Au NTs/PDMS) to construct a flexible photoelectrochemical (PEC) sensing platform. Under white light irradiation, CuO@TiO2 NWs synergistically exhibited great stretchability and the PEC platform enabled stable photocurrent responses from the reduction of H2O2 even during mechanical deformation. Moreover, the admirable biocompatibility and an almost negligible open circuit voltage of +0.18 V for the CuO@TiO2 NWs/Au NTs/PDMS sensor guaranteed human umbilical vein endothelial cells (HUVECs) adhesion tightly thereon even under continuous illumination for 30 min. Finally, the as-proposed stretchable PEC sensor achieved sensitive and true-to-life monitoring of transient H2O2 release during HUVECs deformation, in which H2O2 release was positively correlated to mechanical strains. This investigation opens a new shade path on in situ cellular sensing and meanwhile greatly expands the application mode of the PEC approach.
Collapse
Affiliation(s)
- Hao Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jiang Ren
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Lebao Mao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyi Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Shengfu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Miao-Miao Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Yan J, Zhang FL, Jin KQ, Li JX, Wang LJ, Fan WT, Huang WH, Liu YL. Mechanical Strain Induces and Increases Vesicular Release Monitored by Microfabricated Stretchable Electrodes. Angew Chem Int Ed Engl 2024; 63:e202403241. [PMID: 38710651 DOI: 10.1002/anie.202403241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Exocytosis involving the fusion of intracellular vesicles with cell membrane, is thought to be modulated by the mechanical cues in the microenvironment. Single-cell electrochemistry can offer unique information about the quantification and kinetics of exocytotic events; however, the effects of mechanical force on vesicular release have been poorly explored. Herein, we developed a stretchable microelectrode with excellent electrochemical stability under mechanical deformation by microfabrication of functionalized poly(3,4-ethylenedioxythiophene) conductive ink, which achieved real-time quantitation of strain-induced vesicular exocytosis from a single cell for the first time. We found that mechanical strain could cause calcium influx via the activation of Piezo1 channels in chromaffin cell, initiating the vesicular exocytosis process. Interestingly, mechanical strain increases the amount of catecholamines released by accelerating the opening and prolonging the closing of fusion pore during exocytosis. This work is expected to provide revealing insights into the regulatory effects of mechanical stimuli on vesicular exocytosis.
Collapse
Affiliation(s)
- Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jia-Xin Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Li-Jun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Core Facility of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Zhao Y, Fan WT, Jin KQ, Yan J, Qi YT, Huang WH, Liu YL. Real-Time Quantification of Nanoplastics-Induced Oxidative Stress in Stretching Alveolar Cells. ACS NANO 2024; 18:6176-6185. [PMID: 38359155 DOI: 10.1021/acsnano.3c08851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nanoplastics from air pollutants can be directly inhaled into the alveoli in the lungs and further enter blood circulation, and numerous studies have revealed the close relation between internalized nanoplastics with many physiological disorders via intracellular oxidative stress. However, the dynamic process of nanoplastics-induced oxidative stress in lung cells under breath-mimicked conditions is still unclear, due to the lack of methods that can reproduce the mechanical stretching of the alveolar and simultaneously monitor the oxidative stress response. Here, we describe a biomimetic platform by culturing alveoli epithelial cells on a stretchable electrochemical sensor and integrating them into a microfluidic device. This allows reproducing the respiration of alveoli by cyclic stretching of the alveoli epithelial cells and monitoring the nanoplastics-induced oxidative stress by the built-in sensor. By this device, we prove that cyclic stretches can greatly enhance the cellular uptake of nanoplastics with the dependencies of strain amplitude. Importantly, oxidative stress evoked by internalized nanoplastics can be quantitatively monitored in real time. This work will promote the deep understanding about the cytotoxicity of inhaled nanoplastics in the pulmonary mechanical microenvironment.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Li Z, Chen F, Zhu N, Zhang L, Xie Z. Tip-Enhanced Sub-Femtomolar Steroid Immunosensing via Micropyramidal Flexible Conducting Polymer Electrodes for At-Home Monitoring of Salivary Sex Hormones. ACS NANO 2023; 17:21935-21946. [PMID: 37922489 DOI: 10.1021/acsnano.3c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Noninvasive testing and continuous monitoring of ultralow-concentration hormones in biofluids have attracted increasing interest for health management and personalized medicine, in which saliva could fulfill the demand. Steroid sex hormones such as progesterone (P4) and β-estradiol (E2) are crucial for female wellness and reproduction; however, their concentrations in saliva can vary down to sub-pM and constantly fluctuate over several orders of magnitude. This remains a major obstacle toward user-friendly and reliable monitoring at home with low-cost flexible biosensors. Herein we introduce a 3D micropyramidal electrode architecture to address such challenges and achieve an ultrasensitive flexible electrochemical immunosensor with sub-fM-level detection capability of salivary sex hormones within a few minutes. This is enabled by micropyramidal electrode arrays consisting of a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) thin film as the coating layer and electrochemically decorated gold nanoparticles (AuNPs) to improve the antibody immobilization. The enhanced mass transport around the 3D tips provided by the micropyramidal architecture is discovered to improve the detection limit by 3 orders of magnitude, pushing it to as low as ∼100 aM for P4 and ∼20 aM for E2, along with a wide linear range up to μM. Accordingly, these hormones down to sub-fM in >1000-fold-diluted saliva samples can be accurately measured by the printed soft immunosensors, thus allowing at-home testing through simple saliva dilution to minimize the interfering substances instead of centrifugation. Finally, monitoring of the female ovarian hormone cycle of both P4 and E2 is successfully demonstrated based on the centrifuge-free saliva testing during a period of 4 weeks. This ultrasensitive and soft 3D microarchitected electrode design is believed to provide a universal platform for a diverse variety of applications spanning from accurate clinical diagnostics and counselling and in vivo detection of bioactive species to environmental and food quality tracing.
Collapse
Affiliation(s)
- Zhaoxian Li
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Fubin Chen
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Limei Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
5
|
Chen M, Qin Y, Fan WT, Yan J, Hong F, Huang WH, Liu YL. Three-Dimensional Stretchable Sensor-Hydrogel Integrated Platform for Cardiomyocyte Culture and Mechanotransduction Monitoring. Anal Chem 2023; 95:12859-12866. [PMID: 37589391 DOI: 10.1021/acs.analchem.3c02151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Cardiomyocytes are responsible for generating contractile force to pump blood throughout the body and are very sensitive to mechanical forces and can initiate mechano-electric coupling and mechano-chemo-transduction. Remarkable progress has been made in constructing heart tissue by engineered three-dimensional (3D) culture models and in recording the electrical signals of cardiomyocytes. However, it remains a severe challenge for real-time acquiring of the transient biochemical information in cardiomyocyte mechano-chemo-transduction. Herein, we reported a multifunctional platform by integrating a 3D stretchable electrochemical sensor with collagen hydrogel for the culture, electrical stimulation, and electrochemical monitoring of cardiomyocytes. The 3D stretchable electrochemical sensor was prepared by assembling functionalized conductive polymer PEDOT:PSS on an elastic scaffold, which showed excellent electrochemical sensing performance and stability under mechanical deformations. The integration of a 3D stretchable electrochemical sensor with collagen hydrogel provided an in vivo-like microenvironment for cardiomyocyte culture and promoted cell orientation via in situ electrical stimulation. Furthermore, this multifunctional platform allowed real-time monitoring of stretch-induced H2O2 release from cardiomyocytes under their normal and pathological conditions, as well as pharmacological interventions.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Zhao Y, Jin KQ, Li JD, Sheng KK, Huang WH, Liu YL. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305917. [PMID: 37639636 DOI: 10.1002/adma.202305917] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Du Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Kai Sheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Bi CX, Jin KQ, Yan J, Qin Y, Hong F, Huang WH, Liu YL. Nanofiber-based Stretchable Electrodes for Oriented Culture and Mechanotransduction Monitoring of Smooth Muscle Cells. ACS Sens 2023; 8:3248-3256. [PMID: 37581426 DOI: 10.1021/acssensors.3c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Vascular smooth muscle cells (SMCs) are circumferentially oriented perpendicular to the blood vessel and maintain the contractile phenotype in physiological conditions. They can sense the mechanical forces of blood vessels expanding and contracting and convert them into biochemical signals to regulate vascular homeostasis. However, the real-time monitoring of mechanically evoked biochemical response while maintaining SMC oriented growth remains an important challenge. Herein, we developed a stretchable electrochemical sensor by electrospinning aligned and elastic polyurethane (PU) nanofibers on the surface of PDMS film and further modification of conductive polymer PEDOT:PSS-LiTFSI-CoPc (PPLC) on the nanofibers (denoted as PPLC/PU/PDMS). The aligned nanofibers on the electrode surface could guide the oriented growth of SMCs and maintain the contractile phenotype, and the modification of PPLC endowed the electrode with good electrochemical sensing performance and stability under mechanical deformation. By culturing cells on the electrode surface, the oriented growth of SMCs and real-time monitoring of stretch-induced H2O2 release were achieved. On this basis, the changes of H2O2 level released by SMCs under the pathology (hypertension) and intervention of natural product resveratrol were quantitatively monitored, which will be helpful to further understand the occurrence and development of vascular-related diseases and the mechanisms of pharmaceutical intervention.
Collapse
Affiliation(s)
- Chen-Xi Bi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Cao H, Dang Y, Zhang Z, Chen F, Liu J, Sun Q, Xie Y, Xu Z, Zhang W. Rational Design of Cu-Doped Tetrahedron of Spinel Oxide for High-Performance Nitric Oxide Electrochemical Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23489-23500. [PMID: 37139799 DOI: 10.1021/acsami.3c03176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The real-time detection of nitric oxide (NO) in living cells is essential to reveal its physiological processes. However, the popular electrochemical detection strategy is limited to the utilization of noble metals. The development of new detection candidates without noble metal species still maintaining excellent catalytic performance has become a big challenge. Herein, we propose a spinel oxide doped with heteroatom-Cu-doped Co3O4 (Cu-Co3O4) for the sensitive and selective detection of NO release from the living cells. The material is strategically designed with Cu occupying the tetrahedral (Td) center of Co3O4 through the formation of a Cu-O bond. The introduced Cu regulates the local coordination environment and optimizes the electronic structure of Co3O4, hybridizing with the N 2p orbital to enhance charge transfer. The CuTd site can well inhibit the current response to nitrite (NO2-), resulting in a high improvement in the electrochemical oxidation of NO. The selectivity of Cu-Co3O4 can be markedly improved by the pore size of the molecular sieve and the negative charge on the surface. The rapid transmission of electrons is due to the fact that Cu-Co3O4 can be uniformly and densely in situ grown on Ti foil. The rationally designed Cu-Co3O4 sensor displays excellent catalytic activity toward NO oxidation with a low limit of detection of 2.0 nM (S/N = 3) and high sensitivity of 1.9 μA nM-1 cm-2 in cell culture medium. The Cu-Co3O4 sensor also shows good biocompatibility to monitor the real-time NO release from living cells (human umbilical vein endothelial cells: HUVECs; macrophage: RAW 264.7 cells). It was found that a remarkable response to NO was obtained in different living cells when stimulated by l-arginine (l-Arg). Moreover, the developed biosensor could be used for real-time monitoring of NO released from macrophages polarized to a M1/M2 phenotype. This cheap and convenient doping strategy shows universality and can be used for sensor design of other Cu-doped transition metal materials. The Cu-Co3O4 sensor presents an excellent example through the design of proper materials to implement unique sensing requirements and sheds light on the promising strategy for electrochemical sensor fabrication.
Collapse
Affiliation(s)
- Hongshuai Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fengping Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jingyao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yangchun Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Han WB, Ko GJ, Lee KG, Kim D, Lee JH, Yang SM, Kim DJ, Shin JW, Jang TM, Han S, Zhou H, Kang H, Lim JH, Rajaram K, Cheng H, Park YD, Kim SH, Hwang SW. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun 2023; 14:2263. [PMID: 37081012 PMCID: PMC10119106 DOI: 10.1038/s41467-023-38040-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghak Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188 Pangyoyeok-ro, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13524, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. BIOSENSORS 2022; 12:bios12121162. [PMID: 36551129 PMCID: PMC9775431 DOI: 10.3390/bios12121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 05/28/2023]
Abstract
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Collapse
|
11
|
Wang W, Li Z, Li M, Fang L, Chen F, Han S, Lan L, Chen J, Chen Q, Wang H, Liu C, Yang Y, Yue W, Xie Z. High-Transconductance, Highly Elastic, Durable and Recyclable All-Polymer Electrochemical Transistors with 3D Micro-Engineered Interfaces. NANO-MICRO LETTERS 2022; 14:184. [PMID: 36094765 PMCID: PMC9468203 DOI: 10.1007/s40820-022-00930-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Organic electrochemical transistors (OECTs) have emerged as versatile platforms for broad applications spanning from flexible and wearable integrated circuits to biomedical monitoring to neuromorphic computing. A variety of materials and tailored micro/nanostructures have recently been developed to realized stretchable OECTs, however, a solid-state OECT with high elasticity has not been demonstrated to date. Herein, we present a general platform developed for the facile generation of highly elastic all-polymer OECTs with high transconductance (up to 12.7 mS), long-term mechanical and environmental durability, and sustainability. Rapid prototyping of these devices was achieved simply by transfer printing lithium bis(trifluoromethane)sulfonimide doped poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS/LiTFSI) microstructures onto a resilient gelatin-based gel electrolyte, in which both depletion-mode and enhancement-mode OECTs were produced using various active channels. Remarkably, the elaborate 3D architectures of the PEDOT:PSS were engineered, and an imprinted 3D-microstructured channel/electrolyte interface combined with wrinkled electrodes provided performance that was retained (> 70%) through biaxial stretching of 100% strain and after 1000 repeated cycles of 80% strain. Furthermore, the anti-drying and degradable gelatin and the self-crosslinked PEDOT:PSS/LiTFSI jointly enabled stability during > 4 months of storage and on-demand disposal and recycling. This work thus represents a straightforward approach towards high-performance stretchable organic electronics for wearable/implantable/neuromorphic/sustainable applications.
Collapse
Affiliation(s)
- Wenjin Wang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhaoxian Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Mancheng Li
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lvye Fang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Fubin Chen
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Songjia Han
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Liuyuan Lan
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Junxin Chen
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qize Chen
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hongshang Wang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yabin Yang
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wan Yue
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhuang Xie
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
12
|
Li X, Qin X, Wang Z, Wu Y, Wang K, Xia X, Liu S. In Situ Imaging of Endogenous Hydrogen Peroxide Efflux from Living Cells via Bipolar Gold Nanoelectrode Array and Electrochemiluminescence Technology. ACS Sens 2022; 7:2446-2453. [PMID: 35875868 DOI: 10.1021/acssensors.2c01195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The integration of a closed bipolar electrode (c-BPE) array and electrochemiluminescence (ECL) detection received a boost in applications in the detection of cell adhesion and disease-related biomarkers. This work proposed a gold nanorod array based c-BPE-ECL system to realize an in situ image of endogenous hydrogen peroxide (H2O2) efflux from living cells and parallel analysis of endogenous H2O2 released from multiple cells by converting electrochemical signals into optical signals. The gold nanorod array with high density was prepared by a repeating chronopotentiometry procedure with anodic aluminum oxide (AAO) membrane as a template. The c-BPE array was fabricated by assembling poly(dimethylsiloxane) (PDMS) chips on both sides of the gold nanorod array. When an appropriate driving potential is applied, H2O2 generated from living cells at the sensing pole was reduced on the gold nanorod, triggering the oxidation of the ECL reagent at the reporting pole, which allowed the detection of H2O2 released from living cells. Under phorbol myristate acetate (PMA) stimulation, H2O2 released from living HeLa, HepG2, MCF-7, and LO2 cells was determined to be 47, 32.4, 25.7, and 6.3 μM, respectively. This indicated that the amount of H2O2 released from PMA-stimulated cancer cells was significantly higher than that from the stimulated normal cells. This work presented a new approach for in situ imaging of H2O2 released from living cells and could also be used to detect other electrochemically active or non-electrochemically active molecules through simple cell surface modification, which may have potential applications in cell apoptosis study and disease diagnosis.
Collapse
Affiliation(s)
- Xiuxiu Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang Qin
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhi Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi 214125, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kang Wang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinghua Xia
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Fan WT, Zhao Y, Wu WT, Qin Y, Yan J, Liu YL, Huang WH. Redox Homeostasis Alteration in Endothelial Mechanotransduction Monitored by Dual Stretchable Electrochemical Sensors. Anal Chem 2022; 94:7425-7432. [PMID: 35543487 DOI: 10.1021/acs.analchem.2c01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo, endothelial cells are permanently subjected to dynamic cyclic stretch and adapt to it through the release of vasoactive substances. Among them, reactive oxygen species (ROS) and nitric oxide (NO) are indispensable redox molecules, the contents of which and their ratio are closely implicated with endothelial redox homeostasis. However, simultaneous and quantitative monitoring of ROS and NO release in endothelial mechanotransduction remains a great challenge. Herein, a stretchable electrochemical device is developed with a dual electrode based on gold nanotubes decorated with uniform and tiny platinum nanoparticles. This hybrid nanostructure endows the sensor with high sensitivity toward both hydrogen peroxide (H2O2) (as the most stable ROS) and NO electrooxidation. Importantly, the two species can be well discriminated by applying different potentials, which allows simultaneous monitoring of H2O2 and NO release in stretch-induced endothelial mechanotransduction by the same device. The results of quantitative analysis suggest that endothelial redox homeostasis and its alteration are strongly related to vascular biomechanical and biochemical milieus. Further investigation reveals that the interplay of ROS and NO signaling has an important role in the regulation of endothelial redox state. This work will greatly facilitate the deep understanding of the molecular mechanism of endothelial dysfunction and vascular disorder.
Collapse
Affiliation(s)
- Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|