1
|
Wang SC, Zhou X, Li YX, Zhang CY, Zhang ZY, Xiong YS, Lu G, Dong J, Weng J. Enabling Modular Click Chemistry Library through Sequential Ligations of Carboxylic Acids and Amines. Angew Chem Int Ed Engl 2024; 63:e202410699. [PMID: 38943043 DOI: 10.1002/anie.202410699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new clickable building blocks remain exceedingly challenging. Herein, we describe a double-click strategy that enables the sequential ligations of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO2NCO) via a modular amidation/SuFEx (sulfur-fluoride exchange) process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO2F) and N-acylsulfamides (RCONHSO2NR'R'') in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compounds exhibit high antimicrobial activities against Gram-positive bacterium S. aureus and drug-resistant MRSA (MIC up to 6.25 μg ⋅ mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.
Collapse
Affiliation(s)
- Sheng-Cai Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiang Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Ying-Xian Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zi-Yan Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Gui Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiang Weng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| |
Collapse
|
2
|
Homer JA, Sun S, Koelln RA, Moses JE. Protocol for producing phosphoramidate using phosphorus fluoride exchange click chemistry. STAR Protoc 2024; 5:102824. [PMID: 38217854 PMCID: PMC10825769 DOI: 10.1016/j.xpro.2023.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024] Open
Abstract
Phosphorus fluoride exchange (PFEx) is a catalytic click reaction that involves exchanging high oxidation state P-F bonds with alcohol and amine nucleophiles, reliably yielding P-O- and P-N-linked compounds. Here, we describe steps for preparing a phosphoramidic difluoride and performing two sequential PFEx reactions to yield a phosphoramidate through careful catalyst selection. We then detail procedures for handling and quenching potentially toxic P-F-containing compounds to ensure user safety when conducting PFEx reactions. For complete details on the use and execution of this protocol, please refer to Sun et al.1.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1 Bungtown Road, NY 11724, USA
| | - Shoujun Sun
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1 Bungtown Road, NY 11724, USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1 Bungtown Road, NY 11724, USA
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1 Bungtown Road, NY 11724, USA.
| |
Collapse
|
3
|
Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, Lee EF, Yang WH, Johnson RM, Chung T, Habowski AN, Vishwakarma DS, Bhunia D, Avanzi C, Moorhouse AD, Jackson M, Tuveson DA, Lyons SK, Lukey MJ, Fairlie WD, Haider SM, Steinmetz MO, Prota AE, Moses JE. Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chem Sci 2024; 15:3879-3892. [PMID: 38487227 PMCID: PMC10935723 DOI: 10.1039/d3sc05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Zlata Boiarska
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Department of Chemistry, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Wen-Hsuan Yang
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Robert M Johnson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Taemoon Chung
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Amber N Habowski
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | | | - Debmalya Bhunia
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - Adam D Moorhouse
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Scott K Lyons
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Shozeb M Haider
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Biozentrum, University of Basel 4056 Basel Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| |
Collapse
|
4
|
Smedley CJ, Giel MC, Fallon T, Moses JE. Ethene-1,1-disulfonyl Difluoride (EDSF) for SuFEx Click Chemistry: Synthesis of SuFExable 1,1-Bissulfonylfluoride Substituted Cyclobutene Hubs. Angew Chem Int Ed Engl 2023; 62:e202303916. [PMID: 37224463 PMCID: PMC10958772 DOI: 10.1002/anie.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2 CO3 -activated SuFEx click chemistry between a single S-F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway.
Collapse
Affiliation(s)
- Christopher J. Smedley
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Thomas Fallon
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 (USA)
| |
Collapse
|