1
|
Deng S, Kong X, Fu X, Huang ZW, Zhou ZH, Mei L, Yu JP, Yuan LY, Zhu YQ, Wang NN, Hu KQ, Shi WQ. Cage-Based Metal-Organic Framework Featuring a Double-Yolk Core-Shell U 6L 3@U 18L 14 Structure for Iodine Capture. Inorg Chem 2024. [PMID: 39704715 DOI: 10.1021/acs.inorgchem.4c04490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cage-based MOFs, with their customizable chemical environments and precisely controllable nanospaces, show great potential for the selective adsorption of guest molecules with specific structures. In this work, we have constructed a novel cage-based MOF [(CH3)2NH2]2[(UO2)2(TMTTA)]·11.5DMF·2H2O (IHEP-51), utilizing a triazine derivative poly(carboxylic acid), 4,4',4″-(((1,3,5-triazine-2,4,6-triyl)tris(((4-carboxycyclohexyl)methyl)azanediyl))tris(methylene))tribenzoic acid (H6TMTTA), as an organic ligand and uranyl as a metal node. The 2-fold interpenetrated (3,6,6)-connected framework of IHEP-51 features two types of supramolecular cage structures: the Pyrgos[2]cage U6L3 and the huge cage U18L14. They are further assembled into a double-yolk core-shell U6L3@U18L14 structure, making it suitable for I2 capture. The maximum adsorption capacities of IHEP-51 for iodine in solution and gaseous iodine are 420.4 and 1561.2 mg·g-1, respectively. XPS, Raman spectra, single-crystal X-ray diffraction, and DFT calculations reveal that the adsorbed iodine is located inside the U6L3 Pyrgos[2]cage in the form of I3-, thus resulting in the formation of a (I3)2@U6L3@U18L14 ternary core-shell structure.
Collapse
Affiliation(s)
- Shuang Deng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xianghe Kong
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Qiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nan-Nan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Tsoukatos S, Maibam A, Babarao R, Bloch WM. Topological control in paddlewheel metal-organic cages via ligand length variation. Chem Commun (Camb) 2024; 60:13183-13186. [PMID: 39354805 DOI: 10.1039/d4cc03769c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Varying the length of phenanthrene-derived ligands switches the selective assembly of MIInLn metal-organic cages (MOCs, n = 6 or 8) between tetrahedral, square, or triangular architectures. The limit of this approach is explored for both Cu2 and Rh2 paddlewheel MOCs, and supported by solution, solid-state and computational analysis.
Collapse
Affiliation(s)
- Steven Tsoukatos
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Ashakiran Maibam
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
| | - Ravichandar Babarao
- School of Science, Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, 3001 Victoria, Australia
- CSIRO, Clayton 3168, Victoria, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia.
| |
Collapse
|
3
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Tarzia A, Shan W, Posligua V, Cox CJT, Male L, Egleston BD, Greenaway RL, Jelfs KE, Lewis JEM. A Combined Experimental and Computational Exploration of Heteroleptic cis-Pd 2L 2L' 2 Coordination Cages through Geometric Complementarity. Chemistry 2024:e202403336. [PMID: 39462213 DOI: 10.1002/chem.202403336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Heteroleptic (mixed-ligand) coordination cages are of interest as host systems with more structurally and functionally complex cavities than homoleptic architectures. The design of heteroleptic cages, however, is far from trivial. In this work, we experimentally probed the self-assembly of Pd(II) ions with binary ligand combinations in a combinatorial fashion to search for new cis-Pd2L2L'2 heteroleptic cages. A hierarchy of computational analyses was then applied to these systems with the aim of elucidating key factors for rationalising self-assembly outcomes. Simple and inexpensive geometric analyses were shown to be effective in identifying complementary ligand pairs. Preliminary results demonstrated the viability of relatively rapid semi-empirical calculations for predicting the topology of thermodynamically favoured assemblies with rigid ligands, whilst more flexible systems proved challenging. Stemming from this, key challenges were identified for future work developing effective computational forecasting tools for self-assembled metallo-supramolecular systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Wentao Shan
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Victor Posligua
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Cameron J T Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Benjamin D Egleston
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK
| | - James E M Lewis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Piskorz T, Lee B, Zhan S, Duarte F. Metallicious: Automated Force-Field Parameterization of Covalently Bound Metals for Supramolecular Structures. J Chem Theory Comput 2024; 20:9060-9071. [PMID: 39373209 PMCID: PMC11500408 DOI: 10.1021/acs.jctc.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Metal ions play a central, functional, and structural role in many molecular structures, from small catalysts to metal-organic frameworks (MOFs) and proteins. Computational studies of these systems typically employ classical or quantum mechanical approaches or a combination of both. Among classical models, only the covalent metal model reproduces both geometries and charge transfer effects but requires time-consuming parameterization, especially for supramolecular systems containing repetitive units. To streamline this process, we introduce metallicious, a Python tool designed for efficient force-field parameterization of supramolecular structures. Metallicious has been tested on diverse systems including supramolecular cages, knots, and MOFs. Our benchmarks demonstrate that parameters accurately reproduce the reference properties obtained from quantum calculations and crystal structures. Molecular dynamics simulations of the generated structures consistently yield stable simulations in explicit solvent, in contrast to similar simulations performed with nonbonded and cationic dummy models. Overall, metallicious facilitates the atomistic modeling of supramolecular systems, key for understanding their dynamic properties and host-guest interactions. The tool is freely available on GitHub (https://github.com/duartegroup/metallicious).
Collapse
Affiliation(s)
| | - Bernadette Lee
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| | - Shaoqi Zhan
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
- Department
of Chemistry—Ångström, Ångströmlaboratoriet Box
523, Uppsala S-751 20, Sweden
| | - Fernanda Duarte
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| |
Collapse
|
6
|
Black M, Bhattacharyya S, Argent SP, Pilgrim BS. Structural Transformations of Metal-Organic Cages through Tetrazine-Alkene Reactivity. J Am Chem Soc 2024; 146. [PMID: 39236092 PMCID: PMC11487605 DOI: 10.1021/jacs.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The assembly of metal-organic cages is governed by metal ion coordination preferences and the geometries of the typically rigid and planar precursor ligands. PdnL2n cages are among the most structurally diverse, with subtle differences in the metal-ligand coordination vectors resulting in drastically different assemblies, however almost all rely on rigid aromatic linkers to avoid the formation of intractable mixtures. Here we exploit the inverse electron-demand Diels-Alder (IEDDA) reaction between tetrazine linker groups and alkene reagents to trigger structural changes induced by post-assembly modification. The structure of the 1,4-dihydropyridazine produced by IEDDA (often an afterthought in click chemistry) is crucial; its two sp3 centers increase flexibility and nonplanarity, drastically changing the range of accessible coordination vectors. This triggers an initial Pd4L8 tetrahedral cage to transform into different Pd2L4 lantern cages, with both the transformation extent (thermodynamics) and rate (kinetics) dependent on the alkene dienophile selected. With cyclopentene, the unsymmetrical 1,4-dihydropyridazine ligands undergo integrative sorting in the solid state, with both head-to-tail orientation and enantiomer selection, leading to a single isomer from the 39 possible. This preference is rationalized through entropy, symmetry, and hydrogen bonding. Subsequent oxidation of the 1,4-dihydropyridazine to the aromatic pyridazine rigidifies the ligands, restoring planarity. The oxidized ligands no longer fit in the lantern structure, inducing further structural transformations into Pd4L8 tetrahedra and Pd3L6 double-walled triangles. The concept of controllable addition of limited additional flexibility and then its removal through well-defined reactivity we envisage being of great interest for structural transformations of any class of supramolecular architecture.
Collapse
Affiliation(s)
- Martin
R. Black
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Soumalya Bhattacharyya
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ben S. Pilgrim
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
7
|
Fonseca Deichmann VA, Chercka D, Danner D, Rosselli S, Nelles G, Roberts A, Rodin V. Design and Synthesis of Red-Absorbing Fluoran Leuco Dyes Supported by Computational Screening. ACS OMEGA 2024; 9:34567-34576. [PMID: 39157141 PMCID: PMC11325520 DOI: 10.1021/acsomega.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
We report here on the design and synthesis of red-absorbing fluoran leuco dyes (LD). An essential part of the present dye development process is a computational screening of the candidate molecules, which allows for both time-efficient and accurate in silico characterization of the dyes. We focus our study here on the robust benzo[a]fluoran scaffold frequently used in leuco dyes. For the computational screening of LD candidates, an automated DFT-based simulation protocol has been developed and applied. The protocol consists of a combinatorial generation of the molecular structures of possible LD candidates, followed by simulations of their optimized molecular geometries, with their UV-Vis spectra as the main figure of merit. In the present application of the simulation protocol, more than 1600 structures of possible LD candidates have been evaluated. Finally, two structures, LD01 and LD02, have been chosen from the list of the best computed LD candidates to be synthesized and characterized. Our study demonstrates how the synergy between experiment and simulation can facilitate the design of novel leuco dyes.
Collapse
Affiliation(s)
- Vitor Angelo Fonseca Deichmann
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| | - Dennis Chercka
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| | - David Danner
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| | - Silvia Rosselli
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| | - Gabriele Nelles
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| | - Anthony Roberts
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| | - Vadim Rodin
- Sony Semiconductor
Solutions
Europe, Sony Europe B.V., Stuttgart Laboratory 2, Hedelfinger
Str 61, 70327 Stuttgart, Germany
| |
Collapse
|
8
|
Reinhardt CR, Manetsch MT, Li WL, Román-Leshkov Y, Head-Gordon T, Kulik HJ. Computational Screening of Putative Catalyst Transition Metal Complexes as Guests in a Ga 4L 612- Nanocage. Inorg Chem 2024; 63:14609-14622. [PMID: 39049593 DOI: 10.1021/acs.inorgchem.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal-organic cages form well-defined microenvironments that can enhance the catalytic proficiency of encapsulated transition metal complexes (TMCs). We introduce a screening protocol to efficiently identify TMCs that are promising candidates for encapsulation in the Ga4L612- nanocage. We obtain TMCs from the Cambridge Structural Database with geometric and electronic characteristics amenable to encapsulation and mine the text of associated manuscripts to curate TMCs with documented catalytic functionality. By docking candidate TMCs inside the nanocage cavity and carrying out electronic structure calculations, we identify a subset of successfully optimized candidates (TMC-34) and observe that encapsulated guests occupy an average of 60% of the cavity volume, in line with previous observations. Notably, some guests occupy as much as 72% of the cavity as a result of linker rotation. Encapsulation has a universal effect on the electrostatic potential (ESP), systematically decreasing the ESP at the metal center of each TMC in the TMC-34 data set, while minimally altering TMC metal partial charges. Collectively these observations support geometry-based screening of potential guests and suggest that encapsulation in Ga4L612- cages could electrostatically stabilize diverse cationic or electropositive intermediates. We highlight candidate guests with associated known reactivity and solubility most amenable for encapsulation in experimental follow-up studies.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Melissa T Manetsch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Sharma S, Krishnaswamy S, Prusty S, Chand DK. A pair of conjoined trinuclear sub-frameworks in a pentanuclear double-cavity discrete coordination cage. Chem Sci 2024; 15:11287-11301. [PMID: 39055040 PMCID: PMC11268487 DOI: 10.1039/d4sc01078g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Combination of Pd(ii) with selected bis-monodentate ligands produces the familiar multinuclear Pd m L2m type self-assembled "single-cavity discrete coordination cages" (SCDCC). If the ligand provides parallel coordination vectors, then it forms a binuclear Pd2L4 type cage, whereas utilization of ligands having appropriately divergent coordination vectors results in specific higher nuclear complexes. In contrast, preparation of emergent "multi-cavity discrete coordination cages" (MCDCC) using Pd(ii) and designer ligands is quite captivating where the neighboring cavities of the framework are conjoined with each other through a common metal center. A pair of conjoined binuclear Pd2L4 type sub-frameworks are present in a trinuclear Pd3L4 type double-cavity cage prepared from Pd(ii) and a tris-monodentate ligand having parallel coordination vectors. The present work envisioned a design to make double-cavity coordination cages having a pair of conjoined trinuclear Pd3L6 type sub-frameworks. To fulfill the objective we combined Pd(ii) with a mixture of designer bis-monodentate ligand (L) and tris-monodentate ligand (L') in a 5 : 4 : 4 ratio in one pot to afford the targeted pentanuclear type cage. The choice of bis-monodentate ligand L is based on the divergent nature of the coordination vectors suitable to produce a Pd3L6 type SCDCC. The tris-monodentate ligand L' having two arms is designed in such a manner that each of the arms reasonably resembles L. Study of the complexation behavior of Pd(ii) with L' provided additional guiding factors essential for the successful making of type MCDCC by integrative self-sorting. A few other MCDCC including lower symmetry versions were also prepared in the course of the work.
Collapse
Affiliation(s)
- Shruti Sharma
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Soumyakanta Prusty
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
10
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
11
|
Montà-González G, Ortiz-Gómez E, López-Lima R, Fiorini G, Martínez-Máñez R, Martí-Centelles V. Water-Soluble Molecular Cages for Biological Applications. Molecules 2024; 29:1621. [PMID: 38611902 PMCID: PMC11013847 DOI: 10.3390/molecules29071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host-guest chemical properties of molecular cages make them highly suitable for biological applications. This allows encapsulating therapeutic molecules to improve their properties. Second, significant advances have been made in synthetic methods to create water-soluble molecular cages. Achieving the necessary water solubility is a significant challenge, which in most cases requires specific chemical groups to overcome the inherent hydrophobic nature of the molecular cages which feature the organic components of the cage. This can be achieved by either incorporating water-solubilizing groups with negative/positive charges, polyethylene glycol chains, etc.; or by introducing charges directly into the cage structure itself. These synthetic strategies allow preparing water-soluble molecular cages for diverse biological applications, including cages' anticancer activity, anticancer drug delivery, photodynamic therapy, and molecular recognition of biological molecules. In the review we describe selected examples that show the main concepts to achieve water solubility in molecular cages and some selected recent biological applications.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Eduardo Ortiz-Gómez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Rocío López-Lima
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
| | - Guillermo Fiorini
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Avenida Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (G.M.-G.); (E.O.-G.); (G.F.)
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 46022 Valencia, Spain
| |
Collapse
|
12
|
Chernyshov IY, Pidko EA. MACE: Automated Assessment of Stereochemistry of Transition Metal Complexes and Its Applications in Computational Catalysis. J Chem Theory Comput 2024; 20:2313-2320. [PMID: 38365199 PMCID: PMC10938507 DOI: 10.1021/acs.jctc.3c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Computational chemistry pipelines typically commence with geometry generation, well-established for organic compounds but presenting a considerable challenge for transition metal complexes. This paper introduces MACE, an automated computational workflow for converting chemist SMILES/MOL representations of the ligands and the metal center to 3D coordinates for all feasible stereochemical configurations for mononuclear octahedral and square planar complexes directly suitable for quantum chemical computations and implementation in high-throughput computational chemistry workflows. The workflow is validated through a structural screening of a data set of transition metal complexes extracted from the Cambridge Structural Database. To further illustrate the power and capabilities of MACE, we present the results of a model DFT study on the hemilability of pincer ligands in Ru, Fe, and Mn complexes, which highlights the utility of the workflow for both focused mechanistic studies and larger-scale high-throughput pipelines.
Collapse
Affiliation(s)
- Ivan Yu. Chernyshov
- Inorganic Systems Engineering,
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering,
Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
13
|
Tarzia A, Wolpert EH, Jelfs KE, Pavan GM. Systematic exploration of accessible topologies of cage molecules via minimalistic models. Chem Sci 2023; 14:12506-12517. [PMID: 38020374 PMCID: PMC10646940 DOI: 10.1039/d3sc03991a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Cages are macrocyclic structures with an intrinsic internal cavity that support applications in separations, sensing and catalysis. These materials can be synthesised via self-assembly of organic or metal-organic building blocks. Their bottom-up synthesis and the diversity in building block chemistry allows for fine-tuning of their shape and properties towards a target property. However, it is not straightforward to predict the outcome of self-assembly, and, thus, the structures that are practically accessible during synthesis. Indeed, such a prediction becomes more difficult as problems related to the flexibility of the building blocks or increased combinatorics lead to a higher level of complexity and increased computational costs. Molecular models, and their coarse-graining into simplified representations, may be very useful to this end. Here, we develop a minimalistic toy model of cage-like molecules to explore the stable space of different cage topologies based on a few fundamental geometric building block parameters. Our results capture, despite the simplifications of the model, known geometrical design rules in synthetic cage molecules and uncover the role of building block coordination number and flexibility on the stability of cage topologies. This leads to a large-scale and systematic exploration of design principles, generating data that we expect could be analysed through expandable approaches towards the rational design of self-assembled porous architectures.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Emma H Wolpert
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus Wood Lane London W12 0BZ UK
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano Campus Est, Via la Santa 1 6962 Lugano-Viganello Switzerland
| |
Collapse
|
14
|
Juber S, Schäfer LV. Dynamics of organophosphate guest encapsulation in heteroleptic coordination cages. Phys Chem Chem Phys 2023; 25:29496-29505. [PMID: 37888835 DOI: 10.1039/d3cp04342h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Heteroleptic coordination cages allow the design of different host structures that can bind guest molecules within their cavities. In a previous work, the energetics of organophosphate encapsulation in palladium(II)-based heteroleptic coordination cages that differ in terms of their ability to form hydrogen bonds have been investigated [Platzek et al., Endohedrally Functionalized Heteroleptic Coordination Cages for Phosphate Ester Binding, Angew. Chem., Int. Ed. 2022, 61, e2022093]. The present work focuses on the dynamics of this system. Dynamic information is obtained through the application of a Markov state model (MSM) to unbiased multi-microsecond atomistic molecular dynamics simulations of guest binding and release. The MSM reveals that both the bound state and the binding/unbinding pathways are highly dynamic, with different types of interactions mediating the binding of the diphenylphosphate guest. Thus, the simulations highlight the dynamic nature of the nanoconfinement in the host-guest systems, with possible implications for the use of such coordination cages as catalysts.
Collapse
Affiliation(s)
- Selina Juber
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
15
|
Hema K, Grommet AB, Białek MJ, Wang J, Schneider L, Drechsler C, Yanshyna O, Diskin-Posner Y, Clever GH, Klajn R. Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host. J Am Chem Soc 2023; 145. [PMID: 37917939 PMCID: PMC10655118 DOI: 10.1021/jacs.3c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
The architecture of self-assembled host molecules can profoundly affect the properties of the encapsulated guests. For example, a rigid cage with small windows can efficiently protect its contents from the environment; in contrast, tube-shaped, flexible hosts with large openings and an easily accessible cavity are ideally suited for catalysis. Here, we report a "Janus" nature of a Pd6L4 coordination host previously reported to exist exclusively as a tube isomer (T). We show that upon encapsulating various tetrahedrally shaped guests, T can reconfigure into a cage-shaped host (C) in quantitative yield. Extracting the guest affords empty C, which is metastable and spontaneously relaxes to T, and the T⇄C interconversion can be repeated for multiple cycles. Reversible toggling between two vastly different isomers paves the way toward controlling functional properties of coordination hosts "on demand".
Collapse
Affiliation(s)
- Kuntrapakam Hema
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Angela B. Grommet
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department
of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50383 Wrocław, Poland
| | - Jinhua Wang
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Laura Schneider
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Christoph Drechsler
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Oksana Yanshyna
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Chemical
Research Support, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Guido H. Clever
- Department
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn Straße 6, 44227 Dortmund, Germany
| | - Rafal Klajn
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 76100, Israel
- Institute
of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
16
|
Drożdż W, Ciesielski A, Stefankiewicz AR. Dynamic Cages-Towards Nanostructured Smart Materials. Angew Chem Int Ed Engl 2023; 62:e202307552. [PMID: 37449543 DOI: 10.1002/anie.202307552] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The interest in capsular assemblies such as dynamic organic and coordination cages has blossomed over the last decade. Given their chemical and structural variability, these systems have found applications in diverse fields of research, including energy conversion and storage, catalysis, separation, molecular recognition, and live-cell imaging. In the exploration of the potential of these discrete architectures, they are increasingly being employed in the formation of more complex systems and smart materials. This Review highlights the most promising pathways to overcome common drawbacks of cage systems (stability, recovery) and discusses the most promising strategies for their hybridization with systems featuring various dimensionalities. Following the description of the most recent advances in the fabrication of zero to three-dimensional cage-based systems, this Review will provide the reader with the structure-dependent relationship between the employed cages and the properties of the materials.
Collapse
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Artur Ciesielski
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
17
|
Takahashi S, Iuchi S, Hiraoka S, Sato H. Theoretical and computational methodologies for understanding coordination self-assembly complexes. Phys Chem Chem Phys 2023; 25:14659-14671. [PMID: 37051715 DOI: 10.1039/d3cp00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
This perspective highlights three theoretical and computational methods to capture the coordination self-assembly processes at the molecular level: quantum chemical modeling, molecular dynamics, and reaction network analysis. These methods cover the different scales from the metal-ligand bond to a more global aspect, and approaches that are best suited to understand the coordination self-assembly from different perspectives are introduced. Theoretical and numerical researches based on these methods are not merely ways of interpreting the experimental studies but complementary to them.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Satoru Iuchi
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
18
|
Golomb MJ, Tolborg K, Calbo J, Walsh A. Role of Counterions in the Structural Stabilisation of Redox-Active Metal-Organic Frameworks. Chemistry 2023; 29:e202203843. [PMID: 36519633 PMCID: PMC10946919 DOI: 10.1002/chem.202203843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The crystal structures of metal-organic frameworks (MOFs) are typically determined by the strong chemical bonds formed between the organic and inorganic building units. However, the latest generation of redox-active frameworks often rely on counterions in the pores to access specific charge states of the components. Here, we model the crystal structures of three layered MOFs based on the redox-active ligand 2,5-dihydroxybenzoquinone (dhbq): Ti2 (Cl2 dhbq)3 , V2 (Cl2 dhbq)3 and Fe2 (Cl2 dhbq)3 with implicit and explicit counterions. Our full-potential first-principles calculations indicate that while the reported hexagonal structure is readily obtained for Ti and V, the Fe framework is stabilised only by the presence of explicit counterions. For high counterion concentrations, we observe the formation of an electride-like pocket in the pore center. An outlook is provided on the implications of solvent and counterion control for engineering the structures and properties of porous solids.
Collapse
Affiliation(s)
- M. J. Golomb
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - K. Tolborg
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - J. Calbo
- Instituto de Ciencia MolecularUniversidad de Valencia46890PaternaSpain
| | - A. Walsh
- Department of MaterialsImperial College LondonExhibition RoadLondonSW7 2AZUK
| |
Collapse
|
19
|
Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat Chem 2023; 15:405-412. [PMID: 36550231 DOI: 10.1038/s41557-022-01103-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022]
Abstract
The regioselective functionalization of C60 remains challenging, while the enantioselective functionalization of C60 is difficult to explore due to the need for complex chiral tethers or arduous chromatography. Metal-organic cages have served as masks to effect the regioselective functionalization of C60. However, it is difficult to control the stereochemistry of the resulting fullerene adducts through this method. Here we report a means of defining up to six stereocentres on C60, achieving enantioselective fullerene functionalization. This method involves the use of a metal-organic cage built from a chiral formylpyridine. Fullerenes hosted within the cavity of the cage can be converted into a series of C60 adducts through chemo-, regio- and stereo-selective Diels-Alder reactions with the edges of the cage. The chiral formylpyridine ultimately dictates the stereochemistry of these chiral fullerene adducts without being incorporated into them. Such chiral fullerene adducts may become useful in devices requiring circularly polarized light manipulation.
Collapse
|
20
|
Abstract
Computational modeling is increasingly used to assist in the discovery of supramolecular materials. Supramolecular materials are typically primarily built from organic components that are self-assembled through noncovalent bonding and have potential applications, including in selective binding, sorption, molecular separations, catalysis, optoelectronics, sensing, and as molecular machines. In this review, the key areas where computational prediction can assist in the discovery of supramolecular materials, including in structure prediction, property prediction, and the prediction of how to synthesize a hypothetical material are discussed, before exploring the potential impact of artificial intelligence techniques on the field. Throughout, the importance of close integration with experimental materials discovery programs will be highlighted. A series of case studies from the author's work across some different supramolecular material classes will be discussed, before finishing with a discussion of the outlook for the field.
Collapse
Affiliation(s)
- Kim E. Jelfs
- Department of Chemistry, Molecular Sciences Research HubImperial College LondonLondonUK
| |
Collapse
|
21
|
Norjmaa G, Himo F, Maréchal J, Ujaque G. Catalysis by [Ga 4 L 6 ] 12- Metallocage on the Nazarov Cyclization: The Basicity of Complexed Alcohol is Key. Chemistry 2022; 28:e202201792. [PMID: 35859038 PMCID: PMC9804567 DOI: 10.1002/chem.202201792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/05/2023]
Abstract
The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| |
Collapse
|
22
|
Helicate versus Mesocate in Quadruple-Stranded Lanthanide Cages: A Computational Insight. Int J Mol Sci 2022; 23:ijms231810619. [PMID: 36142519 PMCID: PMC9504305 DOI: 10.3390/ijms231810619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
To drive the synthesis of metallo-supramolecular assemblies (MSAs) and to fully exploit their functional properties, robust computational tools are crucial. The capability to model and to rationalize different parameters that can influence the outcome is mandatory. Here, we report a computational insight on the factors that can determine the relative stability of the supramolecular isomers helicate and mesocate in lanthanide-based quadruple-stranded assemblies. The considered MSAs have the general formula [Ln2L4]2− and possess a cavity suitable to allocate guests. The analysis was focused on three different factors: the ligand rigidity and the steric hindrance, the presence of a guest inside the cavity, and the guest dimension. Three different quantum mechanical calculation set-ups (in vacuum, with the solvent, and with the solvent and the dispersion correction) were considered. Comparison between theoretical and experimental outcomes suggests that all calculations correctly estimated the most stable isomer, while the inclusion of the dispersion correction is mandatory to reproduce the geometrical parameters. General guidelines can be drawn: less rigid and less bulky is the ligand and less stable is the helicate, and the presence of a guest can strongly affect the isomerism leading to an inversion of the stability by increasing the guest size when the ligand is flexible.
Collapse
|
23
|
|
24
|
Domoto Y, Fujita M. Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
26
|
Jayawardana SG, Madura EC, García-López V. Photocatalytic molecular containers enable unique reactivity modes in confinement. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Sánchez-González E, Tsang MY, Troyano J, Craig GA, Furukawa S. Assembling metal-organic cages as porous materials. Chem Soc Rev 2022; 51:4876-4889. [PMID: 35441616 DOI: 10.1039/d1cs00759a] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing interest in metal-organic cages (MOCs) as porous materials owing to their processability in solution. The discrete molecular character and surface features of MOCs have a direct impact on the interactions between cages, enabling the final physical state of the materials to be tuned. In this tutorial review, we discuss how to use MOCs as core building units, highlighting the role played by surface functionalisation of MOCs in leading to porous materials in a range of states covering crystalline solids, soft matter, liquids and composites. We finish by providing an outlook on the opportunities for this work to serve as a foundation for the development of increasingly complex functional porous materials structured over various length scales.
Collapse
Affiliation(s)
- Elí Sánchez-González
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, Ciudad de México 04510, Mexico
| | - Min Ying Tsang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. .,Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, 50-373, Poland
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Gavin A Craig
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|