1
|
Huang HS, Yuan Y, Wang W, Zhang SQ, Nie XK, Yang WT, Cui X, Tang Z, Li GX. Enantioselective Synthesis of Chiral Sulfonimidoyl Fluorides Facilitates Stereospecific SuFEx Click Chemistry. Angew Chem Int Ed Engl 2025; 64:e202415873. [PMID: 39496565 DOI: 10.1002/anie.202415873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Sulfur-centered electrophilic 'warheads' have emerged as key components for chemical proteomic probes through sulfur-exchange chemistry (SuFEx) with protein nucleophiles. Among these functional groups, sulfonimidoyl fluorides (SIFs) stand out for their modifiable sites, tunable electrophilicities, and chiral sulfur-center, presenting exciting possibilities for new covalent chemical probes. However, the synthetic access to chiral SIFs has been a challenge, limiting their exploration and applications. In this study, we describe a convenient route to obtain chiral SIFs from readily available sulfenamides via a series of one-pot tandem reactions with high enantiomeric excess (ees). The resulting chiral SIFs were further converted into a diverse array of chiral S(VI) derivatives under mild conditions or in buffer solutions. Most significantly, the specificity of the chiral SIFs in protein ligation experiments underscored the critical role of sulfur-center chirality in the design and screening of more-selective covalent probes and therapeutics.
Collapse
Affiliation(s)
- He-Sen Huang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Yi Yuan
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xiao-Kang Nie
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wan-Ting Yang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Wei MK, Zhang ZX, Ding M, Willis MC. Friedel-Crafts Reactivity with Sulfondiimidoyl Fluorides for the Synthesis of Heteroaryl Sulfondiimines. Angew Chem Int Ed Engl 2025; 64:e202416638. [PMID: 39392677 DOI: 10.1002/anie.202416638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Sulfur functional groups are ubiquitous in molecules used in the pharmaceutical and agrochemical industries, and within these collections sulfones hold a prominent position. The double aza-analogues of sulfones, sulfondiimines, offer significant potential in discovery chemistry but to date their applications have been limited by the lack of convenient synthetic routes. The existing methods mainly rely on imination of low-valent-sulfur intermediates, or the combination of pre-formed organometallic reagents and electrophilic S(VI)-functionalities. Herein, we describe a Friedel-Crafts-type reaction of sulfondiimidoyl fluorides with (hetero)aryls. This new SuFEx reactivity benefits from broad functional group tolerance, mild reaction conditions, and does not require the use of pre-formed organometallic reagents. The efficient use of unprotected indoles and pyrroles, as well as furan, thiophene and carbocyclic aromatics, further demonstrates the advantages of these reactions. We show that the reactivity of the sulfondiimidoyl fluorides can be tuned by switching the N-substituents, allowing an expansion of the range of coupling partners. The utility of the transformation is exemplified by the synthesis of the sulfondiimine analogue of the HIV-I reverse transcriptase-inhibitor L-737,126.
Collapse
Affiliation(s)
- Ming-Kai Wei
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ze-Xin Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
3
|
Ding M, Bell C, Willis MC. The Modular Synthesis of Sulfondiimidoyl Fluorides and their Application to Sulfondiimidamide and Sulfondiimine Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409240. [PMID: 38923337 DOI: 10.1002/anie.202409240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
A modular synthesis of sulfondiimidoyl fluorides-the double aza-analogues of sulfonyl fluorides-allowing variation of the carbon and both nitrogen-substituents is reported. The chemistry uses readily available organometallic reagents, commercial sulfinylamines, simple electrophiles, and N-fluorobenzenesulfonimide (NFSI), as the starting materials. The reactions are broad in scope, efficient, and scalable. We show that the sulfondiimidoyl fluoride products can be combined with amines to provide sulfondiimidamides, and with organolithium reagents to provide sulfondiimines, and that reactivity in these transformations can be modulated by variation of the N-substituents.
Collapse
Affiliation(s)
- Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Charles Bell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Garrido-González JJ, Medrano-Uribe K, Rosso C, Humbrías-Martín J, Dell'Amico L. Photocatalytic Synthesis and Functionalization of Sulfones, Sulfonamides and Sulfoximines. Chemistry 2024; 30:e202401307. [PMID: 39037368 DOI: 10.1002/chem.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 07/23/2024]
Abstract
Sulfur(VI)-based functional groups are popular scaffolds in a wide variety of research fields including synthetic and medicinal chemistry, as well as chemical biology. The growing interest in sulfur(VI)-containing molecules has motivated the scientific community to explore new methods to synthesize and modify them. Here, photocatalysis plays a key role granting access to new types of reactivity under mild reaction conditions. In this Perspective, we present a selection of works reported in the last six years focused on the photocatalytic assembly and reactivity of sulfones, sulfonamides, and sulfoximines. We addressed the key synthetic intermediates for each transformation, while discussing limitations and strength points of the protocols. Future directions of the field are finally presented.
Collapse
Affiliation(s)
- José J Garrido-González
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Katy Medrano-Uribe
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Cristian Rosso
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Jorge Humbrías-Martín
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
5
|
Zogu A, Ullah K, Spanopoulos S, Ismalaj E, De Borggraeve WM, Demaerel J. Perfluorooxosulfate Salts as SOF 4-Gas-Free Precursors to Multidimensional SuFEx Electrophiles. Angew Chem Int Ed Engl 2024; 63:e202403797. [PMID: 38630865 DOI: 10.1002/anie.202403797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Sulfur(VI) Fluoride Exchange (SuFEx) chemistry stands as a well-established method for swiftly constructing complex molecules in a modular fashion. An especially promising segment of this toolbox is reserved for multidimensional SuFEx hubs: three or more substituents pluggable into a singular SVI centre to make 'beyond-linear' clicked constructions. Sulfurimidoyl difluorides (RNSOF2) stand out as the prime example of this, however their preparation from the scarcely available thionyl tetrafluoride (SOF4) limits this chemistry to only a few laboratories with access to this gas. In this work, we identify silver pentafluorooxosulfate (AgOSF5) as a viable SuFEx hub with reactivity equal to SOF4. The AgF2-mediated oxidation of SOCl2 gives rise to the hexacoordinate AgOSF5 adduct, which in contact with primary amines produces the sulfurimidoyl fluorides in high yields. In addition, we have found this workflow to be fully extendable to the trifluoromethyl homologue, AgOSF4CF3, and we propose the use of AgOSF4X salts as a general route to azasulfur SuFEx electrophiles from commercial starting materials.
Collapse
Affiliation(s)
- Armir Zogu
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules (SCM2), KU Leuven Department of Chemistry, Celestijnenlaan 200F-box 2404, B-3001, Leuven, Belgium
| | - Karim Ullah
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules (SCM2), KU Leuven Department of Chemistry, Celestijnenlaan 200F-box 2404, B-3001, Leuven, Belgium
- Department of Chemistry and Technologies of Drug, Sapienza, University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Stefanos Spanopoulos
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules (SCM2), KU Leuven Department of Chemistry, Celestijnenlaan 200F-box 2404, B-3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules (SCM2), KU Leuven Department of Chemistry, Celestijnenlaan 200F-box 2404, B-3001, Leuven, Belgium
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon, 20014, San Sebastian, Guipuzcoa, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029, Madrid, Spain
| | - Wim M De Borggraeve
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules (SCM2), KU Leuven Department of Chemistry, Celestijnenlaan 200F-box 2404, B-3001, Leuven, Belgium
| | - Joachim Demaerel
- Department of Chemistry, Sustainable Chemistry for Metals and Molecules (SCM2), KU Leuven Department of Chemistry, Celestijnenlaan 200F-box 2404, B-3001, Leuven, Belgium
| |
Collapse
|
6
|
Testen Ž, Jereb M. Oxidation of N-trifluoromethylthio sulfoximines using NaOCl·5H 2O. Org Biomol Chem 2024; 22:2012-2020. [PMID: 38240529 DOI: 10.1039/d3ob02033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
N-Trifluoromethylthio sulfoximines are biologically interesting compounds, but their potential is still poorly understood. The oxidation of N-trifluoromethylthio sulfoximines led to their corresponding sulfoxide derivatives as a new class of compounds, when using sodium hypochlorite pentahydrate (NaOCl·5H2O) as a green and relatively unexplored reagent. The reactions took place with a small excess of oxidant under environmentally friendly conditions in EtOAc for 16 h at room temperature. Noteworthy distinctions of this transformation are the simplicity, high selectivity, energy and cost efficiency, minimal amounts of non-hazardous waste, isolation of most of the products without the additional need for chromatographic purification, and simple scalability to gram reactions without deterioration of the yield. The reaction exhibited excellent green chemistry metrics with high atom economy (82.0%), actual atom economy (79.5%), reaction mass efficiency (79.7%), E-factor (16.48) and a very high EcoScale score (84.5). Competitive experiments demonstrated that electron-rich substrates are more reactive than their electron-poor counterparts. Furthermore, the Suzuki-Miyaura functionalization of N-trifluoromethylsulfaneylidene sulfoximine could be achieved depending on the conditions, resulting in coupling products with or without an introduced sulfoxide moiety. Sonogashira coupling of N-trifluoromethylsulfaneylidene sulfoximine furnished the expected acetylene derivative in high yield, and the reaction conditions are compatible with the newly introduced sulfaneylidene functionality. Bromine and nickel catalysts were also shown to be deprotecting agents of the sulfoxide group. A selected N-trifluoromethylsulfaneylidene sulfoximine demonstrated its stability in water in the presence of air and in dilute hydrochloric acid, while it converted back to the parent sulfoximine under basic conditions.
Collapse
Affiliation(s)
- Žan Testen
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Marjan Jereb
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Peng Z, Sun S, Zheng MM, Li Y, Li X, Li S, Xue XS, Dong J, Gao B. Enantioselective sulfur(VI) fluoride exchange reaction of iminosulfur oxydifluorides. Nat Chem 2024; 16:353-362. [PMID: 38355829 DOI: 10.1038/s41557-024-01452-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Linkage chemistry and functional molecules derived from the stereogenic sulfur(VI) centre have important applications in organic synthesis, bioconjugation, drug discovery, agrochemicals and polymeric materials. However, existing approaches for the preparation of optically active S(VI)-centred compounds heavily rely on synthetic chiral S(IV) pools, and the reported linkers of S(VI) lack stereocontrol. A modular assembly method, involving sequential ligand exchange at the S(VI) centre with precise control of enantioselectivity, is appealing but remains elusive. Here we report an asymmetric three-dimensional sulfur(VI) fluoride exchange (3D-SuFEx) reaction based on thionyl tetrafluoride gas (SOF4). A key step involves the chiral ligand-induced enantioselective defluorinative substitution of iminosulfur oxydifluorides using organolithium reagents. The resulting optically active sulfonimidoyl fluorides allow for further stereospecific fluoride-exchange by various nucleophiles, thereby establishing a modular platform for the asymmetric SuFEx ligation and the divergent synthesis of optically active S(VI) functional molecules.
Collapse
Affiliation(s)
- Zhiyuan Peng
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Shoujun Sun
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Meng Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yangyang Li
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Xixi Li
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Suhua Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Song Xue
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Jiajia Dong
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Bing Gao
- State Key Laboratory of Chemo/BioSensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China.
| |
Collapse
|
8
|
Zhong Z, Ma TK, White AJP, Bull JA. Synthesis of Pyrazolesulfoximines Using α-Diazosulfoximines with Alkynes. Org Lett 2024; 26:1178-1183. [PMID: 38306458 PMCID: PMC10877601 DOI: 10.1021/acs.orglett.3c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Sulfoximines and pyrazoles are both important motifs in medicinal compounds. Here we report the synthesis and reactivity of sulfoximine diazo compounds as new reagents for the incorporation of sulfoximines. The use of N-silyl sulfoximines enabled formation of monosubstituted diazo compounds. Their application is demonstrated in a [3 + 2] cycloaddition with alkynes to form pyrazole sulfoximines in a new combination of these important chemotypes. Further derivatization of the pyrazole sulfoximines is demonstrated, including silyl deprotection to form unprotected pyrazolesulfoximines.
Collapse
Affiliation(s)
- Zhenhao Zhong
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Tsz-Kan Ma
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - Andrew J. P. White
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| | - James A. Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research
Hub, White City Campus, Wood Lane, London W12
0BZ, U.K.
| |
Collapse
|
9
|
Teng S, Shultz ZP, Shan C, Wojtas L, Lopchuk JM. Asymmetric synthesis of sulfoximines, sulfonimidoyl fluorides and sulfonimidamides enabled by an enantiopure bifunctional S(VI) reagent. Nat Chem 2024; 16:183-192. [PMID: 38238465 PMCID: PMC11000591 DOI: 10.1038/s41557-023-01419-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024]
Abstract
An increased interest to expand three-dimensional chemical space for the design of new materials and medicines has created a demand for isosteric replacement groups of commonly used molecular functionality. The structural and chemical properties of chiral S(VI) functional groups provide unique spatial and electronic features compared with their achiral sulfur- and carbon-based counterparts. Manipulation of the S(VI) centre to introduce structural variation with stereochemical control has remained a synthetic challenge. The stability of sulfonimidoyl fluorides and the efficiency of sulfur fluorine exchange chemistry has enabled the development of the enantiopure bifunctional S(VI) transfer reagent t-BuSF to overcome current synthetic limitations. Here, we disclose a reagent platform that serves as a chiral sulfur fluorine exchange template for the rapid asymmetric synthesis of over 70 sulfoximines, sulfonimidoyl fluorides and sulfonimidamides with excellent enantiomeric excess and good overall yields. Furthermore, the practical utility of the bifunctional S(VI) transfer reagent was demonstrated in the syntheses of enantiopure pharmaceutical intermediates and analogues.
Collapse
Affiliation(s)
- Shun Teng
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Zachary P Shultz
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Justin M Lopchuk
- Department of Chemistry, University of South Florida, Tampa, FL, USA.
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
10
|
Bull JA. Sulfur stereochemistry takes centre stage. Nat Chem 2024; 16:152-153. [PMID: 38238466 DOI: 10.1038/s41557-023-01421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Affiliation(s)
- James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK.
| |
Collapse
|
11
|
Zhao S, Zeng D, Wang M, Jiang X. C-SuFEx linkage of sulfonimidoyl fluorides and organotrifluoroborates. Nat Commun 2024; 15:727. [PMID: 38272934 PMCID: PMC10810801 DOI: 10.1038/s41467-024-44998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Sulfur(VI) fluoride exchange, a new type of linkage reaction, has excellent potential for application in functional molecule linkage to prepare pharmaceuticals, biomolecules, and polymers. Herein, a C-SuFEx reaction is established to achieve fast (in minutes) linkage between sulfonimidoyl fluorides and aryl/alkyl organotrifluoroborates. Potassium organotrifluoroborates are instantaneously activated via a substoichiometric amount of trimethylsilyl triflate to afford organodifluoroboranes, releasing BF3 as an activating reagent in situ. This sulfur(VI) fluoride exchange technique is capable of forming S(VI)-C(alkyl), S(VI)-C(alkenyl) and S(VI)-C(aryl) bonds, demonstrating its broad scope. Natural products and pharmaceuticals with sensitive functional groups, such as valdecoxib, celecoxib and diacetonefructose, are compatible with this protocol, allowing the formation of diverse sulfoximines.
Collapse
Affiliation(s)
- Suqin Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Daming Zeng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Ming Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China; East China Normal University, Shanghai, 200062, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
12
|
Gao L, Wang YQ, Zhang YQ, Fu YH, Liu YY, Zhang QW. Nickel-Catalyzed Enantioselective Synthesis of Dienyl Sulfoxide. Angew Chem Int Ed Engl 2023:e202317626. [PMID: 38085222 DOI: 10.1002/anie.202317626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and β-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yin-Qi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ya-Qian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Han Fu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Yu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
13
|
Chao Y, Subramaniam M, Namitharan K, Zhu Y, Koolma V, Hao Z, Li S, Wang Y, Hudoynazarov I, Miloserdov FM, Zuilhof H. Synthesis of Large Macrocycles with Chiral Sulfur Centers via Enantiospecific SuFEx and SuPhenEx Click Reactions. J Org Chem 2023; 88:15658-15665. [PMID: 37903243 PMCID: PMC10660663 DOI: 10.1021/acs.joc.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Here we report the first asymmetric synthesis of large chiral macrocycles with chiral sulfur atoms. Building on stereospecific SuFEx and SuPhenEx click chemistries, this approach utilizes disulfonimidoyl fluorides and disulfonimidoyl p-nitrophenolates─which are efficient building blocks with two chiral sulfur centers, and diphenols to efficiently form novel S-O bonds. Characteristic results include the enantiospecific one-step synthesis of rings consisting of 21-58 members and characterization of both enantiomers (R,R and S,S) by e.g. X-ray crystallography.
Collapse
Affiliation(s)
- Yang Chao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Muthusamy Subramaniam
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Kayambu Namitharan
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Yumei Zhu
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Victor Koolma
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Zitong Hao
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shikang Li
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yaxin Wang
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ilyos Hudoynazarov
- Division
of Organic Synthesis and Applied Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Fedor M. Miloserdov
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Han Zuilhof
- School
of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
14
|
Zou X, Wang H, Gao B. Synthesis of Sulfoximines by Copper-Catalyzed Oxidative Coupling of Sulfinamides and Aryl Boronic Acids. Org Lett 2023; 25:7656-7660. [PMID: 37823578 DOI: 10.1021/acs.orglett.3c02970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A novel copper-catalyzed cross-coupling reaction of sulfinamides and aryl boronic acids is developed. The reaction is highly chemoselective and stereospecific, which allows mild synthesis of optically pure sulfoximines with broad scope and functional group tolerance. The utility of this method is demonstrated by the asymmetric synthesis of pharmaceutical intermediates.
Collapse
Affiliation(s)
- Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hanbing Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
15
|
Wu X, Zhang W, Sun G, Zou X, Sang X, He Y, Gao B. Turning sulfonyl and sulfonimidoyl fluoride electrophiles into sulfur(VI) radicals for alkene ligation. Nat Commun 2023; 14:5168. [PMID: 37620301 PMCID: PMC10449886 DOI: 10.1038/s41467-023-40615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Sulfonyl and sulfonimidoyl fluorides are versatile substrates in organic synthesis and medicinal chemistry. However, they have been exclusively used as S(VI)+ electrophiles for defluorinative ligations. Converting sulfonyl and sulfonimidoyl fluorides to S(VI) radicals is challenging and underexplored due to the strong bond dissociation energy of SVI-F and high reduction potentials, but once achieved would enable dramatically expanded synthetic utility and downstream applications. In this report, we disclose a general platform to address this issue through cooperative organosuperbase activation and photoredox catalysis. Vinyl sulfones and sulfoximines are obtained with excellent E selectivity under mild conditions by coupling reactions with alkenes. The synthetic utility of this method in the preparation of functional polymers and dyes is also demonstrated.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xi Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoru Sang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
16
|
Zhao P, Zeng Q. Progress in the Enantioselective Synthesis of Sulfur (VI) Compounds. Chemistry 2023; 29:e202302059. [PMID: 37394960 DOI: 10.1002/chem.202302059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
In recent years, there has been a notable surge in the prominence of enantioenriched sulfur(VI) compounds within the chemical science, particularly in the realm of bioactive molecules. However, the synthesis of these enantioenriched sulfur(VI) compounds has posed significant challenges, necessitating the exploration of diverse synthetic methods. Accordingly, this review aims to provide an in-depth analysis of the latest advancements in the synthesis of sulfoximines, sulfonimidate esters, sulfonimidamides, and sulfonimidoyl halides, with a focus on developments since 1971.
Collapse
Affiliation(s)
- Ping Zhao
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
17
|
Abstract
A SuFEx linkage reaction between sulfonimidoyl fluoride and allyltrimethylsilane was achieved for the construction of N-modified allylsulfoximines in minutes with BF3 as a nonmetal difunctional activator enabling the activation of both S-F and C-Si bonds to forge the S-Callyl (sp3) bond swiftly. Mechanistic studies and DFT calculations indicated that the linkage was initiated with the activation of sulfonimidoyl fluoride and then followed with the transfer of the fluoride anion to the TMS group.
Collapse
Affiliation(s)
- Daming Zeng
- State Key Laboratory of Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Suqin Zhao
- State Key Laboratory of Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei-Ping Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuefeng Jiang
- State Key Laboratory of Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
Zeng D, Deng WP, Jiang X. Advances in the construction of diverse SuFEx linkers. Natl Sci Rev 2023; 10:nwad123. [PMID: 37441224 PMCID: PMC10335383 DOI: 10.1093/nsr/nwad123] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx), a new generation of click chemistry, was first presented by Sharpless, Dong and co-workers in 2014. Owing to the high stability and yet efficient reactivity of the SVI-F bond, SuFEx has found widespread applications in organic synthesis, materials science, chemical biology and drug discovery. A diverse collection of SuFEx linkers has emerged, involving gaseous SO2F2 and SOF4 hubs; SOF4-derived iminosulfur oxydifluorides; O-, N- and C-attached sulfonyl fluorides and sulfonimidoyl fluorides; and novel sulfondiimidoyl fluorides. This review summarizes the progress of these SuFEx connectors, with an emphasis on analysing the advantages and disadvantages of synthetic strategies of these connectors based on the SuFEx concept, and it is expected to be beneficial to researchers to rapidly and correctly understand this field, thus inspiring further development in SuFEx chemistry.
Collapse
Affiliation(s)
- Daming Zeng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
19
|
Zhang X, Wang F, Tan CH. Asymmetric Synthesis of S(IV) and S(VI) Stereogenic Centers. JACS AU 2023; 3:700-714. [PMID: 37006767 PMCID: PMC10052288 DOI: 10.1021/jacsau.2c00626] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 05/22/2023]
Abstract
Sulfur can form diverse S(IV) and S(VI) stereogenic centers, of which some have gained significant attention recently due to their increasing use as pharmacophores in drug discovery programs. The preparation of these sulfur stereogenic centers in their enantiopure form has been challenging, and progress made will be discussed in this Perspective. This Perspective summarizes different strategies, with selected works, for asymmetric synthesis of these moieties, including diastereoselective transformations using chiral auxiliaries, enantiospecific transformations of enantiopure sulfur compounds, and catalytic enantioselective synthesis. We will discuss the advantages and limitations of these strategies and will provide our views on how this field will develop.
Collapse
Affiliation(s)
- Xin Zhang
- West China
School of Public Health and West China Fourth Hospital, and State
Key Laboratory of Biotherapy, Sichuan University, 610041 Chengdu, China
| | - Fucheng Wang
- West China
School of Public Health and West China Fourth Hospital, and State
Key Laboratory of Biotherapy, Sichuan University, 610041 Chengdu, China
| | - Choon-Hong Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
20
|
Jabczun M, Nosek V, Míšek J. Complementary strategies for synthesis of sulfinamides from sulfur-based feedstock. Org Biomol Chem 2023; 21:2950-2954. [PMID: 36928910 DOI: 10.1039/d3ob00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We describe a straightforward one-pot reductive protocol for the synthesis of sulfinamides from sulfonyl chlorides. This method enables the preparation of sulfinamides with a broad range of functional groups. Furthermore, we have expanded a known oxidative pathway to sulfinamides starting from thiols. These methods together provide a general strategy for the synthesis of sulfinamides from common sulfur-based feedstock that is available with large structural and functional group diversity.
Collapse
Affiliation(s)
- Miloš Jabczun
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.
| | - Vladimír Nosek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic.
| |
Collapse
|
21
|
Tsuzuki S, Kano T. Asymmetric Synthesis of Chiral Sulfimides through the O-Alkylation of Enantioenriched Sulfinamides and Addition of Carbon Nucleophiles. Angew Chem Int Ed Engl 2023; 62:e202300637. [PMID: 36807500 DOI: 10.1002/anie.202300637] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Chiral sulfimides, the aza-analogues of sulfoxides, are valuable compounds in organic synthesis and medicinal chemistry. Herein, we report an efficient method for preparing chiral sulfimides from easily available enantioenriched sulfinamides. The key step of this method is a stereospecific oxygen-selective alkylation of enantioenriched sulfinamides, which is accomplished by using isopropyl iodide, K2 CO3 , and DMPU. The resulting chiral sulfinimidate esters are transformed to chiral sulfimides by the nucleophilic addition of the Grignard reagents under simple conditions. This transformation enables access to the enantioenriched diaryl or dialkyl sulfimides bearing two similar carbon substituents, which are difficult to synthesize by previous methods.
Collapse
Affiliation(s)
- Saori Tsuzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
22
|
Bull JA. Synthesis of aza-S(VI) motifs. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- James A. Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, UK
| |
Collapse
|
23
|
Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer. Molecules 2023; 28:molecules28031120. [PMID: 36770787 PMCID: PMC9920176 DOI: 10.3390/molecules28031120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The development of NH transfer reactions using hypervalent iodine and simple sources of ammonia has facilitated the synthesis of sulfoximines and sulfonimidamides for applications across the chemical sciences. Perhaps most notably, the methods have been widely applied in medicinal chemistry and in the preparation of biologically active compounds, including in the large-scale preparation of an API intermediate. This review provides an overview of the development of these synthetic methods involving an intermediate iodonitrene since our initial report in 2016 on the conversion of sulfoxides into sulfoximines. This review covers the NH transfer to sulfoxides and sulfinamides, and the simultaneous NH/O transfer to sulfides and sulfenamides to form sulfoximines and sulfonimidamides, respectively. The mechanism of the reactions and the identification of key intermediates are discussed. Developments in the choice of reagents, and in the reaction conditions and setups used are described.
Collapse
|
24
|
Zhong Z, Chesti J, Armstrong A, Bull JA. Synthesis of Sulfoximine Propargyl Carbamates under Improved Conditions for Rhodium Catalyzed Carbamate Transfer to Sulfoxides. J Org Chem 2022; 87:16115-16126. [PMID: 36379008 PMCID: PMC9724092 DOI: 10.1021/acs.joc.2c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfoximines provide aza-analogues of sulfones, with potentially improved properties for medicinal chemistry. The sulfoximine nitrogen also provides an additional vector for the inclusion of other functionality. Here, we report improved conditions for rhodium catalyzed synthesis of sulfoximine (and sulfilimine) carbamates, especially for previously low-yielding carbamates containing π-functionality. Notably we report the preparation of propargyl sulfoximine carbamates to provide an alkyne as a potential click handle. Using Rh2(esp)2 as catalyst and a DOE optimization approach provided considerably increased yields.
Collapse
|
25
|
Li L, Zhang SQ, Chen Y, Cui X, Zhao G, Tang Z, Li GX. Photoredox Alkylation of Sulfinylamine Enables the Synthesis of Highly Functionalized Sulfinamides and S(VI) Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|