1
|
Zhang X, Du Y, Qin L, Li B, Wu Q, Meng X. Synergistic microwave hyperthermia treatment for subcutaneous deep in situ breast cancer using conformal array antennas and a microwave-thermal-sensitive nanomaterial. J Mater Chem B 2025; 13:524-535. [PMID: 39601758 DOI: 10.1039/d4tb02319f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
When microwave hyperthermia (MWH) array antenna technology is used to treat breast cancer, how to effectively target and heat deep tumors and reduce thermal damage to healthy tissues is still a challenge in clinical applications. In this study, the synergistic MWH effect of conformal-array antennas (CAA) and a novel microwave-thermal-sensitive nanomaterial (MTSN) was investigated for the treatment of subcutaneous deep in situ breast cancer. At the beginning of the study, the thermal damage score was used to evaluate the therapeutic efficacy of the CAA. It was found that although array antenna technology can achieve effective heating of deep tumors, its damage to healthy tissues is unacceptable. Consequently, we developed a novel MTSN, ZIF-8@HA, whose unique structure significantly enhanced the absorption of MW energy and MW thermal conversion efficiency in the local tumor region. The MW thermal conversion efficiency of ZIF-8@HA achieved was as high as 46.46% in in vivo MW heating experiments. In the phantom that simulates the electromagnetic environment of the human body, the microwave-thermal sensitization (MTS) effect is also significant, and the reduction in the average thermal damage score of healthy tissues by more than 10% was verified through measurements using the coaxial probe method and COMSOL simulations. Cellular experiments confirmed that the combination of ZIF-8@HA and MW irradiation could significantly reduce the survival rate of tumor cells. In addition, cross-tissue MW heating experiments revealed the advantages of ZIF-8@HA combined with the CAA. Finally, phantom experiments confirmed that the synergistic use of the CAA with ZIF-8@HA significantly accelerated the local heating rate of deep tumors, reduced the time required for the tumor region to achieve 100% thermal damage, and effectively minimized the thermal damage to healthy tissues.
Collapse
Affiliation(s)
- Xinyu Zhang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing 100190, P. R. China.
- School of Digtial and Intelligence Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Yongxing Du
- School of Digtial and Intelligence Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Ling Qin
- School of Digtial and Intelligence Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Baoshan Li
- School of Digtial and Intelligence Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing 100190, P. R. China.
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 East Road Zhongguancun, Beijing 100190, P. R. China.
| |
Collapse
|
2
|
Mao J, Wu C, Zheng L, Li Y, Yang R, Yuan P, Jiang J, Li C, Zhou X. Advances in stimulus-responsive nanomedicine for treatment and diagnosis of atherosclerosis. Colloids Surf B Biointerfaces 2025; 245:114298. [PMID: 39378703 DOI: 10.1016/j.colsurfb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Atherosclerosis (AS), an inflammatory cardiovascular disease driven by lipid deposition, presents global prevalence with high mortality. Effective anti-inflammatory or lipid removal is a promising strategy. However, current conventional drug delivery methods may face challenges in targeting disease sites and are deficient in the treatment of AS because of the nonspecific tissue distribution and uncontrollable release of the drug. In contrast, stimulus-responsive nanodrug delivery systems (NDDSs) can respond to stimulation and achieve controlled drug release rates at specific disease sites owing to the abnormal pathological microenvironment in plaques with low pH, excessive reactive oxygen species (ROS) and enzymes, and high shear stress. As a consequence, the efficacy of treatment is improved, and adverse reactions are reduced. On the other hand, NDDSs can combine exogenous stimulus responses (photothermal, ultrasound, etc.) to precisely control their function in time and space. This review for the first time focuses on the application of stimulus-responsive NDDSs in the treatment and diagnosis of AS in the last five years. In addition, its pivotal challenges and prospects are emphasized, aiming to facilitate its application for AS.
Collapse
Affiliation(s)
- Jingying Mao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lixin Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaoyao Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ronghao Yang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Li Y, Feng Q, Wang L, Gao X, Xi Y, Ye L, Ji J, Yang X, Zhai G. Current targeting strategies and advanced nanoplatforms for atherosclerosis therapy. J Drug Target 2024; 32:128-147. [PMID: 38217526 DOI: 10.1080/1061186x.2023.2300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024]
Abstract
Atherosclerosis is one of the major causes of death worldwide, and it is closely related to many cardiovascular diseases, such as stroke, myocardial infraction and angina. Although traditional surgical and pharmacological interventions can effectively retard or slow down the progression of atherosclerosis, it is very difficult to prevent or even reverse this disease. In recent years, with the rapid development of nanotechnology, various nanoagents have been designed and applied to different diseases including atherosclerosis. The unique atherosclerotic microenvironment with signature biological components allows nanoplatforms to distinguish atherosclerotic lesions from normal tissue and to approach plaques specifically. Based on the process of atherosclerotic plaque formation, this review summarises the nanodrug delivery strategies for atherosclerotic therapy, trying to provide help for researchers to understand the existing atherosclerosis management approaches as well as challenges and to reasonably design anti-atherosclerotic nanoplatforms.
Collapse
Affiliation(s)
- Yingchao Li
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Qixiang Feng
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Luyue Wang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xi Gao
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Yanwei Xi
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Lei Ye
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoye Yang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
4
|
Obaid EAMS, Yu C, Ma Y, Yang H, Fu Z. Exploring the Efficacy of pH-Responsive Vancomycin/Ag/ZIF-8 Nanoparticles Modified with Hyaluronic Acid for Enhanced Antibacterial Therapy and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39567498 DOI: 10.1021/acsami.4c16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This study introduces a novel type of metal-organic framework material, specifically zeolitic imidazolate framework-8 (ZIF-8), that is integrated with silver nanoparticles and further enhanced by incorporating vancomycin (Van) to create a composite named as Van/Ag/ZIF-8. This composite demonstrates a potent and smart antimicrobial effect due to its ability for releasing silver ions and Van in a controlled manner, especially in the microacidic conditions surrounding bacterial cells. Furthermore, we used hyaluronic acid to modify Van/Ag/ZIF-8, resulting in a composite denoted as Van/Ag/ZIF-8@HA. This composite exhibits a significant inhibition effect against the proliferation of both Gram-negative (Escherichia coli 100%) and Gram-positive (Staphylococcus aureus 99.9%) resistant bacterial strains while exerting no adverse effects on animal cellular growth. These findings underscore its favorable biocompatibility profile. The experimental results show a combined antibacterial action against prevalent bacterial infections, which is supported by in vivo experiments using a skin wound model. This work confirms the composite's significant role in fighting pathogenic infections and aiding in healing skin wounds. The innovative strategy not only tackles the pressing issue of antibiotic-resistant bacterial infections but also marks a significant advancement in the areas of wound healing and medical research, offering a promising path for future investigations and therapeutic uses.
Collapse
Affiliation(s)
- Essam A M S Obaid
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuchan Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Honglin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
He D, Li Z, Wang M, Kong D, Guo W, Xia X, Li D, Zhou D. Metal-organic-framework-based sitagliptin-release platform for multieffective radiation-induced intestinal injury targeting therapy and intestinal flora protective capabilities. J Nanobiotechnology 2024; 22:631. [PMID: 39415273 PMCID: PMC11484307 DOI: 10.1186/s12951-024-02854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
In patients with abdominal or pelvic tumors, radiotherapy can result in radiation-induced intestinal injury (RIII), a potentially severe complication for which there are few effective therapeutic options. Sitagliptin (SI) is an oral hypoglycemic drug that exhibits antiapoptotic, antioxidant, and anti-inflammatory activity, but how it influences RIII-associated outcomes has yet to be established. In this study, a pH-responsive metal-organic framework-based nanoparticle platform was developed for the delivery of SI (SI@ZIF-8@MS NP). These NPs incorporated mPEG-b-PLLA (MS) as an agent capable of resisting the effects of gastric acid, and are capable of releasing Zn2+ ions. MS was able to effectively shield these SI@ZIF-8 NPs from rapid degradation when exposed to an acidic environment, enabling the subsequent release of SI and Zn2+ within the intestinal fluid. Notably, SI@ZIF-8@MS treatment was able to mitigate radiation-induced intestinal dysbiosis in these mice. restored radiation-induced changes in bacterial composition. In summary, these data demonstrate the ability of SI@ZIF-8@MS to protect against WAI-induced intestinal damage in mice, suggesting that these NPs represent a multimodal targeted therapy that can effectively be used in the prevention or treatment of RIII.
Collapse
Affiliation(s)
- Dan He
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, 610051, China
| | - ZhiHui Li
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Min Wang
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, 610051, China
| | - Dejun Kong
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, 610051, China
| | - Wenyan Guo
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xuliang Xia
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, 610051, China.
| | - Dong Li
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Daijun Zhou
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, 610083, China.
| |
Collapse
|
6
|
Yan X, Chen C, Ren Y, Su T, Chen H, Yu D, Huang Y, Chao M, Wu G, Jiang G, Gao F. A dual-pathway pyroptosis inducer based on Au-Cu 2-xSe@ZIF-8 enhances tumor immunotherapy by disrupting the zinc ion homeostasis. Acta Biomater 2024; 188:329-343. [PMID: 39278301 DOI: 10.1016/j.actbio.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
The regulation of intracellular ionic homeostasis to trigger antigen-specific immune responses has attracted extensive interest in tumor therapy. In this study, we developed a dual-pathway nanoreactor, Au-Cu2-xSe@ZIF-8@P18 NPs (ACS-Z-P NPs), which targets danger-associated molecular patterns (DAMPs) and releases Zn2+ and reactive oxygen species (ROS) within the tumor microenvironment (TME). Zn2+ released from the metal-organic frameworks (MOFs) was deposited in the cytoplasm, leading to aberrant transcription levels of intracellular zinc-regulated proteins and DNA damage, thereby inducing pyroptosis and immunogenic cell death (ICD) dependent on caspase1/gasdermin D (GSDMD) pathway. Furthermore, upon laser irradiation, ACS-Z-P NPs could break through the limitations of inherent defects of immunosuppression in TME, enhance ROS generation through a Fenton-like reaction cascade, which subsequently triggered the activation of inflammatory vesicles and the release of damage-associated molecular patterns (DAMPs). This cascade effect led to the amplification of pyroptosis and immunogenic cell death (ICD), thereby remodeling the immunosuppressed TME. Consequently, this process improved dendritic cell (DC) antigen presentation and augmented anti-tumor T-cell responses, effectively initiating antigen-specific immune responses and further enhancing pyroptosis and ICD. This study explores the therapeutic properties of these mechanisms in detail. STATEMENT OF SIGNIFICANCE: The synthesized Au-Cu2-xSe@ZIF-8@P18 nanoparticles (ACS-Z-Ps) can effectively enhance the body's immune response by regulating zinc ion levels within cells. This regulation leads to abnormal levels of zinc-regulated protein transcription and DNA damage, which induces cellular pyroptosis. As a result, antigen presentation to dendritic cells (DCs) is improved, and anti-tumor T-cell responses are enhanced. The ACS-Z-P NPs overcome the limitations of ROS deficiency and immunosuppression in the tumor microenvironment by using H2O2 in the tumor microenvironment through a Fenton-like reaction. This leads to an increased production of ROS and O2, remodeling of the immunosuppressed tumor microenvironment, and enhanced induction of cell pyroptosis and immunogenic cell death. ACS-Z-P NPs targeted B16 cells using the photosensitizer P18 in combination with PDT treatment. This approach significantly inhibited the proliferation of B16 cells and effectively inhibited tumor growth.
Collapse
Affiliation(s)
- Xiang Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Dermatology and Venereology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Department of Dermatology, Shangqiu People's Hospital, Shangqiu, Henan 221004, China
| | - Cheng Chen
- Department of Dermatology, The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Dermatology and Venereology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Tianyu Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Han Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dehong Yu
- The Affiliated Pizhou Hospital of Xuzhou Medical University, Pizhou, Jiangsu 221399, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Guan Jiang
- Department of Dermatology and Venereology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
7
|
Ouyang Q, Zhao Y, Xu K, He Y, Qin M. Hyaluronic Acid Receptor-Mediated Nanomedicines and Targeted Therapy. SMALL METHODS 2024; 8:e2400513. [PMID: 39039982 DOI: 10.1002/smtd.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Indexed: 07/24/2024]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide found in the extracellular matrix with broad applications in disease treatment. HA possesses good biocompatibility, biodegradability, and the ability to interact with various cell surface receptors. Its wide range of molecular weights and modifiable chemical groups make it an effective drug carrier for drug delivery. Additionally, the overexpression of specific receptors for HA on cell surfaces in many disease states enhances the accumulation of drugs at pathological sites through receptor binding. In this review, the modification of HA with drugs, major receptor proteins, and the latest advances in receptor-targeted nano drug delivery systems (DDS) for the treatment of tumors and inflammatory diseases are summarized. Furthermore, the functions of HA with varying molecular weights of HA in vivo and the selection of drug delivery methods for different diseases are discussed.
Collapse
Affiliation(s)
- Qiuhong Ouyang
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kunyao Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuechen He
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Qin
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Li Z, Sun L, Lan J, Wu Y, Yang S, Zhang T, Ding Y. Illuminating the fight against breast cancer: Preparation and visualized photothermal therapy of hyaluronic acid coated ZIF-8 loading with indocyanine green and cryptotanshinone for triple-negative breast cancer. Mater Today Bio 2024; 28:101200. [PMID: 39221207 PMCID: PMC11364895 DOI: 10.1016/j.mtbio.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by higher recurrence rate and mortality. Thermally-mediated ablation via photothermal therapy (PTT) demonstrates considerable promise for the eradication of breast cancer. Nonetheless, the efficacy of PTT is impeded by the thermal tolerance of tumor cells, which is attributed to the augmented expression of heat shock proteins (HSPs). These proteins, which function as ATP-dependent molecular chaperones, confer protection to cancer cells against the cytotoxic heat generated during PTT. Glycolysis is an important way for breast cancer cells to produce ATP, which can promote the occurrence and development of lung metastasis of breast cancer. Therefore, inhibiting glycolysis may diminish the expression of HSPs, curtail the growth of breast cancer, and prevent its metastasis. Glycolytic metabolism plays a pivotal role in the ATP biosynthesis within breast cancer cells, facilitating the progression and dissemination of pulmonary metastases. Consequently, targeting glycolysis presents a strategic approach to HSP expression, the proliferation of breast cancer, and impede its metastatic spread. Herein, we designed an indocyanine green (ICG) and cryptotanshinone (CTS) loaded hyaluronic acid (HA) coated Zeolitic Imidazolate Framework-8 (ZIF-8) drug delivery system. The drug delivery system had excellent photothermal properties, which could reach temperature sufficient for photothermal ablation of tumor cells. (ICG + CTS)@HA-ZIF-8 also showed pH-responsive drug release, enhancing the sustained release of ICG and CTS to extend their systemic circulation duration. Moreover, the HA modification of ZIF-8 served to augment its targeting capabilities both in vitro and in vivo, leveraging the enhanced permeation and retention (EPR) effect, as well as active tumor targeting via the CD44 receptor pathway, resulting in a higher drug concentration and a better therapeutic effect in tumor. (ICG + CTS)@HA-ZIF-8 could downregulate the expression of glycolysis-related protein pyruvate kinase-M2 (PKM2), thereby inhibiting the glycolysis process, further suppressing tumor cell energy metabolism, downregulating the expression of HSPs, overcoming tumor cell heat resistance, and improving PTT effect. It exhibited a notable suppressive impact on both the proliferation and migration of breast cancer cells, potentially offering innovative insights for the visualized PTT in breast cancer treatment.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Siqi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- National Innovation Platform for Medical Industry-education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
9
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
10
|
Gao Y, Wang J, Zhang W, Ge F, Li W, Xu F, Cui T, Li X, Yang K, Tao Y. Application of capsaicin and calcium phosphate-loaded MOF system for tumor therapy involving calcium overload. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 60:102759. [PMID: 38851440 DOI: 10.1016/j.nano.2024.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Calcium overload therapy refers to the condition of intracellular Ca2+ overload, which causes mitochondrial damage and leads to the uncontrolled release of apoptotic factors into the cytoplasm through the open mitochondrial permeability pore. Based on this, it is playing an increasingly important role in the field of oncology due to its good efficacy and small side effects. However, the regulation of calcium homeostasis by cancer cells themselves, insufficient calcium ions (Ca2+) in tumor sites and low efficiency of calcium entering tumor have limited its efficacy, resulting in unsatisfactory therapeutic effect. Therefore, a novel CAP/BSA@TCP-ZIF-8 nanoparticle drug carrier system was constructed that can provide Ca2+ from exogenous sources for pH-controlled degradation and drug release at the same time. Both in vivo and in vitro experiments have proved that the nanomaterial can activate TRPV1 channels and provide exogenous Ca2+ to cause Ca2+ overload and apoptosis, thus achieving anti-tumor effects.
Collapse
Affiliation(s)
- Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Zeng M, Fan T, Jia M, Yin R, Xue J, Xian L, Fan P, Zhan M. Biomimetic ZIF-8 Nanoparticles: A Novel Approach for Biomimetic Drug Delivery Systems. Int J Nanomedicine 2024; 19:5523-5544. [PMID: 38882544 PMCID: PMC11178078 DOI: 10.2147/ijn.s462480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Metal-organic frameworks (MOFs) are porous materials resulting from the coordination of metal clusters or ions with organic ligands, merging macromolecular and coordination chemistry features. Among these, zeolitic imidazolate framework-8 (ZIF-8) stands out as a widely utilized MOF known for its robust stability in aqueous environments owing to the robust interaction between its constituent zinc ions (Zn2+) and 2-methylimidazole (2-MIM). ZIF-8 readily decomposes under acidic conditions, serving as a promising candidate for pH-responsive drug delivery systems. Moreover, biomimetic materials typically possess good biocompatibility, reducing immune reactions. By mimicking natural structures or surface features within the body, they enhance the targeting of nanoparticles, prolong their circulation time, and increase their bioavailability in vivo. This review explores the latest advancements in biomimetic ZIF-8 nanoparticles for drug delivery, elucidating the primary obstacles and future prospects in utilizing ZIF-8 for drug delivery applications.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Ming Jia
- Nanchong Institute for Food and Drug Control, Nanchong, People’s Republic of China
| | - Ruxi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Jia Xue
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Longjun Xian
- Department of Thoracic Surgery, Institute of Thoracic Oncology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Mei Zhan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Deng X, Wang J, Yu S, Tan S, Yu T, Xu Q, Chen N, Zhang S, Zhang M, Hu K, Xiao Z. Advances in the treatment of atherosclerosis with ligand-modified nanocarriers. EXPLORATION (BEIJING, CHINA) 2024; 4:20230090. [PMID: 38939861 PMCID: PMC11189587 DOI: 10.1002/exp.20230090] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 06/29/2024]
Abstract
Atherosclerosis, a chronic disease associated with metabolism, poses a significant risk to human well-being. Currently, existing treatments for atherosclerosis lack sufficient efficiency, while the utilization of surface-modified nanoparticles holds the potential to deliver highly effective therapeutic outcomes. These nanoparticles can target and bind to specific receptors that are abnormally over-expressed in atherosclerotic conditions. This paper reviews recent research (2018-present) advances in various ligand-modified nanoparticle systems targeting atherosclerosis by specifically targeting signature molecules in the hope of precise treatment at the molecular level and concludes with a discussion of the challenges and prospects in this field. The intention of this review is to inspire novel concepts for the design and advancement of targeted nanomedicines tailored specifically for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiujiao Deng
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinghao Wang
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Shanshan Yu
- Department of PharmacyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Suiyi Tan
- Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Tingting Yu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Qiaxin Xu
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Nenghua Chen
- Department of PharmacyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ming‐Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical, ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic DiseasesJinan UniversityGuangzhouChina
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical TranslationJinan UniversityGuangzhouChina
| |
Collapse
|
13
|
Hu B, Qiao W, Cao Y, Fu X, Song J. A sono-responsive antibacterial nanosystem co-loaded with metformin and bone morphogenetic protein-2 for mitigation of inflammation and bone loss in experimental peri-implantitis. Front Bioeng Biotechnol 2024; 12:1410230. [PMID: 38854857 PMCID: PMC11157067 DOI: 10.3389/fbioe.2024.1410230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Background Dental implants have become an increasingly popular option for replacing missing teeth, and the prevalence of peri-implantitis has also increased, which is expected to become a public health problem worldwide and cause high economic and health burdens. This scenario highlights the need for new therapeutic options to treat peri-implantitis. Methods In this study, we proposed a novel sono-responsive antibacterial nanosystem co-loaded with metformin (Met) and bone morphogenetic protein-2 (BMP-2) to promote efficacy in treating peri-implantitis. We introduced the zeolitic imidazolate framework-8 (ZIF-8) as a carrier for hematoporphyrin monomethyl ether (HMME) to enhance the antibacterial effect of sonodynamic antibacterial therapy and tested its reactive oxygen species (ROS) production efficiency and bactericidal effect in vitro. Afterward, HMME-loaded ZIF-8, BMP-2-loaded polylactic acid-glycolic acid (PLGA), and Met were incorporated into gelatin methacryloyl (GelMA) hydrogels to form HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels, and the biocompatibility of which was determined in vitro and in vivo. A bacterial-induced peri-implantitis model in the maxilla of rats was established to detect the effects of the composite hydrogels with adjunctive use of ultrasound on regulating inflammation and promoting bone tissue repair in vivo. Results The results indicated that HMME@ZIF-8 with ultrasound stimulation demonstrated more better ROS production efficiency and antimicrobial efficacy. The composite hydrogels had good biocompatibility. Ultrasound-assisted application of the composite hydrogels reduced the release of the inflammatory factors IL-6 and TNF-α and reduced bone loss around the implant in rats with bacterial-induced peri-implantitis. Conclusion Our observations suggest that HMME@ZIF-8 may be a new good sonosensitizer material for sonodynamic antibacterial therapy. The use of HMME@ZIF-8/Met/BMP-2@PLGA/GelMA composite hydrogels in combination with ultrasound can provide a novel option for treating peri-implantitis in the future.
Collapse
Affiliation(s)
- Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wang Qiao
- Department of Stomatology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
14
|
Wu S, Zhu L, Ni S, Zhong Y, Qu K, Qin X, Zhang K, Wang G, Sun D, Deng W, Wu W. Hyaluronic acid-decorated curcumin-based coordination nanomedicine for enhancing the infected diabetic wound healing. Int J Biol Macromol 2024; 263:130249. [PMID: 38368994 DOI: 10.1016/j.ijbiomac.2024.130249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Persistent over-oxidation, inflammation and bacterial infection are the primary reasons for impaired wound repairing in diabetic patients. Therefore, crucial strategies to promote diabetic wound repairing involve suppressing the inflammatory response, inhibiting bacterial growth and decreasing reactive oxygen species (ROS) within the wound. In this work, we develop a multifunctional nanomedicine (HA@Cur/Cu) designed to facilitate the repairing process of diabetic wound. The findings demonstrated that the synthesized infinite coordination polymers (ICPs) was effective in enhancing the bioavailability of curcumin and improving the controlled drug release at the site of inflammation. Furthermore, in vitro and in vivo evaluation validate the capacity of HA@Cur/Cu to inhibit bacterial growth and remove excess ROS and inflammatory mediators, thereby significantly promoting the healing of diabetic wound in mice. These compelling findings strongly demonstrate the enormous promise of this multifunctional nanomedicine for the treatment of diabetic wound.
Collapse
Affiliation(s)
- Shuai Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Li Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kai Qu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
| | - Xian Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Wuquan Deng
- Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China.
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
15
|
Xiao Z, Li Y, Xiong L, Liao J, Gao Y, Luo Y, Wang Y, Chen T, Yu D, Wang T, Zhang C, Chen Z. Recent Advances in Anti-Atherosclerosis and Potential Therapeutic Targets for Nanomaterial-Derived Drug Formulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302918. [PMID: 37698552 PMCID: PMC10582432 DOI: 10.1002/advs.202302918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Indexed: 09/13/2023]
Abstract
Atherosclerosis, the leading cause of death worldwide, is responsible for ≈17.6 million deaths globally each year. Most therapeutic drugs for atherosclerosis have low delivery efficiencies and significant side effects, and this has hampered the development of effective treatment strategies. Diversified nanomaterials can improve drug properties and are considered to be key for the development of improved treatment strategies for atherosclerosis. The pathological mechanisms underlying atherosclerosis is summarized, rationally designed nanoparticle-mediated therapeutic strategies, and potential future therapeutic targets for nanodelivery. The content of this study reveals the potential and challenges of nanoparticle use for the treatment of atherosclerosis and highlights new effective design ideas.
Collapse
Affiliation(s)
- Zhicheng Xiao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yi Li
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yijun Gao
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Ting Chen
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Dahai Yu
- Weihai Medical Area970 Hospital of Joint Logistic Support Force of PLAWeihai264200China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityNew York11439USA
| |
Collapse
|
16
|
Zhu L, Li H, Li J, Zhong Y, Wu S, Yan M, Ni S, Zhang K, Wang G, Qu K, Yang D, Qin X, Wu W. Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis. J Nanobiotechnology 2023; 21:307. [PMID: 37644442 PMCID: PMC10463892 DOI: 10.1186/s12951-023-02040-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
A disorder of cholesterol homeostasis is one of the main initiating factors in the progression of atherosclerosis (AS). Metabolism and removal of excess cholesterol facilitates the prevention of foam cell formation. However, the failure of treatment with drugs (e.g. methotrexate, MTX) to effectively regulate progression of disease may be related to the limited drug bioavailability and rapid clearance by immune system. Thus, based on the inflammatory lesion "recruitment" properties of macrophages, MTX nanoparticles (MTX NPs) camouflaged with macrophage membranes (MM@MTX NPs) were constructed for the target to AS plaques. MM@MTX NPs exhibited a uniform hydrodynamic size around ~ 360 nm and controlled drug release properties (~ 72% at 12 h). After the macrophage membranes (MM) functionalized "homing" target delivery to AS plaques, MM@MTX NPs improved the solubility of cholesterol by the functionalized β-cyclodextrin (β-CD) component and significantly elevate cholesterol efflux by the loaded MTX mediated the increased expression levels of ABCA1, SR-B1, CYP27A1, resulting in efficiently inhibiting the formation of foam cells. Furthermore, MM@MTX NPs could significantly reduce the area of plaque, aortic plaque and cholesterol crystals deposition in ApoE-/- mice and exhibited biocompatibility. It is suggested that MM@MTX NPs were a safe and efficient therapeutic platform for AS.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Hongjiao Li
- School and Hospital of Stomatology, Chongqing Medical University, Chongqing, 404100, China
| | - Jiyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Jin Feng Laboratory, Chongqing, 401329, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, China.
| | - Deqin Yang
- School and Hospital of Stomatology, Chongqing Medical University, Chongqing, 404100, China.
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
17
|
Qin S, Du X, Wang K, Wang D, Zheng J, Xu H, Wei X, Yuan Y. Vitamin A-modified ZIF-8 lipid nanoparticles for the therapy of liver fibrosis. Int J Pharm 2023:123167. [PMID: 37356511 DOI: 10.1016/j.ijpharm.2023.123167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Liver fibrosis (LF) is one of the major diseases that threaten human health. Until now, no effective drugs have been approved for clinical anti-liver fibrosis treatment. In this study, zeolitic imidazolate framework-8 (ZIF-8) lipid nanoparticles loaded with pirfenidone (PFD) and modified with vitamin A (VA) were constructed (VA-PFD@ZIF-8@DMPC NPs). PFD was embedded in ZIF-8 by the "one-pot" method, and the prepared ZIF-8 had a small particle size (84.3 nm) and high drug loading (54.46%). Moreover, the inherent pH sensitivity of ZIF-8 makes it stable in a normal physiological environment and collapsed in an acidic environment, thus controlling drug release and preventing drug leakage. Besides, the phospholipid layer makes the nano-drug delivery system dispersible and improves its biocompatibility. More importantly, VA is modified on the surface of nanoparticles (NPs), which can target the highly expressed retinol-binding protein receptor (RBPR) on the surface of hepatic stellate cells (HSCs), thereby accurately increasing the local drug concentration at the site of LF. In vivo experiments showed that VA-PFD@ZIF-8@DMPC NPs can reduce liver injury, improve the degree of LF, and exert specific therapeutic effects on LF. In conclusion, this nano-delivery system may become a novel and effective anti-liver fibrosis treatment.
Collapse
Affiliation(s)
- Si Qin
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Xuening Du
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Kaili Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Da Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiani Zheng
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Haiyan Xu
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Xiuyan Wei
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 103 Wenhua Road, Shenyang, 110016, P. R. China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| |
Collapse
|