1
|
Basaran I, Agafontsev AM, Morozov BS, Oshchepkov AS, Imhof P, Kataev EA. Effects of Ring Functionalization in Anthracene-Based Cyclophanes on the Binding Properties Toward Nucleotides and DNA. Chemistry 2024; 30:e202402106. [PMID: 39110145 DOI: 10.1002/chem.202402106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 10/04/2024]
Abstract
Supramolecular recognition of nucleobases and short sequences is an emerging research field focusing on possible applications to treat many diseases. Controlling the affinity and selectivity of synthetic receptors to target desired nucleotides or short sequences is a highly challenging task. Herein, we elucidate the effect of substituents in the phenyl ring of the anthracene-benzene azacyclophane on the recognition of nucleoside triphosphates (NTPs) and double-stranded DNA. We show that introducing phenyl rings increases the affinity for NTPs 10-fold and implements groove and intercalation binding modes with double-stranded DNA. NMR studies and molecular modeling calculations support the ability of cyclophanes to encapsulate nucleobases as part of nucleotides.
Collapse
Affiliation(s)
- Ismet Basaran
- Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Aleksandr M Agafontsev
- Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Boris S Morozov
- Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Alexander S Oshchepkov
- Organic Chemistry Department, Institute of Chemistry Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle, Germany
| | - Petra Imhof
- Computer Chemistry Center, Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Evgeny A Kataev
- Department of Chemistry and Pharmacy, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91052, Erlangen, Germany
| |
Collapse
|
2
|
Ogbonna E, Paul A, Farahat AA, Terrell JR, Mineva E, Ogbonna V, Boykin DW, Wilson WD. X-ray Structure Characterization of the Selective Recognition of AT Base Pair Sequences. ACS BIO & MED CHEM AU 2023; 3:335-348. [PMID: 37599788 PMCID: PMC10436263 DOI: 10.1021/acsbiomedchemau.3c00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 08/22/2023]
Abstract
The rational design of small molecules that target specific DNA sequences is a promising strategy to modulate gene expression. This report focuses on a diamidinobenzimidazole compound, whose selective binding to the minor groove of AT DNA sequences holds broad significance in the molecular recognition of AT-rich human promoter sequences. The objective of this study is to provide a more detailed and systematized understanding, at an atomic level, of the molecular recognition mechanism of different AT-specific sequences by a rationally designed minor groove binder. The specialized method of X-ray crystallography was utilized to investigate how the sequence-dependent recognition properties in general, A-tract, and alternating AT sequences affect the binding of diamidinobenzimidazole in the DNA minor groove. While general and A-tract AT sequences give a narrower minor groove, the alternating AT sequences intrinsically have a wider minor groove which typically constricts upon binding. A strong and direct hydrogen bond between the N-H of the benzimidazole and an H-bond acceptor atom in the minor groove is essential for DNA recognition in all sequences described. In addition, the diamidine compound specifically utilizes an interfacial water molecule for its DNA binding. DNA complexes of AATT and AAAAAA recognition sites show that the diamidine compound can bind in two possible orientations with a preference for water-assisted hydrogen bonding at either cationic end. The complex structures of AAATTT, ATAT, ATATAT, and AAAA are bound in a singular orientation. Analysis of the helical parameters shows a minor groove expansion of about 1 Å across all the nonalternating DNA complexes. The results from this systematic approach will convey a greater understanding of the specific recognition of a diverse array of AT-rich sequences by small molecules and more insight into the design of small molecules with enhanced specificity to AT and mixed DNA sequences.
Collapse
Affiliation(s)
- Edwin
N. Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ananya Paul
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Abdelbasset A. Farahat
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Master
of Pharmaceutical Sciences Program, California
North State University, 9700 W Taron Dr., Elk Grove, California 95757, United States
| | - J. Ross Terrell
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ekaterina Mineva
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Victor Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - David W Boykin
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - W. David Wilson
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| |
Collapse
|
3
|
Farahat AA, Kumar A, Wenzler T, Brun R, Paul A, Guo P, Wilson WD, Boykin DW. Investigation of the effect of structure modification of furamidine on the DNA minor groove binding and antiprotozoal activity. Eur J Med Chem 2023; 252:115287. [PMID: 36958267 PMCID: PMC10127280 DOI: 10.1016/j.ejmech.2023.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
New analogs of the antiprotozoal agent Furamidine were prepared utilizing Stille coupling reactions and amidation of the bisnitrile intermediate using lithium bis-trimethylsilylamide. Both the phenyl groups and the furan moiety of furamidine were replaced by heterocycles including thiophene, selenophene, indole or benzimidazole. Based upon the ΔTm and the CD results, the new compounds showed strong binding to the DNA minor groove. The new analogues are also more active both in vitro and in vivo than furamidine. Compounds 7a, 7b, and 7f showed the highest activity in vivo by curing 75% of animals, and this merits further evaluation.
Collapse
Affiliation(s)
- Abdelbasset A Farahat
- Masters of Pharmaceutical Sciences Program, California Northstate University, Elk Grove, CA, 95757, USA; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Tanja Wenzler
- Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland; University of Basel, Basel, 4003, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland; University of Basel, Basel, 4003, Switzerland
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Pu Guo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
4
|
Huang YT, Xue M, Yang Y. Imidazobenzimidazole fused azacalix [4]arenes: Synthesis, structure, and Zn2+-selective colorimetric-fluorometric sensor. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Ogbonna EN, Paul A, Ross Terrell J, Fang Z, Chen C, Poon GMK, Boykin DW, Wilson WD. Drug design and DNA structural research inspired by the Neidle laboratory: DNA minor groove binding and transcription factor inhibition by thiophene diamidines. Bioorg Med Chem 2022; 68:116861. [PMID: 35661929 PMCID: PMC9707304 DOI: 10.1016/j.bmc.2022.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
The understanding of sequence-specific DNA minor groove interactions has recently made major steps forward and as a result, the goal of development of compounds that target the minor groove is an active research area. In an effort to develop biologically active minor groove agents, we are preparing and exploring the DNA interactions of diverse diamidine derivatives with a 5'-GAATTC-3' binding site using a powerful array of methods including, biosensor-SPR methods, and X-ray crystallography. The benzimidazole-thiophene module provides an excellent minor groove recognition component. A central thiophene in a benzimidazole-thiophene-phenyl aromatic system provides essentially optimum curvature for matching the shape of the minor groove. Comparison of that structure to one with the benzimidazole replaced with an indole shows that the two structures are very similar, but have some interesting and important differences in electrostatic potential maps, the DNA minor groove binding structure based on x-ray crystallographic analysis, and inhibition of the major groove binding PU.1 transcription factor complex. The binding KD for both compounds is under 10 nM and both form amidine H-bonds to DNA bases. They both have bifurcated H-bonds from the benzimidazole or indole groups to bases at the center of the -AATT- binding site. Analysis of the comparative results provides an excellent understanding of how thiophene compounds recognize the minor groove and can act as transcription factor inhibitors.
Collapse
Affiliation(s)
- Edwin N Ogbonna
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - J Ross Terrell
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Ziyuan Fang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Cen Chen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - Gregory M K Poon
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - David W Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA
| | - W David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303-3083, USA.
| |
Collapse
|
6
|
Paul A, Farahat AA, Boykin DW, Wilson WD. Thermodynamic Factors That Drive Sequence-Specific DNA Binding of Designed, Synthetic Minor Groove Binding Agents. Life (Basel) 2022; 12:life12050681. [PMID: 35629349 PMCID: PMC9147024 DOI: 10.3390/life12050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Ken Breslauer began studies on the thermodynamics of small cationic molecules binding in the DNA minor groove over 30 years ago, and the studies reported here are an extension of those ground-breaking reports. The goals of this report are to develop a detailed understanding of the binding thermodynamics of pyridine-based sequence-specific minor groove binders that have different terminal cationic groups. We apply biosensor-surface plasmon resonance and ITC methods to extend the understanding of minor groove binders in two directions: (i) by using designed, heterocyclic dicationic minor groove binders that can incorporate a G•C base pair (bp), with flanking AT base pairs, into their DNA recognition site, and bind to DNA sequences specifically; and (ii) by using a range of flanking AT sequences to better define molecular recognition of the minor groove. A G•C bp in the DNA recognition site causes a generally more negative binding enthalpy than with most previously used pure AT binding sites. The binding is enthalpy-driven at 25 °C and above. The flanking AT sequences also have a large effect on the binding energetics with the -AAAGTTT- site having the strongest affinity. As a result of these studies, we now have a much better understanding of the effects of the DNA sequence and compound structure on the molecular recognition and thermodynamics of minor groove complexes.
Collapse
Affiliation(s)
- Ananya Paul
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
| | - Abdelbasset A. Farahat
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
| | - W. David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; (A.P.); (A.A.F.); (D.W.B.)
- Correspondence: ; Tel.: +1-404-413-5503; Fax: +1-404-413-5505
| |
Collapse
|