1
|
Chen C, Merrill RA, Jong CJ, Strack S. Driving Mitochondrial Fission Improves Cognitive, but not Motor Deficits in a Mouse Model of Ataxia of Charlevoix-Saguenay. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2042-2049. [PMID: 38735882 DOI: 10.1007/s12311-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Chian Ju Jong
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, University of Iowa, Carver College of Medicine, Bowen Science Building, 51 Newton Road, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, University of Iowa, Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Bonet-Aleta J, Encinas-Gimenez M, Oi M, Pezacki AT, Sebastian V, de Martino A, Martín-Pardillos A, Martin-Duque P, Hueso JL, Chang CJ, Santamaria J. Nanomedicine Targeting Cuproplasia in Cancer: Labile Copper Sequestration Using Polydopamine Particles Blocks Tumor Growth In Vivo through Altering Metabolism and Redox Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29844-29855. [PMID: 38829261 PMCID: PMC11181271 DOI: 10.1021/acsami.4c04336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death. Further mechanistic investigations revealed that PDA NPs increased reactive oxygen species (ROS) levels, potentially through the inactivation of superoxide dismutase 1 (SOD1), a copper-dependent antioxidant enzyme. Additionally, PDA NPs were found to interact with the mitochondrial membrane, resulting in an increase in the mitochondrial membrane potential, which may contribute to enhanced ROS production. We employed an in vivo tumor model to validate the therapeutic efficacy of PDA NPs. Remarkably, in the absence of any additional treatment, the presence of PDA NPs alone led to a significant reduction in tumor volume by a factor of 1.66 after 22 days of tumor growth. Our findings highlight the potential of PDA NPs as a promising therapeutic approach for selectively targeting cancer by modulating copper levels and inducing oxidative stress, leading to tumor growth inhibition as shown in these triple-negative breast cancer models.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Miguel Encinas-Gimenez
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Miku Oi
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aidan T. Pezacki
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Victor Sebastian
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Alba de Martino
- Instituto
Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria Aragón (IIS-Aragón), Edificio CIBA. Avenida San Juan
Bosco 13, planta 1, 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Pilar Martin-Duque
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
- Departamento
de Desarrollo de Medicamentos y Terapias Avanzadas, Instituto de Salud Carlos III, Ctra. de Pozuelo, 28, 28222, Majadahonda Madrid, Spain
| | - Jose L. Hueso
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Christopher J. Chang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Helen
Willis Neuroscience Institute, University
of California, Berkeley, California 94720, United States
| | - Jesus Santamaria
- Instituto
de Nanociencia y Materiales de Aragon (INMA) CSIC, Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking
Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department
of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Instituto
de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Carmignani A, Battaglini M, Marino A, Pignatelli F, Ciofani G. Drug-Loaded Polydopamine Nanoparticles for Chemo/Photothermal Therapy against Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:2205-2217. [PMID: 38489294 DOI: 10.1021/acsabm.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly malignancy, ranking second in terms of mortality and third in terms of incidence on a global scale. The survival rates for CRC patients are unsatisfactory primarily because of the absence of highly effective clinical strategies. The efficacy of existing CRC treatments, such as chemotherapy (CT), is constrained by issues such as drug resistance and damage to healthy tissues. Alternative approaches such as photothermal therapy (PTT), while offering advantages over traditional therapies, suffer instead from a low efficiency in killing tumor cells when used alone. In this context, nanostructures can efficiently contribute to a selective and targeted treatment. Here, we combined CT and PTT by developing a nanoplatform based on polydopamine nanoparticles (PDNPs), selected for their biocompatibility, drug-carrying capabilities, and ability to produce heat upon exposure to near-infrared (NIR) irradiation. As a chemotherapy drug, sorafenib has been selected, a multikinase inhibitor already approved for clinical use. By encapsulating sorafenib in polydopamine nanoparticles (Sor-PDNPs), we were able to successfully improve the drug stability in physiological media and the consequent uptake by CRC cells, thereby increasing its therapeutic effects. Upon NIR stimulus, Sor-PDNPs can induce a temperature increment of about 10 °C, encompassing both PTT and triggering a localized and massive drug release. Sor-PDNPs were tested on healthy colon cells, showing minimal adverse outcomes; conversely, they demonstrated excellent efficacy against CRC cells, with a strong capability to hinder cancer cell proliferation and induce apoptosis. Obtained findings pave the way to new synergistic chemo-photothermal approaches, maximizing the therapeutic outcomes against CRC while minimizing side effects on healthy cells.
Collapse
Affiliation(s)
- Alessio Carmignani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Pignatelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
4
|
Chen C, Merrill RA, Jong CJ, Strack S. Driving mitochondrial fission improves cognitive, but not motor deficits in a mouse model of Ataxia of Charlevoix-Saguenay. RESEARCH SQUARE 2024:rs.3.rs-4178088. [PMID: 38659734 PMCID: PMC11042405 DOI: 10.21203/rs.3.rs-4178088/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Collapse
|
5
|
Zheng Y, Chen X, Zhang Q, Yang L, Chen Q, Chen Z, Wang Y, Wu D. Evaluation of Reactive Oxygen Species Scavenging of Polydopamine with Different Nanostructures. Adv Healthc Mater 2024; 13:e2302640. [PMID: 37924329 DOI: 10.1002/adhm.202302640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Reactive oxygen species (ROS) play an important role in cellular metabolism and many oxidative stress-related diseases, while excessive accumulation of ROS will lead to genetic changes in cells and promote the occurrence of inflammatory diseases or cell death. Nature-inspired polydopamine (PDA) with tailored nanostructures emerges as an ROS scavenger and is considered as an effective approach to inflammation-related diseases. However, the effects of nanoparticle structure on PDA scavenging efficacy and efficiency remain uncovered. In this work, three typical PDA nanoparticles including solid PDA, mesoporous PDA, and hollow PDA are synthesized, and of which physiochemical properties are characterized. Furthermore, their ROS scavenging performance is investigated by in vitro evaluation of radical removal. Among the three nanoparticles, mesoporous PDA is demonstrated to have the highest scavenging capability, mainly due to its specific surface area. Finally, the study on three in vivo inflammation models is constructed. The results confirm that mesoporous PDA is the most potent scavenger of ROS and more effective in reducing reperfusion injury, improving renal function, and preventing periodontitis progression, respectively. Together with the good biosafety and biocompatibility profiles, PDA nanoparticles, mesoporous PDA in particular, can be a promising avenue of ROS scavenging in fight against the inflammatory diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, P. R. China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, P. R. China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, P. R. China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
6
|
Ullah S, Hussain Z, Ullah I, Wang L, Mehmood S, Liu Y, Mansoorianfar M, Liu X, Ma F, Pei R. Mussel bioinspired, silver-coated and insulin-loaded mesoporous polydopamine nanoparticles reinforced hyaluronate-based fibrous hydrogel for potential diabetic wound healing. Int J Biol Macromol 2023; 247:125738. [PMID: 37423444 DOI: 10.1016/j.ijbiomac.2023.125738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Diabetes wounds take longer to heal due to extended inflammation, decreased angiogenesis, bacterial infection, and oxidative stress. These factors underscore the need for biocompatible and multifunctional dressings with appropriate physicochemical and swelling properties to accelerate wound healing. Herein, insulin (Ins)-loaded, and silver (Ag) coated mesoporous polydopamine (mPD) nanoparticles were synthesized (Ag@Ins-mPD). The nanoparticles were dispersed into polycaprolactone/methacrylated hyaluronate aldehyde dispersion, electrospun to form nanofibers, and then photochemically crosslinked to form a fibrous hydrogel. The nanoparticle, fibrous hydrogel, and nanoparticle-reinforced fibrous hydrogel were characterized for their morphological, mechanical, physicochemical, swelling, drug-release, antibacterial, antioxidant, and cytocompatibility properties. The diabetic wound reconstruction potential of nanoparticle-reinforced fibrous hydrogel was studied using BALB/c mice. The results indicated that Ins-mPD acted as a reductant to synthesize Ag nanoparticles on their surface, held antibacterial and antioxidant potential, and their mesoporous properties are crucial for insulin loading and sustained release. The nanoparticle-reinforced scaffolds were uniform in architecture, porous, mechanically stable, showed good swelling, and possessed superior antibacterial, and cell-responsive properties. Furthermore, the designed fibrous hydrogel scaffold demonstrated good angiogenic, anti-inflammatory, increased collagen deposition, and faster wound repair capabilities, therefore, it could be used as a potential candidate for diabetic wound treatment.
Collapse
Affiliation(s)
- Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Shah Mehmood
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Xingzhu Liu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China.
| |
Collapse
|
7
|
Zhang Y, Liu W, Wang X, Liu Y, Wei H. Nanozyme-Enabled Treatment of Cardio- and Cerebrovascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204809. [PMID: 36192166 DOI: 10.1002/smll.202204809] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Cardio- and cerebrovascular diseases are two major vascular-related diseases that lead to death worldwide. Reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of diseases. Excessive ROS induce cellular context damage and lead to tissue dysfunction. Nanozymes, as emerging enzyme mimics, offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of ROS-related cardio- and cerebrovascular diseases by directly scavenging excess ROS or regulating pathologically related molecules. This review first introduces nanozyme-enabled therapeutic mechanisms at the cellular level. Then, the therapies for several typical cardio- and cerebrovascular diseases with nanozymes are discussed, mainly including cardiovascular diseases, ischemia reperfusion injury, and neurological disorders. Finally, the challenges and outlooks for the application of nanozymes are also presented. This review will provide some instructive perspectives on nanozymes and promote the development of enzyme-mimicking strategies in cardio- and cerebrovascular disease therapy.
Collapse
Affiliation(s)
- Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Wanling Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xiaoyu Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yufeng Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|