1
|
Selemani MA, Cenhrang K, Azibere S, Singhateh M, Martin RS. 3D printed microfluidic devices with electrodes for electrochemical analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6941-6953. [PMID: 39403769 DOI: 10.1039/d4ay01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A review with 93 references describing various 3D printing approaches that have been used to create microfluidic devices containing electrodes for electrochemical detection. The use of 3D printing to fabricate microfluidic devices is a rapidly growing area. One significant research area is how to detect analytes in the devices for quantitation purposes. This review article is focused on methods used to integrate electrodes into the devices for electrochemical detection. The review is organized in terms of the methodology for integrating the electrode within the device. This includes (1) external coupling of traditional electrode materials with 3D printed devices; (2) printing conductive electrode materials as part of device printing; and (3) integrating traditional electrodes into the device as part of the print process. Example applications are given and some future directions are also outlined.
Collapse
Affiliation(s)
| | | | | | | | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA.
- Center for Additive Manufacturing, Saint Louis University, USA
| |
Collapse
|
2
|
Duarte LC, Figueredo F, Chagas CLS, Cortón E, Coltro WKT. A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Anal Chim Acta 2024; 1299:342429. [PMID: 38499426 DOI: 10.1016/j.aca.2024.342429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Campus Inhumas, 75402-556, Inhumas, GO, Brazil
| | - Federico Figueredo
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Cyro L S Chagas
- Instituto de Química, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Eduardo Cortón
- Laboratorio de Biosensores y Bioanalisis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Esene JE, Burningham AJ, Tahir A, Nordin GP, Woolley AT. 3D printed microfluidic devices for integrated solid-phase extraction and microchip electrophoresis of preterm birth biomarkers. Anal Chim Acta 2024; 1296:342338. [PMID: 38401930 PMCID: PMC10895869 DOI: 10.1016/j.aca.2024.342338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Preterm birth (PTB) is a leading cause of neonatal mortality, such that the need for a rapid and accurate assessment for PTB risk is critical. Here, we developed a 3D printed microfluidic system that integrated solid-phase extraction (SPE) and microchip electrophoresis (μCE) of PTB biomarkers, enabling the combination of biomarker enrichment and labeling with μCE separation and fluorescence detection. RESULTS Reversed-phase SPE monoliths were photopolymerized in 3D printed devices. Microvalves in the device directed sample between the SPE monolith and the injection cross-channel in the serpentine μCE channel. Successful on-chip preconcentration, labeling and μCE separation of four PTB-related polypeptides were demonstrated in these integrated microfluidic devices. We further show the ability of these devices to handle complex sample matrices through the successful analysis of labeled PTB biomarkers spiked into maternal blood serum. The detection limit was 7 nM for the PTB biomarker, corticotropin releasing factor, in 3D printed SPE-μCE integrated devices. SIGNIFICANCE This work represents the first successful demonstration of integration of SPE and μCE separation of disease-linked biomarkers in 3D printed microfluidic devices. These studies open up promising possibilities for rapid bioanalysis of medically relevant analytes.
Collapse
Affiliation(s)
- Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Addalyn J Burningham
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Anum Tahir
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
4
|
Esene JE, Nasman PR, Miner DS, Nordin GP, Woolley AT. High-performance microchip electrophoresis separations of preterm birth biomarkers using 3D printed microfluidic devices. J Chromatogr A 2023; 1706:464242. [PMID: 37595419 PMCID: PMC10473225 DOI: 10.1016/j.chroma.2023.464242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
We employed digital light processing-stereolithography 3D printing to create microfluidic devices with different designs for microchip electrophoresis (µCE). Short or long straight channel, and two- or four-turn serpentine channel microfluidic devices with separation channel lengths of 1.3, 3.1, 3.0, and 4.7 cm, respectively, all with a cross injector design, were fabricated. We measured current as a function of time and voltage to determine a separation time window and conditions for the onset of Joule heating in these designs. Separations in these devices were evaluated by performing µCE and measuring theoretical plate counts for electric field strengths near and above the onset of Joule heating, with fluorescently labeled glycine and phenylalanine as model analytes. We further demonstrated µCE of peptides and proteins related to preterm birth risk, showing increased peak capacity and resolution compared to previous results with 3D printed microdevices. These results mark an important step forward in the use of 3D printed microfluidic devices for rapid bioanalysis by µCE.
Collapse
Affiliation(s)
- Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Parker R Nasman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Dallin S Miner
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
5
|
Isiksacan Z, D’Alessandro A, Wolf SM, McKenna DH, Tessier SN, Kucukal E, Gokaltun AA, William N, Sandlin RD, Bischof J, Mohandas N, Busch MP, Elbuken C, Gurkan UA, Toner M, Acker JP, Yarmush ML, Usta OB. Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine. Proc Natl Acad Sci U S A 2023; 120:e2115616120. [PMID: 37494421 PMCID: PMC10410732 DOI: 10.1073/pnas.2115616120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO80045
| | - Susan M. Wolf
- Law School, Medical School, Consortium on Law and Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN55455
| | - David H. McKenna
- Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | | | - A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Chemical Engineering, Hacettepe University, Ankara06532, Turkey
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
| | - Rebecca D. Sandlin
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA94105
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA94105
| | - Caglar Elbuken
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara06800, Turkey
- Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014Oulu, Finland
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd., 90570Oulu, Finland
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Jason P. Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, ABT6G 2R8, Canada
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ08854
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| |
Collapse
|
6
|
3D printed microfluidics for bioanalysis: A review of recent advancements and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|