1
|
Zhou X, Ma W, Jiang J, Dang J, Lv R, Wang H, Ma M, Sun D, Zhang M. Non-antibiotic dependent photothermal antibacterial hemostatic MXene hydrogel for infectious wounds healing. BIOMATERIALS ADVANCES 2025; 169:214157. [PMID: 39721572 DOI: 10.1016/j.bioadv.2024.214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (Ti3C2Tx) through employing H2O2/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA. By employing TA as the multi-functional H-bond provider, the adhesiveness, hemostatic ability, mechanical property and bactericidal performance of the hydrogel was enhanced. And MXene in this system exerted benign photothermal antimicrobial performance, it was able to transform near-infrared (NIR) light into heat, then the bacteria would be physically damaged (thermal destruction) due to the hyperthermy, hence the antibacterial effect of which will not be restricted by antibiotic resistance. The temperature of the hydrogel in the experimental group can be increased by 25 °C after irradiation by 808 nm NIR light for 10 min, and the bactericidal efficiency against both E. coli and S. aureus reached >99 %. In vivo tests demonstrated that with the assistance of NIR irradiation, the hydrogel can distinctly accelerate the S. aureus infected wound closure. We envisage that this non-antibiotic dependent multifunctional photothermal hydrogel can provide a promise for bacteria-invaded wound healing.
Collapse
Affiliation(s)
- Xingyu Zhou
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wendi Ma
- Chongqing Polycomp International Co., Ltd, Chongqing 400082, China
| | - Junhui Jiang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Junbo Dang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ruifu Lv
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongbo Wang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Minna Ma
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dahui Sun
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Mei Zhang
- National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Farzan M, Soleimannejad M, Shariat S, Heidari Sureshjani M, Gholipour A, Ashrafi Dehkordi K, Alerasoul Dehkordi SMR, Farzan M. A biomimetic injectable chitosan/alginate hydrogel biocopmosites encapsulating selenium- folic acid nanoparticles for regeneration of spinal cord injury: An in vitro study. Int J Biol Macromol 2025; 288:138682. [PMID: 39672404 DOI: 10.1016/j.ijbiomac.2024.138682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Spinal cord injury (SCI) poses significant challenges to regenerative medicine due to its limited self-repair capabilities. In this study, we engineered a biomimetic injectable hydrogel using modified chitosan and alginate biopolymers encapsulating selenium-folic acid nanoparticles (Se-FA NPs) to facilitate SCI regeneration. The hydrogel exhibited a unique porous structure attributed to the incorporation of nanofiber fragments, enhancing its biocompatibility and bioactivity. Through a series of in vitro evaluations, including cell viability assays, proliferation studies, gene expression analysis, we assessed the hydrogel's cytocompatibility and its potential for supporting neural cell growth. Our results demonstrate the promising efficacy of the hydrogel in providing a conducive microenvironment for neural tissue regeneration. Moreover, the sustained release of Se-FA NPs from the hydrogel system offers neuroprotective, antioxidative, and anti-inflammatory benefits crucial for SCI therapy. Overall, our biomimetic hydrogel biocomposites hold great potential as a therapeutic strategy for promoting spinal cord regeneration, highlighting their significance in advancing the field of regenerative medicine.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mostafa Soleimannejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Saeedeh Shariat
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Heidari Sureshjani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abolfazl Gholipour
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mahour Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
3
|
Zhu J, Li M, Yang S, Zou Y, Lv Y. Multifunctional electrospinning periosteum: Development status and prospect. J Biomater Appl 2025:8853282251315186. [PMID: 39797782 DOI: 10.1177/08853282251315186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.
Collapse
Affiliation(s)
- Jinli Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Meifeng Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, P.R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, China
| |
Collapse
|
4
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
5
|
Wang R, Xu S, Zhang M, Feng W, Wang C, Qiu X, Li J, Zhao W. Multifunctional chitosan-based hydrogels loaded with iridium nanoenzymes for skin wound repair. Carbohydr Polym 2024; 342:122325. [PMID: 39048214 DOI: 10.1016/j.carbpol.2024.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 07/27/2024]
Abstract
Hemostasis, infection, oxidative stress, and inflammation still severely impede the wound repair process. It is significant to develop multifunctional wound dressings that can function as needed in various stages of wound healing. In this study, iridium nanoparticles (IrNPs) with multi-enzyme mimetic activity were complexed with chitosan (CS) and fucoidan (FD) for the first time to make a multifunctional CS/FD/IrNPs hydrogel with excellent antioxidant effect. The hydrogel has excellent physicochemical properties. In particular, the incorporation of IrNPs imparts excellent antioxidant properties to the hydrogel, which could scavenge reactive oxygen species (ROS). In addition, the hydrogel shows excellent hemostatic and antibacterial properties. The CS/FD/IrNPs hydrogel performs fast and efficient hemostasis in 21 s. Moreover, the blood loss of the CS/FD/IrNPs hydrogel group was approximately 10% of that in the control group and the antibacterial rate of CS/FD/IrNPs hydrogel against E. coli and S. aureus was up to 95 %. In vivo results demonstrate that CS/FD/IrNPs hydrogel promotes wound healing by attenuating ROS levels, reducing oxidative damage, mitigating inflammation, and accelerating angiogenesis. To summarize, the CS/FD/IrNPs hydrogel system, with hemostatic, antibacterial, antioxidant, anti-inflammatory and pro-healing activities, can be a promising and effective strategy for the treatment of clinically difficult-to-heal wounds.
Collapse
Affiliation(s)
- Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jierui Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
6
|
Wei H, Fang G, Song W, Cao H, Dong R, Huang Y. Resveratrol's bibliometric and visual analysis from 2014 to 2023. FRONTIERS IN PLANT SCIENCE 2024; 15:1423323. [PMID: 39439517 PMCID: PMC11493714 DOI: 10.3389/fpls.2024.1423323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Introduction Resveratrol (RSV) is a natural polyphenolic compound derived from a variety of plants that possesses a wide range of biological activities, including antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, anti-aging, anti-radiation damage, anti-apoptosis, immune modulation, regulation of glucolipid metabolism, inhibition of lipid deposition, and anti-neuro. It is therefore considered a promising drug with the potential to treat a wide range of diseases. Method In this study, using Web of Science Core Collection (WoSCC) and CiteSpace bibliometric tool, VOSviewer quantitatively visualized the number of countries, number of authors, number of institutions, number of publications, keywords, and references of 16,934 resveratrol-related papers from 2014-2023 for quantitative and qualitative analysis. Results The results showed that an average of 1693.4 papers were published per year, with a general upward trend. China had the most publications with 5877. China Medical University was the institution with the largest number of publications and the highest number of citations in the field. The research team was mainly led by Prof. Richard Tristan, and the journal with the highest number of published papers was Molecular. Dietary polyphenols, oxidative stress, and antioxidant and anti-inflammatory effects are the most frequently cited articles. Oxidative stress, apoptosis, expression, and other keywords play an important role in connecting other branches of the field. Discussion Our analysis indicates that the integration of nanoparticles with RSV is poised to become a significant trend. RSV markedly inhibits harmful bacteria, fosters the proliferation of beneficial bacteria, and enhances the diversity of the intestinal flora, thereby preventing intestinal flora dysbiosis. Additionally, RSV exhibits both antibacterial and antiviral properties. It also promotes osteogenesis and serves a neuroprotective function in models of Alzheimer's disease. The potential applications of RSV in medicine and healthcare are vast. A future research challenge lies in modifying its structure to develop RSV derivatives with superior biological activity and bioavailability. In the coming years, innovative pharmaceutical formulations of RSV, including oral, injectable, and topical preparations, may be developed to enhance its bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Haoyue Wei
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guowei Fang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hongye Cao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruizhe Dong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Dong Y, Ding Z, Bai Y, Lu L, Dong T, Li Q, Liu J, Chen S. Core-Shell Gel Nanofiber Scaffolds Constructed by Microfluidic Spinning toward Wound Repair and Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404433. [PMID: 39005186 PMCID: PMC11497022 DOI: 10.1002/advs.202404433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Zongkun Ding
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Yuting Bai
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ling‐Yu Lu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ting Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ji‐Dong Liu
- School of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| |
Collapse
|
8
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
9
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
10
|
Rathna RP, Kulandhaivel M. Advancements in wound healing: integrating biomolecules, drug delivery carriers, and targeted therapeutics for enhanced tissue repair. Arch Microbiol 2024; 206:199. [PMID: 38563993 DOI: 10.1007/s00203-024-03910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Wound healing, a critical biological process vital for tissue restoration, has spurred a global market exceeding $15 billion for wound care products and $12 billion for scar treatment. Chronic wounds lead to delayed or impaired wound healing. Natural bioactive compounds, prized for minimal side effects, stand out as promising candidates for effective wound healing. In response, researchers are turning to nanotechnology, employing the encapsulation of these agents into drug delivery carriers. Drug delivery system will play a crucial role in enabling targeted delivery of therapeutic agents to promote tissue regeneration and address underlying issues such as inflammation, infection, and impaired angiogenesis in chronic wound healing. Drug delivery carriers offer distinct advantages, exhibiting a substantial ratio of surface area to volume and altered physical and chemical properties. These carriers facilitate sustained and controlled release, proving particularly advantageous for the extended process of wound healing, that typically comprise a diverse range of components, integrating both natural and synthetic polymers. Additionally, they often incorporate bioactive molecules. Despite their properties, including poor solubility, rapid degradation, and limited bioavailability, various natural bioactive agents face challenges in clinical applications. With a global research, emphasis on harnessing nanomaterial for wound healing application, this research overview engages advancing drug delivery technologies to augment the effectiveness of tissue regeneration using bioactive molecules. Recent progress in drug delivery has poised to enhance the therapeutic efficacy of natural compounds in wound healing applications.
Collapse
Affiliation(s)
- R Preethi Rathna
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India
| | - M Kulandhaivel
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, 641021, India.
| |
Collapse
|
11
|
Khazaei M, Alizadeh M, Rezakhani L. Resveratrol-loaded decellularized ovine pericardium: ECM introduced for tissue engineering. Biotechnol Appl Biochem 2024; 71:387-401. [PMID: 38082540 DOI: 10.1002/bab.2547] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/25/2023] [Indexed: 04/11/2024]
Abstract
An ideal scaffold for skin tissue engineering should have a suitable potential for antibacterial activity, no hemolysis, sufficient porosity for air exchange, water retention capacity, and a suitable swelling rate to maintain tissue moisture. Considering this issue, our study used decellularized ovine pericardial tissue's extracellular matrix (ECM). These scaffolds were decellularized with sodium dodecyl sulfate (SDS) and sodium deoxycholate (SD) detergents along with vacuum methods. Following imaging with scanning electron microscopy (SEM), analysis of the mechanical properties, and the measurement of the amount of DNA, collagen, and glycosaminoglycan (GAG), our study observed that the three-dimensional (3D) structure of ECM was largely preserved. Resveratrol (RES) 400 µg/µL was loaded into the above scaffold, and analysis revealed that scaffolds containing RES and with vacuum reported higher antibacterial properties, a higher swelling rate, and increased water retention capacity. The biocompatibility and hemocompatibility properties of the above scaffolds also reported a significant difference between methods of decellularization.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Wu H, Zhang X, Wang Z, Chen X, Li Y, Fang J, Zheng S, Zhang L, Li C, Hao L. Preparation, properties and in vitro osteogensis of self-reinforcing injectable hydrogel. Eur J Pharm Sci 2024; 192:106617. [PMID: 37865283 DOI: 10.1016/j.ejps.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
As an attractive biomaterial for bone reconstruction, injectable biomaterials have many prominent characteristics such as good biocompatibility and bone-filling ability. However, there are weak as load-bearing scaffolds. In this study, polyvinyl alcohol (PVA) and bioactive glass (BAG) were interpenetrated into sodium alginate (SA) network to obtain self-enhanced injectable hydrogel. The optimum ratio of PVA/SA/BAG hydrogel was determined based on injectability, gelation time and chemical characterization. Results showed that the selected ratio had the shortest gelation time of 3.5min, and the hydrogel had a rough surface and good coagulation property. The hydrogel was capable of carrying 1kg of weight by mineralization for 14 d The compressive strength, compressive modulus, and fracture energy of the hydrogel reached 0.12MPa, 0.376MPa and 17.750kJ m-2, respectively. Meanwhile, the hydrogel had high moisture content and dissolution rate, and it was sensitive to temperature and ionic strength. Hydroxyapatite was generated on the hydrogel surface, and the hydrogel pores increased, and the pore size enlarged. The biocompatibility of PVA/SA/BAG hydrogel was analyzed using hemolysis and cytotoxicity assays. Results revealed its good biocompatibility with low hemolysis rate and no cytotoxicity to MC3T3-E1 cells. The hydrogel was also found to promote the differentiation of MC3T3-E1 cells with significantly increased in ALP activity and expression of relevant differentiation factors. In vitro mineralization assay showed an increase in calcium nodules and calcification area, indicating the ability of hydrogel to promote mineralization MC3T3-E1 cells. These findings indicated that PVA/SA/BAG hydrogel had potential uses in the field of irregular bone-defect repair due to its injectability, cytocompatibility, and tailorable functionality.
Collapse
Affiliation(s)
- Hongyan Wu
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yi Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jiayuan Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Libo Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Changhong Li
- College of Life Sciences, Baicheng Normal University, Baicheng, Jilin, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Wang B, Lu G, Song K, Chen A, Xing H, Wu J, Sun Q, Li G, Cai M. PLGA-based electrospun nanofibers loaded with dual bioactive agent loaded scaffold as a potential wound dressing material. Colloids Surf B Biointerfaces 2023; 231:113570. [PMID: 37812862 DOI: 10.1016/j.colsurfb.2023.113570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Chronic and infectious wounds are major public health issues with financial and clinical manifestations. Developing a multitasking extracellular matrix mimicking scaffold can bring revolution saving millions of lives. Many bioactive agents are offering therapeutic promises in managing infectious wounds but require a suitable delivery system to ensure not only their bioavailability possible on the wound site but also control their burst release hence making them either useless or highly cytotoxic. In this study, we reported the dual bioactive agent-loaded electrospinning nanofibers potentially useable against infectious wounds. The zinc oxide nanoparticles (ZnO NPs) and vascular endothelial growth factors (VEGF), highly relevant bioactive agents, were chosen to be co-delivered to the wound site through the core-shell electrospun membrane. The physicochemical properties of prepared membranes were characterized through various physicochemical tools. Our result demonstrated that PLGA polymer can be electrospun into smooth fibers. X-ray diffraction analysis revealed the successful loading of ZnO NPs which was further confirmed by TEM. The fabricated membrane exhibited a suitable mechanical behavior. Moreover, the incorporation of ZnO NPs has turned the nanofibers into an effective antibacterial scaffold. Besides, the membranes were also evaluated for their cytotoxicity. The in vitro cell culturing on various membranes revealed that cell maintained their maximum viability on all the membranes. The potential of in vivo wound healing was further demonstrated through animal experiments. Our results show that membranes could not only influence early wound contraction, but also better tissue organization demonstrated through histopathological evaluation. We successfully demonstrated the rich vascularization network by synching the actions of ZnO NPs and VEGF. In conclusion, the fabricated membranes possess suitable physicochemical properties and promising biological activity and hence should be further exploited for in vivo wound healing potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Guanghua Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Kaihang Song
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Aopan Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Hu Xing
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Jiezhou Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Qi Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China
| | - Gen Li
- Department of Orthopaedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China.
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China.
| |
Collapse
|
14
|
Kacvinská K, Pavliňáková V, Poláček P, Michlovská L, Blahnová VH, Filová E, Knoz M, Lipový B, Holoubek J, Faldyna M, Pavlovský Z, Vícenová M, Cvanová M, Jarkovský J, Vojtová L. Accelular nanofibrous bilayer scaffold intrapenetrated with polydopamine network and implemented into a full-thickness wound of a white-pig model affects inflammation and healing process. J Nanobiotechnology 2023; 21:80. [PMID: 36882867 PMCID: PMC9990222 DOI: 10.1186/s12951-023-01822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor β (TGFβ1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.
Collapse
Affiliation(s)
- Katarína Kacvinská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Veronika Pavliňáková
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Petr Poláček
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Lenka Michlovská
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Veronika Hefka Blahnová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská142 20, 1083, Prague 4, Czech Republic
| | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská142 20, 1083, Prague 4, Czech Republic
| | - Martin Knoz
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic.,Department of Plastic and Aesthetic Surgery, Faculty of Medicine, St. Anne's University Hospital, Masaryk University, Pekařská, 664/53, 602 00, Brno, Czech Republic
| | - Břetislav Lipový
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.,Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic
| | - Jakub Holoubek
- Department of Burns and Plastic Surgery, Faculty of Medicine, Institution Shared With University Hospital Brno, Masaryk University, Jihlavská, 20, 625 00, Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Zdeněk Pavlovský
- Institute of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, 625 00, Czech Republic
| | - Monika Vícenová
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Michaela Cvanová
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Zhang M, Xu S, Du C, Wang R, Han C, Che Y, Feng W, Wang C, Gao S, Zhao W. Novel PLCL nanofibrous/keratin hydrogel bilayer wound dressing for skin wound repair. Colloids Surf B Biointerfaces 2023; 222:113119. [PMID: 36621177 DOI: 10.1016/j.colsurfb.2022.113119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this study, a novel poly(L-lactate-caprolactone) copolymer (PLCL) nanofibrous/keratin hydrogel bilayer wound dressing loaded with fibroblast growth factor (FGF-2) was prepared by the low-pressure filtration-assisted method. The ability of the keratin hydrogel in the bilayer dressing to mimic the dermis and that of the nanofibrous PLCL to mimic the epidermis were discussed. Keratin hydrogel exhibited good porosity and maximum water absorption of 874.09%. Compared with that of the dressing prepared by the coating method, the interface of the bilayer dressing manufactured by the low-pressure filtration-assisted method (filtration time: 20 min) was tightly bonded, and its bilayer dressing interface could not be easily peeled off. The elastic modulus of hydrogel was about 44 kPa, which was similar to the elastic modulus of the dermis (2-80 kPa). Additionally, PLCL nanofibers had certain toughness and flexibility suitable for simulating the epidermal structures. In vitro studies showed that the bilayer dressing was biocompatible and biodegradable. In vivo studies indicated that PLCL/keratin-FGF-2 bilayer dressing could promote re-epithelialization, collagen deposition, skin appendages (hair follicles) regeneration, microangiogenesis construction, and adipose-derived stem cells (ADSCs) recruitment. The introduction of FGF-2 resulted in a better repair effect. The bilayer dressing also solved the problems of poor interface adhesion of hydrogel/electrospinning nanofibers. This paper also explored the preliminary role and mechanism of bilayer dressing in promoting skin healing, showing that its potential applications as a biomedical wound dressing in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chen Du
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Cuicui Han
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongan Che
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shan Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
16
|
Wang Z, Hu W, Wang W, Xiao Y, Chen Y, Wang X. Antibacterial Electrospun Nanofibrous Materials for Wound Healing. ADVANCED FIBER MATERIALS 2023; 5:107-129. [DOI: 10.1007/s42765-022-00223-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 08/25/2024]
|
17
|
Shabani Samghabadi M, Karkhaneh A, Katbab AA. Synthesis and characterization of biphasic layered structure composite with simultaneous electroconductive and piezoelectric behavior as a scaffold for bone tissue engineering. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mina Shabani Samghabadi
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
18
|
Xu Z, Wu L, Tang Y, Xi K, Tang J, Xu Y, Xu J, Lu J, Guo K, Gu Y, Chen L. Spatiotemporal Regulation of the Bone Immune Microenvironment via Dam-Like Biphasic Bionic Periosteum for Bone Regeneration. Adv Healthc Mater 2023; 12:e2201661. [PMID: 36189833 PMCID: PMC11469314 DOI: 10.1002/adhm.202201661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Indexed: 02/03/2023]
Abstract
The bone immune microenvironment (BIM) regulates bone regeneration and affects the prognosis of fractures. However, there is currently no effective strategy that can precisely modulate macrophage polarization to improve BIM for bone regeneration. Herein, a hybridized biphasic bionic periosteum, inspired by the BIM and functional structure of the natural periosteum, is presented. The gel phase is composed of genipin-crosslinked carboxymethyl chitosan and collagen self-assembled hybrid hydrogels, which act as the "dam" to intercept IL-4 released during the initial burst from the bionic periosteum fiber phase, thus maintaining the moderate inflammatory response of M1 macrophages for mesenchymal stem cell recruitment and vascular sprouting at the acute fracture. With the degradation of the gel phase, released IL-4 cooperates with collagen to promote the polarization towards M2 macrophages, which reconfigure the local microenvironment by secreting PDGF-BB and BMP-2 to improve vascular maturation and osteogenesis twofold. In rat cranial defect models, the controlled regulation of the BIM is validated with the temporal transition of the inflammatory/anti-inflammatory process to achieve faster and better bone defect repair. This strategy provides a drug delivery system that constructs a coordinated BIM, so as to break through the predicament of the contradiction between immune response and bone tissue regeneration.
Collapse
Affiliation(s)
- Zonghan Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Wu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yu Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kun Xi
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jincheng Tang
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Yichang Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jingzhi Xu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Jian Lu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Kaijin Guo
- Department of Orthopedicsthe Affiliated Hospital of Xuzhou Medical University99 Huaihai West RoadXuzhouJiangsu221000P. R. China
| | - Yong Gu
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| | - Liang Chen
- Department of Orthopedicsthe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215006P. R. China
| |
Collapse
|
19
|
Zhang X, Shi L, Xiao W, Wang Z, Wang S. Design of Adhesive Hemostatic Hydrogels Guided by the Interfacial Interactions with Tissue Surface. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaobin Zhang
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Lianxin Shi
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- Binzhou Institute of Technology Binzhou 256600 P.R. China
| | - Wuyi Xiao
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
- Qingdao Casfuture Research Institute Co. Ltd Qingdao 266109 P.R. China
| |
Collapse
|
20
|
Jia Y, Shao JH, Zhang KW, Zou ML, Teng YY, Tian F, Chen MN, Chen WW, Yuan ZD, Wu JJ, Yuan FL. Emerging Effects of Resveratrol on Wound Healing: A Comprehensive Review. Molecules 2022; 27:molecules27196736. [PMID: 36235270 PMCID: PMC9570564 DOI: 10.3390/molecules27196736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Collapse
Affiliation(s)
- Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Jia-Hao Shao
- Wuxi Clinical Medicine Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Fan Tian
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Meng-Nan Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Wei-Wei Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
- Correspondence: ; Tel./Fax: +86-510-82603332
| |
Collapse
|
21
|
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081574. [PMID: 36015200 PMCID: PMC9414988 DOI: 10.3390/pharmaceutics14081574] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research.
Collapse
Affiliation(s)
- Nithya Rani Raju
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery No 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Centre for Experimental Pharmacology and Toxicology (CPT), Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Correspondence: ; Tel.: +91-9535413026
| |
Collapse
|
22
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Wu L, He Y, Mao H, Gu Z. Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. J Mater Chem B 2022; 10:7148-7160. [PMID: 35475512 DOI: 10.1039/d2tb00591c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Due to their inherent and tunable biomechanical and biochemical performances, bioactive hydrogels based on polysaccharides and peptides have shown attractive potential for wound management. In this review, the recent progress of bioactive hydrogels prepared by polysaccharides and peptides for soft tissue wound management is overviewed. Meanwhile, we focus on the elaboration of the relationship between chemical structures and inherent bioactive functions of polysaccharides and peptides, as well as the strategies that are taken for achieving multiple wound repairing effects including hemostasis, adhesion, wound contraction and closure, anti-bacteria, anti-oxidation, immunomodulation, molecule delivery, etc. Some innovative and important works are well introduced as well. In the end, current study limitations, clinical unmet needs, and future directions are discussed.
Collapse
Affiliation(s)
- Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
24
|
Hu W, Wang Y, Chen J, Yu P, Tang F, Hu Z, Zhou J, Liu L, Qiu W, Ye Y, Jia Y, Zhou S, Long J, Zeng Z. Regulation of biomaterial implantation-induced fibrin deposition to immunological functions of dendritic cells. Mater Today Bio 2022. [PMID: 35252832 DOI: 10.1016/j.mtadv.2022.100224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
The performance of implanted biomaterials is largely determined by their interaction with the host immune system. As a fibrous-like 3D network, fibrin matrix formed at the interfaces of tissue and material, whose effects on dendritic cells (DCs) remain unknown. Here, a bone plates implantation model was developed to evaluate the fibrin matrix deposition and DCs recruitment in vivo. The DCs responses to fibrin matrix were further analyzed by a 2D and 3D fibrin matrix model in vitro. In vivo results indicated that large amount of fibrin matrix deposited on the interface between the tissue and bone plates, where DCs were recruited. Subsequent in vitro testing denoted that DCs underwent significant shape deformation and cytoskeleton reorganization, as well as mechanical property alteration. Furthermore, the immune function of imDCs and mDCs were negatively and positively regulated, respectively. The underlying mechano-immunology coupling mechanisms involved RhoA and CDC42 signaling pathways. These results suggested that fibrin plays a key role in regulating DCs immunological behaviors, providing a valuable immunomodulatory strategy for tissue healing, regeneration and implantation.
Collapse
Affiliation(s)
- Wenhui Hu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yun Wang
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Jin Chen
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Peng Yu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Fuzhou Tang
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Zuquan Hu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Jing Zhou
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Lina Liu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Wei Qiu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yuannong Ye
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yi Jia
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Jinhua Long
- Department of Head & Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Zhu Zeng
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, PR China
| |
Collapse
|
25
|
Li T, Sun M, Wu S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:784. [PMID: 35269272 PMCID: PMC8911957 DOI: 10.3390/nano12050784] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
Electrospun nanofiber materials have been considered as advanced dressing candidates in the perspective of wound healing and skin regeneration, originated from their high porosity and permeability to air and moisture, effective barrier performance of external pathogens, and fantastic extracellular matrix (ECM) fibril mimicking property. Gelatin is one of the most important natural biomaterials for the design and construction of electrospun nanofiber-based dressings, due to its excellent biocompatibility and biodegradability, and great exudate-absorbing capacity. Various crosslinking approaches including physical, chemical, and biological methods have been introduced to improve the mechanical stability of electrospun gelatin-based nanofiber mats. Some innovative electrospinning strategies, including blend electrospinning, emulsion electrospinning, and coaxial electrospinning, have been explored to improve the mechanical, physicochemical, and biological properties of gelatin-based nanofiber mats. Moreover, numerous bioactive components and therapeutic agents have been utilized to impart the electrospun gelatin-based nanofiber dressing materials with multiple functions, such as antimicrobial, anti-inflammation, antioxidation, hemostatic, and vascularization, as well as other healing-promoting capacities. Noticeably, electrospun gelatin-based nanofiber mats integrated with specific functions have been fabricated to treat some hard-healing wound types containing burn and diabetic wounds. This work provides a detailed review of electrospun gelatin-based nanofiber dressing materials without or with therapeutic agents for wound healing and skin regeneration applications.
Collapse
Affiliation(s)
| | | | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (T.L.); (M.S.)
| |
Collapse
|
26
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|