1
|
Jiang W, Zhu Y, Tang Q, Kang X, Ji H, Guo C, Gu X, Zhang J, Mao Z, Wu L, Qin Y. On-site detection of OTA and AFB1 based on branched hybridization chain reaction coupled with lateral flow assay. Talanta 2025; 283:127095. [PMID: 39454347 DOI: 10.1016/j.talanta.2024.127095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Mycotoxins are widely prevalent in various agricultural commodities, whose excessive consumption can pose significant risks to human health. In this study, we developed a facile mycotoxin detection platform based on branched hybridization chain reaction coupled with lateral flow assay. Ochratoxin A/Aflatoxin B1 bind to aptamers triggering the release of initiators, which leads to bHCR amplification and forms three-dimensional dendritic DNA nanostructures. Using the functionalized quantum dots as a fluorescent label, by leveraging smartphones and handheld ultraviolet lamps, the qualitative and quantitative detection of OTA and AFB1 can be achieved with a significantly enhanced sensitivity level, surpassing that of commercial test strips by 2-3 orders of magnitude. The visual detection limits for OTA and AFB1 were 30 pg/mL and 4 pg/mL, respectively. This approach eliminates the necessity for enzyme catalysis or the preparation and purification of antibodies and/or hapten, thereby reducing testing expenses and streamlining operational procedures. Moreover, substituting aptamer and nucleic acid sequences can effectively expand the scope of detection targets. Consequently, the as-proposed strategy exhibits great potential as a versatile technique, suitable for various analytical scenarios due to its sensitivity, accuracy, simplicity, and portability.
Collapse
Affiliation(s)
- Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xiaoxia Kang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Conglin Guo
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jing Zhang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
| | - Li Wu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
2
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|
3
|
Mengistu Asmare M, Krishnaraj C, Radhakrishnan S, Kim BS, Yun SI. Computer aided aptamer selection for fabrication of electrochemical sensor to detect Aflatoxin B 1. J Biomol Struct Dyn 2024:1-14. [PMID: 38287497 DOI: 10.1080/07391102.2024.2308760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024]
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring toxin produced by Aspergillus flavus and Aspergillus parasiticus. The AFB1 is classified as a potent carcinogen and poses significant health risks both to humans and animals. Early detection of the toxin in post-harvest agricultural products will save lives and promote healthy food production. In this study, stratified docking approach was utilized to screen and identify potential aptamers that can bind to AFB1. ssDNA sequences were acquired from the Mendeley dataset, secondary and tertiary structures were predicted through a series of bioinformatics pipelines. Further, the final DNA tertiary structures were minimized and SiteMap algorithm was used to probe and locate binding cavities. According to the final XP docking result, a 34 nt sequence (5'-ATCCTGTGAGGAATGCTCATGCATAGCAAGGGCT-3') aptamer with a docking score of -5.959 kcal/mol was considered for 200 ns MD Simulation. Finally, the screened DNA-aptamer was immobilized over the gold surface based on Au-S chemistry and utilized for the detection of AFB1. The fabricated DNA-aptamer electrode demonstrated a good analytical performance including wide linear range (1.0 to 1000 ng L-1), detection limit (1.0 ng L-1), high stability, and reproducibility.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Misgana Mengistu Asmare
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sivaprakasam Radhakrishnan
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Byoung-Sukh Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Ciobanu D, Hosu-Stancioiu O, Melinte G, Ognean F, Simon I, Cristea C. Recent Progress of Electrochemical Aptasensors toward AFB1 Detection (2018-2023). BIOSENSORS 2023; 14:7. [PMID: 38248384 PMCID: PMC10813172 DOI: 10.3390/bios14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Food contaminants represent possible threats to humans and animals as severe food safety hazards. Prolonged exposure to contaminated food often leads to chronic diseases such as cancer, kidney or liver failure, immunosuppression, or genotoxicity. Aflatoxins are naturally produced by strains of the fungi species Aspergillus, which is one of the most critical and poisonous food contaminants worldwide. Given the high percentage of contaminated food products, traditional detection methods often prove inadequate. Thus, it becomes imperative to develop fast, accurate, and easy-to-use analytical methods to enable safe food products and good practices policies. Focusing on the recent progress (2018-2023) of electrochemical aptasensors for aflatoxin B1 (AFB1) detection in food and beverage samples, without pretending to be exhaustive, we present an overview of the most important label-free and labeled sensing strategies. Simultaneous and competitive aptamer-based strategies are also discussed. The aptasensors are summarized in tabular format according to the detection mode. Sample treatments performed prior analysis are discussed. Emphasis was placed on the nanomaterials used in the aptasensors' design for aptamer-tailored immobilization and/or signal amplification. The advantages and limitations of AFB1 electrochemical aptasensors for field detection are presented.
Collapse
Affiliation(s)
- Despina Ciobanu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Gheorghe Melinte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Flavia Ognean
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| | - Ioan Simon
- Department of Surgery, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.C.); (G.M.); (F.O.)
| |
Collapse
|
5
|
Wang FP, Guan Y, Liu JW, Cheng H, Hu R. A functional nucleic acid-based fluorescence sensing platform based on DNA supersandwich nanowires and cation exchange reaction. Analyst 2023; 148:5033-5040. [PMID: 37667620 DOI: 10.1039/d3an01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Accurate and sensitive analysis of p53 DNA is important for early diagnosis of cancer. In this work, a fluorescence sensing system based on DNA supersandwich nanowires and cation exchange (CX)-triggered multiplex signal amplification was constructed for the detection of p53 DNA. In the presence of p53 DNA, the DNA self-assembles to form a DNA supersandwich nanowire that generates long double-stranded DNA. Subsequently, the cation exchange (CX) reaction between ZnS and Ag+ was utilized to release free Zn2+. With the participation of Zn2+, DNAzyme catalyzes the hydrolysis of numerous catalytic molecular beacons, resulting in a greatly enhanced fluorescence signal due to the cycling of DNAzyme. The fluorescence values increased in proportion to the concentrations of p53 DNA in the range of 10 pM to 200 nM, and a detection limit (LOD) of 2.34 pM (S/N = 3) was obtained. This method provides an effective strategy for the quantitative detection of p53 DNA.
Collapse
Affiliation(s)
- Fu-Peng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| |
Collapse
|
6
|
Rizzotto F, Khalife M, Hou Y, Chaix C, Lagarde F, Scaramozzino N, Vidic J. Recent Advances in Electrochemical Biosensors for Food Control. MICROMACHINES 2023; 14:1412. [PMID: 37512723 PMCID: PMC10384134 DOI: 10.3390/mi14071412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The rapid and sensitive detection of food contaminants is becoming increasingly important for timely prevention and treatment of foodborne disease. In this review, we discuss recent developments of electrochemical biosensors as facile, rapid, sensitive, and user-friendly analytical devices and their applications in food safety analysis, owing to the analytical characteristics of electrochemical detection and to advances in the design and production of bioreceptors (antibodies, DNA, aptamers, peptides, molecular imprinted polymers, enzymes, bacteriophages, etc.). They can offer a low limit of detection required for food contaminants such as allergens, pesticides, antibiotic traces, toxins, bacteria, etc. We provide an overview of a broad range of electrochemical biosensing designs and consider future opportunities for this technology in food control.
Collapse
Affiliation(s)
- Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yanxia Hou
- University Grenoble Alpes, CEA, CNRS, IRIG-SYMMES, 38000 Grenoble, France
| | - Carole Chaix
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- University Lyon, CNRS, University Claude Bernard Lyon 1, Institute of Analytical Sciences, 5 Rue de la Doua, 69100 Villeurbanne, France
| | | | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| |
Collapse
|