1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Pradhan L, Hazra S, Manna S, Pal BN, Mukherjee S. Screening of Lithium Substituted Ag-TiO 2 Nanoparticle Coating for Antibiofilm Application. ACS APPLIED BIO MATERIALS 2024; 7:6101-6113. [PMID: 39121349 DOI: 10.1021/acsabm.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Bacterial infections and biofilm growth are common mishaps associated with medical devices, and they contribute significantly to ill health and mortality. Removal of bacterial deposition from these devices is a major challenge, resulting in an immediate necessity for developing antibacterial coatings on the surfaces of medical implants. In this context, we developed an innovative coating strategy that can operate at low temperatures (80 °C) and preserve the devices' integrity and functionality. An innovative Ag-TiO2 based coating was developed by ion exchange between silver nitrate (AgNO3) and lithium titanate (Li4Ti5O12) on glass substrates for different periods, ranging from 10 to 60 min. The differently coated samples were tested for their antibacterial and antibiofilm efficacy.
Collapse
Affiliation(s)
- Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sobhan Hazra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sumit Manna
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Bhola Nath Pal
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Wei H, Lin P, Shi B, Xu L, Yang X, Sun W. Study of Manipulative In Situ Pore-Formation upon Polymeric Coating on Cylindrical Substrate for Sustained Drug Delivery. Macromol Biosci 2024:e2400273. [PMID: 39038119 DOI: 10.1002/mabi.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Herein, the micro-porous polylactic acid coating applied on the surface of the cylindrical substrate is fabricated by a novel in situ pore-formation strategy based on the combinational effect of breath figure (BF) and vapor-induced phase separation (VIPS) processes. Under the condition of high environmental humidity, solvent pair of chloroform and dimethylformamide is employed for post-treatment onto pre-formed PLA coating to induce the pore-formation following the mechanism of BF and VIPS, respectively. A composite porous structure with both cellular-like and bi-continuous network morphologies is obtained. By tunning the experimental factors including the ratio of the solvent pair, environmental humidity, and temperature, morphological manipulation upon the pore morphology can be facilely achieved based on the control of mechanism transition between BF and VIPS. Paclitaxel is used as a model drug and loaded into the porous coating by the wicking effect of post-immersion. Coatings with different morphological features show varying drug loading and release capacities. The 28-day release test reveals dynamic release profiles between different coating samples, with the total release rate ranging from 35.70% to 79.96%. Optimal loading capacity of 19.28 µg cm-2 and 28-day release rate of 35.70% are achieved for the coating with composite BF-VIPS structure. This research established a cost-efficient strategy with high flexibility in the structural manipulation concerning the construction of drug-eluting coating with the feature of manipulative drug delivery.
Collapse
Affiliation(s)
- Hao Wei
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ping Lin
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Baozhang Shi
- Department of General Surgery, Ningbo Haishu People's Hospital, Ningbo, 315000, China
| | - Liping Xu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Xiaoping Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
4
|
Erdoğan N, Şen Karaman D, Yıldız Ö, Özdemir GD, Ercan UK. Mesoporous silica nanoparticles accommodating electrospun nanofibers as implantable local drug delivery system processed by cold atmospheric plasma and spin coating approaches. Biomed Mater 2024; 19:025015. [PMID: 38181435 DOI: 10.1088/1748-605x/ad1bb1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Nanofibers (NF) and nanoparticles are attractive for drug delivery to improve the drug bioavailability and administration. Easy manipulation of NF as macroscopic bulk material give rise to potential usages as implantable local drug delivery systems (LLDS) to overcome the failures of systemic drug delivery systems such as unmet personalized needs, side effects, suboptimal dosage. In this study, poly(ethylene glycol) polyethyleneimine (mPEG:PEI) copolymer blended polyϵ-caprolactone NFs, NFblendaccommodating mesoporous silica nanoparticles (MSN) as the implantable LLDS was achieved by employing spin coating and cold atmospheric plasma (CAP) as the post-process for accommodation on NFblend. The macroporous morphology, mechanical properties, wettability, andin vitrocytocompatibility of NFblendensured their potential as an implantable LLDS and superior features compared to neat NF. The electron microscopy images affirmed of NFblendrandom fiber (average diameter 832 ± 321 nm) alignments and accessible macropores before and after MSN@Cur accommodation. The blending of polymers improved the elongation of NF and the tensile strength which is attributed as beneficial for implantable LLDS. CAP treatment could significantly improve the wettability of NF observed by the contact angle changes from ∼126° to ∼50° which is critical for the accommodation of curcumin-loaded MSN (MSN@Cur) andin vitrocytocompatibility of NF. The combined CAP and spin coating as the post-processes was employed for accommodating MSN@Cur on NFblendwithout interfering with the electrospinning process. The post-processing aided fine-tuning of curcumin dosing (∼3 µg to ∼15 µg) per dose unit and sustained zero-order drug release profile could be achieved. Introducing of MSN@Cur to cells via LLDS promoted the cell proliferation compared to MSN@Cur suspension treatments and assigned as the elimination of adverse effects by nanocarriers by the dosage form integration. All in all, NFblend-MSN@Cur was shown to have high potential to be employed as an implantable LLDS. To the best of our knowledge, this is the first study in which mPEG:PEI copolymer blend NF are united with CAP and spin coating for accommodating nano-drug carriers, which allows for NF both tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Nursu Erdoğan
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Didem Şen Karaman
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| | - Özlem Yıldız
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Gizem Dilara Özdemir
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Utku Kürşat Ercan
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
5
|
Zhang Y, Wang H, Wang J, Li L, Sun H, Wang C. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Chem Asian J 2023; 18:e202300876. [PMID: 37886875 DOI: 10.1002/asia.202300876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
The potential of harnessing osmotic energy from the interaction between seawater and river water has been recognized as a promising, eco-friendly, renewable, and sustainable source of power. The reverse electrodialysis (RED) technology has gained significant interest for its ability to generate electricity by combining concentrated and diluted streams with different levels of salinity. Nanofluidic membranes with tailored ion transport dynamics enable efficient harvesting of renewable osmotic energy. In this regard, anodic aluminum oxide (AAO) membranes with abundant nanochannels provide a cost-effective nanofluidic platform to obtain structures with a high density of ordered pores. AAO can be utilized in constructing asymmetric composite membranes with enhanced ion flux and selectivity to improve output power generation. In this review, we first present the fundamental structure and properties of AAO, followed by summarizing the fabrication techniques for asymmetric membranes using AAO and other nanostructured materials. Subsequently, we discuss the materials employed in constructing asymmetric structures incorporating AAO while emphasizing how material selection and design can resist and promote efficient energy conversion. Finally, we provide an outlook on future applications and address the challenges that need to be overcome for successful osmotic energy conversion.
Collapse
Affiliation(s)
- Yao Zhang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Huijie Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lulu Li
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, P.R. China
| | - Hanjun Sun
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Wang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Carmona P, Poulsen J, Westergren J, Pingel TN, Röding M, Lambrechts E, De Keersmaecker H, Braeckmans K, Särkkä A, von Corswant C, Olsson E, Lorén N. Controlling the structure of spin-coated multilayer ethylcellulose/hydroxypropylcellulose films for drug release. Int J Pharm 2023; 644:123350. [PMID: 37640089 DOI: 10.1016/j.ijpharm.2023.123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. Water-soluble HPC leaches out and forms a porous structure that controls the drug transport. Industrially, the pellets are coated using a fluidized bed spraying device, and a layered film exhibiting varying porosity and structure after leaching is obtained. A detailed understanding of the formation of the multilayered, phase-separated structure during production is lacking. Here, we have investigated multilayered EC/HPC films produced by sequential spin-coating, which was used to mimic the industrial process. The effects of EC/HPC ratio and spin speed on the multilayer film formation and structure were investigated using advanced microscopy techniques and image analysis. Cahn-Hilliard simulations were performed to analyze the mixing behavior. A gradient with larger structures close to the substrate surface and smaller structures close to the air surface was formed due to coarsening of the layers already coated during successive deposition cycles. The porosity of the multilayer film was found to vary with both EC/HPC ratio and spin speed. Simulation of the mixing behavior and in situ characterization of the structure evolution showed that the origin of the discontinuities and multilayer structure can be explained by the non-mixing of the layers.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden; Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Poulsen
- Wendelsbergs beräkningskemi AB, Mölnlycke, Sweden
| | | | - Torben Nilsson Pingel
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Eileen Lambrechts
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden; Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden; Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
7
|
Han Y, Cui Y, Liu X, Wang Y. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices. BIOSENSORS 2023; 13:896. [PMID: 37754130 PMCID: PMC10526154 DOI: 10.3390/bios13090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Given the advancements in modern living standards and technological development, conventional smart devices have proven inadequate in meeting the demands for a high-quality lifestyle. Therefore, a revolution is necessary to overcome this impasse and facilitate the emergence of flexible electronics. Specifically, there is a growing focus on health detection, necessitating advanced flexible preparation technology for biosensor-based smart wearable devices. Nowadays, numerous flexible products are available on the market, such as electronic devices with flexible connections, bendable LED light arrays, and flexible radio frequency electronic tags for storing information. The manufacturing process of these devices is relatively straightforward, and their integration is uncomplicated. However, their functionality remains limited. Further research is necessary for the development of more intricate applications, such as intelligent wearables and energy storage systems. Taking smart wear as an example, it is worth noting that the current mainstream products on the market primarily consist of bracelet-type health testing equipment. They exhibit limited flexibility and can only be worn on the wrist for measurement purposes, which greatly limits their application diversity. Flexible energy storage and flexible display also face the same problem, so there is still a lot of room for development in the field of flexible electronics manufacturing. In this review, we provide a brief overview of the developmental history of flexible devices, systematically summarizing representative preparation methods and typical applications, identifying challenges, proposing solutions, and offering prospects for future development.
Collapse
Affiliation(s)
| | | | | | - Yaqun Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
8
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
9
|
McLoughlin S, McKenna AR, Fisher JP. Fabrication Strategies for Engineered Thin Membranous Tissues. ACS APPLIED BIO MATERIALS 2023. [PMID: 37314953 DOI: 10.1021/acsabm.3c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thin membranous tissues (TMTs) are anatomical structures consisting of multiple stratified cell layers, each less than 100 μm in thickness. While these tissues are small in scale, they play critical roles in normal tissue function and healing. Examples of TMTs include the tympanic membrane, cornea, periosteum, and epidermis. Damage to these structures can be caused by trauma or congenital disabilities, resulting in hearing loss, blindness, dysfunctional bone development, and impaired wound repair, respectively. While autologous and allogeneic tissue sources for these membranes exist, they are significantly limited by availability and patient complications. Tissue engineering has therefore become a popular strategy for TMT replacement. However, due to their complex microscale architecture, TMTs are often difficult to replicate in a biomimetic manner. The critical challenge in TMT fabrication is balancing fine resolution with the ability to mimic complex target tissue anatomy. This Review reports existing TMT fabrication strategies, their resolution and material capabilities, cell and tissue response, and the advantages and disadvantages of each technique.
Collapse
Affiliation(s)
- Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| | - Abigail Ruth McKenna
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Lv TR, Zhang WH, Yang YQ, Zhang JC, Yin MJ, Yin Z, Yong KT, An QF. Micro/Nano-Fabrication of Flexible Poly(3,4-Ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301071. [PMID: 37069773 DOI: 10.1002/smll.202301071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
With the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices. In this review, the state-of-the-art technologies for developing organic devices by using conductive polymers are comprehensively summarized, which will begin with a description of the commonly used synthesis methods and mechanisms for conductive polymers. Next, the current techniques for the fabrication of conductive polymer films will be proffered and discussed. Subsequently, approaches for tailoring the nanostructures and microstructures of conductive polymer films are summarized and discussed. Then, the applications of micro/nano-fabricated conductive films-based devices in various fields are given and the role of the micro/nano-structures on the device performances is highlighted. Finally, the perspectives on future directions in this exciting field are presented.
Collapse
Affiliation(s)
- Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wen-Hai Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Ya-Qiong Yang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia-Chen Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhigang Yin
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
11
|
Zidarič T, Skok K, Orthaber K, Pristovnik M, Gradišnik L, Maver T, Maver U. Multilayer Methacrylate-Based Wound Dressing as a Therapeutic Tool for Targeted Pain Relief. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2361. [PMID: 36984241 PMCID: PMC10053588 DOI: 10.3390/ma16062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
This study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate. The multilayer structure of the dressing, which allows for sustained drug release and an exact application, was achieved through the layer-by-layer coating technique and the inclusion of superparamagnetic iron platinum nanoparticles. The multilayered dressings' physicochemical, structural, and morphological properties were characterised using various methods. The synergistic effect of the incorporated drug molecules and superparamagnetic nanoparticles on the surface roughness and release kinetics resulted in controlled drug release. In addition, the proposed multilayer wound dressings were found to be biocompatible with human skin fibroblasts. Our findings suggest that the developed wound dressing system can contribute to tailored therapeutic strategies for local pain relief.
Collapse
Affiliation(s)
- Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kristijan Skok
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pathology, Hospital Graz II, Location West, Göstinger Straße 22, 8020 Graz, Austria
| | - Kristjan Orthaber
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matevž Pristovnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
12
|
Gholizadeh S, Chen X, Yung A, Naderi A, Ghovvati M, Liu Y, Farzad A, Mostafavi A, Dana R, Annabi N. Development and optimization of an ocular hydrogel adhesive patch using definitive screening design (DSD). Biomater Sci 2023; 11:1318-1334. [PMID: 36350113 DOI: 10.1039/d2bm01013e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adhesive hydrogels based on chemically modified photocrosslinkable polymers with specific physicochemical properties are frequently utilized for sealing wounds or incisions. These adhesive hydrogels offer tunable characteristics such as tailorable tissue adhesion, mechanical properties, swelling ratios, and enzymatic degradability. In this study, we developed and optimized a photocrosslinkable adhesive patch, GelPatch, with high burst pressure, minimal swelling, and specific mechanical properties for application as an ocular (sclera and subconjunctival) tissue adhesive. To achieve this, we formulated a series of hydrogel patches composed of different polymers with various levels of methacrylation, molecular weights, and hydrophobic/hydrophilic properties. A computerized multifactorial definitive screening design (DSD) analysis was performed to identify the most prominent components impacting critical response parameters such as adhesion, swelling ratio, elastic modulus, and second order interactions between applied components. These parameters were mathematically processed to generate a predictive model that identifies the linear and non-linear correlations between these factors. In conclusion, an optimized formulation of GelPatch was selected based on two modified polymers: gelatin methacryloyl (GelMA) and glycidyl methacrylated hyaluronic acid (HAGM). The ex vivo results confirmed adhesion and retention of the optimized hydrogel subconjunctivally and on the sclera for up to 4 days. The developed formulation has potential to be used as an ocular sealant for quick repair of laceration type ocular injuries.
Collapse
Affiliation(s)
- Shima Gholizadeh
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Xi Chen
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Ann Yung
- Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Amirreza Naderi
- Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Mahsa Ghovvati
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Yangcheng Liu
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Ashkan Farzad
- Sanquin Product Support and Development, Sanquin Plasma Products B.V., Amsterdam, The Netherlands
| | - Azadeh Mostafavi
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Mass Eye and Ear, Harvard Medical School, Department of Ophthalmology, Boston, MA, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Suzuki T, Sato K, Seki T, Seki T. Study of Polymer Nanofilms Using for High-Throughput Screening in the Development of Transdermal Therapeutic System. Chem Pharm Bull (Tokyo) 2022; 70:868-875. [PMID: 36450585 DOI: 10.1248/cpb.c22-00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We investigated polymer nanofilm (PNF) for use in high-throughput screening (HTS) to promote the development of transdermal therapeutic systems (TTS). The drug permeability of PNF with a 1 : 1 weight mix ratio of poly(L-lactic acid) (PLLA) and poly(methylhydrosiloxane) (PMHS) (PLLA/PMHS (1/1) PNF) and Strat-M® of the transdermal diffusion test membrane, was evaluated using 12 kinds of drugs with the logarithmic value of n-octanol/water partition coefficients of -4.70 to 3.86. The lag time of PLLA/PMHS (1/1) PNF made via polymer alloying was significantly shorter than that of Strat-M® for 10 drug types, and the formation of a highly diffusible PMHS-rich phase accompanying the formation of a sea-island structure was suggested as a contributing factor. Additionally, a high correlation was confirmed between the measured value for the logarithm of the apparent permeability coefficient of PLLA/PMHS (1/1) PNF and the literature values for the logarithm of the apparent permeability coefficient of human skin (r = 0.929). This study shows that PLLA/PMHS (1/1) PNF can reliably predict drug permeability in human skin and can potentially be used in HTS for developing TTS.
Collapse
Affiliation(s)
| | - Kanae Sato
- Faculty of Pharmaceutical Sciences, Josai University
| | - Tomohiro Seki
- Faculty of Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
14
|
Taccola S, da Veiga T, Chandler JH, Cespedes O, Valdastri P, Harris RA. Micro-scale aerosol jet printing of superparamagnetic Fe 3O 4 nanoparticle patterns. Sci Rep 2022; 12:17931. [PMID: 36289308 PMCID: PMC9606284 DOI: 10.1038/s41598-022-22312-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 01/20/2023] Open
Abstract
The opportunity to create different patterns of magnetic nanoparticles on surfaces is highly desirable across many technological and biomedical applications. In this paper, this ability is demonstrated for the first time using a computer-controlled aerosol jet printing (AJP) technology. AJP is an emerging digitally driven, non-contact and mask-less printing process which has distinguishing advantages over other patterning technologies as it offers high-resolution and versatile direct-write deposition of a wide range of materials onto a variety of substrates. This research demonstrates the ability of AJP to reliably print large-area, fine-feature patterns of superparamagnetic iron oxide nanoparticles (SPIONs) onto both rigid material (glass) and soft and flexible materials (polydimethylsiloxane (PDMS) films and poly-L-lactic acid (PLLA) nanofilms). Investigation identified and controlled influential process variables which permitted feature sizes in the region of 20 μm to be realised. This method could be employed for a wide range of applications that require a flexible and responsive process that permits high yield and rapid patterning of magnetic material over large areas. As a first proof of concept, we present patterned magnetic nanofilms with enhanced manipulability under external magnetic field gradient control and which are capable of performing complex movements such as rotation and bending, with applicability to soft robotics and biomedical engineering applications.
Collapse
Affiliation(s)
- Silvia Taccola
- grid.9909.90000 0004 1936 8403Future Manufacturing Processes Research Group, University of Leeds, Leeds, UK
| | - Tomas da Veiga
- grid.9909.90000 0004 1936 8403STORM Lab, University of Leeds, Leeds, UK
| | - James H. Chandler
- grid.9909.90000 0004 1936 8403STORM Lab, University of Leeds, Leeds, UK
| | - Oscar Cespedes
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Pietro Valdastri
- grid.9909.90000 0004 1936 8403STORM Lab, University of Leeds, Leeds, UK
| | - Russell A. Harris
- grid.9909.90000 0004 1936 8403Future Manufacturing Processes Research Group, University of Leeds, Leeds, UK
| |
Collapse
|
15
|
Contardi M, Ayyoub AMM, Summa M, Kossyvaki D, Fadda M, Liessi N, Armirotti A, Fragouli D, Bertorelli R, Athanassiou A. Self-Adhesive and Antioxidant Poly(vinylpyrrolidone)/Alginate-Based Bilayer Films Loaded with Malva sylvestris Extracts as Potential Skin Dressings. ACS APPLIED BIO MATERIALS 2022; 5:2880-2893. [PMID: 35583459 PMCID: PMC9214765 DOI: 10.1021/acsabm.2c00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malva sylvestris (MS) is a medicinal herb known worldwide for its beneficial effects due to the several active molecules present in its leaves and flowers. These compounds have shown antioxidant and anti-inflammatory properties and thus can be helpful in treatments of burns and chronic wounds, characterized mainly by high levels of free radicals and impairments of the inflammatory response. In this work, we propose bilayer films as wound dressings, based on poly(vinylpyrrolidone) (PVP) and sodium alginate loaded with M. sylvestris extracts from leaves and flowers and fabricated by combining solvent-casting and rod-coating methods. The top layer is produced in two different PVP/alginate ratios and loaded with the MS flowers' extract, while the bottom layer is composed of PVP and MS leaves' extract. The bilayers were characterized morphologically, chemically, and mechanically, while they showed superior self-adhesive properties on human skin compared to a commercial skin patch. The materials showed antioxidant activity, release of the bioactive compounds, and water uptake property. Moreover, the anthocyanin content of the flower extract provided the films with the ability to change color when immersed in buffers of different pH levels. In vitro tests using primary keratinocytes demonstrated the biocompatibility of the MS bilayer materials and their capacity to enhance the proliferation of the cells in a wound scratch model. Finally, the best performing MS bilayer sample with a PVP/alginate ratio of 70:30 was evaluated in mice models, showing suitable resorption properties and the capacity to reduce the level of inflammatory mediators in UVB-induced burns when applied to an open wound. These outcomes suggest that the fabricated bilayer films loaded with M. sylvestris extracts are promising formulations as active and multifunctional dressings for treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Amin Mah'd Moh'd Ayyoub
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despoina Kossyvaki
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.,Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università degli studi di Genova, Via Opera Pia 13, 16145 Genova, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Despina Fragouli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | |
Collapse
|
16
|
Martin A, Cai J, Schaedel AL, van der Plas M, Malmsten M, Rades T, Heinz A. Zein-polycaprolactone core-shell nanofibers for wound healing. Int J Pharm 2022; 621:121809. [PMID: 35550408 DOI: 10.1016/j.ijpharm.2022.121809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
In a previous study, we developed electrospun antimicrobial microfiber scaffolds for wound healing composed of a core of zein protein and a shell containing polyethylene oxide. While providing a promising platform for composite nanofiber design, the scaffolds showed low tensile strengths, insufficient water stability, as well as burst release of the antimicrobial drug tetracycline hydrochloride, properties which are not ideal for the use of the scaffolds as wound dressings. Therefore, the aim of the present study was to develop fibers with enhanced mechanical strength and water stability, also displaying sustained release of tetracycline hydrochloride. Zein was chosen as core material, while the shell was formed by the hydrophobic polymer polycaprolactone, either alone or in combination with polyethylene oxide. As compared to control fibers of pristine polycaprolactone, the zein-polycaprolactone fibers exhibited a reduced diameter and hydrophobicity, which is beneficial for cell attachment and wound closure. Such fibers also demonstrated sustained release of tetracycline hydrochloride, as well as water stability, ductility, high mechanical strength and fibroblast attachment, hence representing a step towards the development of biodegradable wound dressings with prolonged drug release, which can be left on the wound for a longer time.
Collapse
Affiliation(s)
- Alma Martin
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; School of Medicine, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan (current address)
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anna-Lena Schaedel
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mariena van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, S-22184 Lund, Sweden
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Physical Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
18
|
Al-Domi D, Bozeya A, Al-Fandi M. Development of an Insulin Nano-Delivery System through Buccal Administration. Curr Drug Deliv 2022; 19:889-901. [PMID: 35023456 DOI: 10.2174/1567201819666220112121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
AIM To develop a new nano-delivery system for insulin buccal administration. BACKGROUND Biodegradable polymeric nanoparticles (PNPs) had viewed countless breakthroughs in drug delivery systems. The main objective of PNPs application in delivering and carrying different promising drugs is to make sure that the drugs being delivered to their action sites. As a result maximizing the desired effect and overcoming their limitations and drawbacks. OBJECTIVES The main goals of this study were to produce an insulin consumable nano-delivery system for buccal administration and enhance the mucoadhesive effect in sustaining insulin release. METHODS Water in oil in water (W-O-W) microemulsion solvent evaporation technique was used for the preparation of nanoparticles consisting from positively charged poly (D, L-lactide-co-glycolide) coated with chitosan and loaded with insulin. Later, a consumable buccal film was prepared by the spin coating method and loaded with the previously prepared nanoparticles. RESULTS The newly prepared nanoparticle was assessed in terms of size, charge and surface morphology using a Scanning Electron Microscope (SEM), zeta potential, Atomic Force Microscope (AFM), and Fourier Transform Infra-red (FTIR) spectroscopy. An in-vitro investigation of the insulin release, from nanoparticles and buccal film, demonstrated controlled as well as sustained delivery over 6 hrs. The cumulative insulin release decreased to about (28.9%) with buccal film in comparing with the nanoparticle (50 %). CONCLUSION The buccal film added another barrier for insulin release. Therefore, the release was sustained.
Collapse
Affiliation(s)
- Diaa Al-Domi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayat Bozeya
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohamed Al-Fandi
- Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
19
|
Aizamddin MF, Mahat MM, Ariffin ZZ, Samsudin I, Razali MSM, Amir M‘A. Synthesis, Characterisation and Antibacterial Properties of Silicone-Silver Thin Film for the Potential of Medical Device Applications. Polymers (Basel) 2021; 13:polym13213822. [PMID: 34771378 PMCID: PMC8588057 DOI: 10.3390/polym13213822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
Silver (Ag) particles have sparked considerable interest in industry and academia, particularly for health and medical applications. Here, we present the “green” and simple synthesis of an Ag particle-based silicone (Si) thin film for medical device applications. Drop-casting and peel-off techniques were used to create an Si thin film containing 10–50% (v/v) of Ag particles. Electro impedance spectroscopy (EIS), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and tensile tests were used to demonstrate the electrical conductivity, crystallinity, morphology-elemental, and mechanical properties, respectively. The oriented crystalline structure and excellent electronic migration explained the highest conductivity value (1.40 × 10−5 S cm−1) of the 50% Ag–Si thin film. The findings regarding the evolution of the conductive network were supported by the diameter and distribution of Ag particles in the Si film. However, the larger size of the Ag particles in the Si film resulted in a lower tensile stress of 68.23% and an elongation rate of 68.25% compared to the pristine Si film. The antibacterial activity of the Ag–Si film against methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) was investigated. These findings support Si–Ag thin films’ ability to avoid infection in any medical device application.
Collapse
Affiliation(s)
- Muhammad Faiz Aizamddin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Mohd Muzamir Mahat
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
- Correspondence: (M.M.M.); (M.A.A.)
| | - Zaidah Zainal Ariffin
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Irwan Samsudin
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia; (I.S.); (M.S.M.R.)
| | - Muhammad Syafiek Mohd Razali
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia; (I.S.); (M.S.M.R.)
| | - Muhammad ‘Abid Amir
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh 47000, Malaysia; (I.S.); (M.S.M.R.)
- Correspondence: (M.M.M.); (M.A.A.)
| |
Collapse
|
20
|
Contardi M, Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021; 13:999. [PMID: 34371691 PMCID: PMC8309026 DOI: 10.3390/pharmaceutics13070999] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations of skin homeostasis are widely diffused in our everyday life both due to accidental injuries, such as wounds and burns, and physiological conditions, such as late-stage diabetes, dermatitis, or psoriasis. These events are locally characterized by an intense inflammatory response, a high generation of harmful free radicals, or an impairment in the immune response regulation, which can profoundly change the skin tissue' repair process, vulnerability, and functionality. Moreover, diabetes diffusion, antibiotic resistance, and abuse of aggressive soaps and disinfectants following the COVID-19 emergency could be causes for the future spreading of skin disorders. In the last years, hydroxycinnamic acids and derivatives have been investigated and applied in several research fields for their anti-oxidant, anti-inflammatory, and anti-bacterial activities. First, in this study, we give an overview of these natural molecules' current source and applications. Afterwards, we review their potential role as valid alternatives to the current therapies, supporting the management and rebalancing of skin disorders and diseases at different levels. Also, we will introduce the recent advances in the design of biomaterials loaded with these phenolic compounds, specifically suitable for skin disorders treatments. Lastly, we will suggest future perspectives for introducing hydroxycinnamic acids and derivatives in treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| | - Martina Lenzuni
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Fabrizio Fiorentini
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Giulia Suarato
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Athanassia Athanassiou
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| |
Collapse
|