1
|
Yang X, Liu Y, Niu X, Chu K. Porphyrin-Confined Supported Ultrasmall Ir Clusters as Oxygen Evolution Catalysts for Water Electrolysis. Inorg Chem 2024; 63:19798-19808. [PMID: 39431586 DOI: 10.1021/acs.inorgchem.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Metalloporphyrin ligands themselves can participate in the redox process, making them beneficial in promoting the multielectron catalytic process of the oxygen evolution reaction (OER). However, OER catalysts synthesized by traditional chemical strategies face challenges in water electrolysis. We synthesized high-performance and stable alkaline and acidic OER electrocatalysts loaded with ultrasmall iridium clusters by taking advantage of the attraction and confinement of Ir atoms by the Ir-N bonds formed by the porphyrin cavity. The N in the porphyrin cavity forms an Ir-N bond with Ir so that Ir carries a negative charge and attracts Ir atoms to form ultrasmall Ir clusters above the cavity to adjust the electronic structure of the Ir clusters. The resulting catalyst Tpyp-Ir(IrOX) exhibits a small overpotential (242 and 259 mV) at a current density of 10 mA cm-2 in alkaline and acidic conditions and demonstrates good long-term operational stability. In addition, Tpyp-Ir(IrOX) exhibits a higher transition frequency (TOF) (1.69 O2 s-1 at 300 mV) in 1 M KOH, which is 7 times that of Ir/C.
Collapse
Affiliation(s)
- Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
2
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
3
|
Sutar P, Maisuls I, Fernández Z, Strassert CA, Fernández G. Pathway-dependent Metallosupramolecular Polymerization Regulated by Ligand Geometry. Chemistry 2024:e202403287. [PMID: 39317651 DOI: 10.1002/chem.202403287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Understanding structure/property correlations in self-assembly is a key but challenging requirement for developing functional materials. Herein, we explore the importance of ligand geometry to fine-tune photophysical properties (MMLCT vs. MLCT excited states) and self-assembly pathways in metallosupramolecular polymerization. To this end, we have designed two hydrophobic Pt(II) complexes, 1 and 2, containing a π-extended bidentate bipyridine ligand with different substitution pattern, resulting in different molecular geometries (linear vs. V-shaped). Detailed comparative studies revealed significant differences for both complexes in terms of their photophysical properties and self-assembly pathways in non-polar media. The V-shaped topology of 1 enables facile face-to-face molecular stacking with a certain curvature leading to luminescent spherical assemblies exhibiting MMLCT states and short Pt⋅⋅⋅Pt contacts via a single-step cooperative pathway. On the other hand, the higher preorganized linear topology of complex 2 induces a two-step competitive self-assembly process leading to the formation of one-dimensional supramolecular polymers with slipped packing and MLCT-originated emission. Our findings broaden the monomer scope for supramolecular polymerization and provide design guidelines for the realization of luminescent supramolecular assemblies.
Collapse
Affiliation(s)
- Papri Sutar
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
- Current address: Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| |
Collapse
|
4
|
Jadhav AB, Cheran A, Dutta C, Marydasan B, Kumar J. Binaphthalene-Assisted Axial Chirality in Porphyrins: Toward Solid-State Circularly Polarized Luminescence from Self-Assembled Nanostructures. J Phys Chem Lett 2024:8125-8132. [PMID: 39087857 DOI: 10.1021/acs.jpclett.4c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Circularly polarized luminescence (CPL) is emerging as an effective tool to study the excited-state optical activity in molecules and their self-assembled nanostructures. Chiral porphyrins are a class of optically active molecules wherein the ground-state chirality has been extensively studied in recent times using circular dichroism (CD) spectroscopy. However, obtaining CPL from porphyrin nanostructures, which would have vast implications in biological applications, has remained an uphill task. In this work, we design and synthesize a pair of chiral porphyrin enantiomers functionalized by axially chiral binaphthalene units at the four meso-positions. The molecule undergoes self-assembly following an isodesmic polymerization model, leading to the formation of a spherical nanostructure possessing opposite chirality. Favorable thermodynamic parameters achieved through the controlled experimental conditions helped drive the self-assembly in the forward direction. The limitations imposed by a large nonradiative decay constant arising due to the aggregation-induced quenching could be overcome by fabricating self-standing polymeric films of the nanostructures. The films exhibited relatively high radiative decay and, more interestingly, good CPL activity with clear mirror image spectra for the nanostructures with opposite chirality. The work on CPL-active solid-state materials opens avenue for the design and synthesis of a variety of porphyrin-based chromophoric systems and their nanoaggregates that can find potential application in the field of chiral biosensing and bioimaging, security tags, and display devices.
Collapse
Affiliation(s)
- Ashok Badrinarayan Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Arunima Cheran
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Camelia Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Betsy Marydasan
- Department of Chemistry, Government Arts College Thiruvananthapuram, Kerala 695014, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
5
|
He Y, Yu Z, Jiang Y, Zhu J, Yao SX, Liang W, Diederich F, Saunders M, Xu H. A H 2@C 601H NMR probe for sensitively detecting the supramolecular interactions between a molecular tweezer and C 60. Chem Commun (Camb) 2024. [PMID: 39058377 DOI: 10.1039/d4cc02695k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Herein, we firstly utilized H2@C60 to monitor the supramolecular interaction between a pH-driven resorcin[4]arene molecular tweezer and C60 with a notable 1H NMR chemical shift change (ca. 0.34 ppm). This work provides a new strategy for detecting weak or complex supramolecular interactions.
Collapse
Affiliation(s)
- Yixing He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Zhi Yu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yanzi Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jinjie Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Selina X Yao
- Mechanical Engineering Department, University of Vermont, Burlington, Vermont, 05401, USA
| | - Wenjie Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - François Diederich
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Martin Saunders
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT06511, USA
| | - Hai Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
6
|
Ren XR, Xing K, Liu T, Cao R, Dang LL, Bai F, Duan PC. Hydrogen Atom Abstraction and Reduction Study of 21-Thiaporphyrin and 21,23-Dithiaporphyrin. Molecules 2024; 29:3424. [PMID: 39065002 PMCID: PMC11279893 DOI: 10.3390/molecules29143424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The metal-free porphyrins protonation has gained interest over five decades because its structure modification and hardly monoacid intermediate isolation. Here, upon the hydrogen atom abstraction processes, one step diproptonated H3STTP(BF4)2 (STTP = 5,10,15,20-tetraphenyl-21-thiaporphyrin) (3) and stepwise protonated HS2TTPSbCl6 (5) and diprotonated H2S2TTP(BF4)2 (6) (S2TTP = 5,10,15,20-tetraphenyl-21,23-thiaporphyrin) compounds were obtained using HSTTP and S2TTP with oxidants. The closed-shell protonated compounds were fully characterized using XRD, UV-vis, IR and NMR spectra. In addition, the reduced 19π compounds [K(2,2,2)]HSTTP (2) and [K(2,2,2)]S2TTP (7) were synthesized by the ligands with reductant KC8 in THF solution. These two open-shell compounds were characterized with UV-vis, IR and EPR spectroscopies. The semiempirical ZINDO/S method was employed to analyze the HOMO/LUMO gap lever and identify the electronic transitions of the UV-vis spectra of the closed- and open-shell porphyrin compounds.
Collapse
Affiliation(s)
- Xiao-Rui Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Kang Xing
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Teng Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Ronghui Cao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Wagay SA, Ali R. The Hamilton Receptor in Supramolecular Polymer Sciences. Top Curr Chem (Cham) 2024; 382:27. [PMID: 39033235 DOI: 10.1007/s41061-024-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Supramolecular polymers are polymeric materials of monomeric fragments, held jointly by reversible and directional non-covalent interactions such as multiple hydrogen-bonding, charge transfer effects, host-guest interactions, metal coordination, and aromatic stacking. This review article on the Hamilton-based supramolecular polymers aims to shed light on the molecular recognition achievements by the Hamilton-based polymeric systems, evaluate Hamilton receptor's future prospects, and capitalize its potential applications in supramolecular chemistry. To the best of our knowledge, this is the first elaborative and sole manuscript in which polymeric Hamilton receptors are being exposed in detail. The first portion of this manuscript is related to the importance and urgency of polymers along with the historic background of Hamilton receptors. The middle section discloses the potential applications of Hamilton-type receptors in various fields, e.g., dendrimers, mechanically polymeric rotaxanes, and self-assemblies. The final section of the manuscript discloses the future aspects and the importance of novel polymer-based Hamilton-type receptors in the modern era. We believe that this first review in this emerging yet immature field will be useful to inspire scientists around the world to find the unseen future prospects, thereby boosting the field related to this valued artificial receptor in the province of supramolecular chemistry and also in other domains of scientific fields and technology, as well.
Collapse
Affiliation(s)
- Shafieq Ahmad Wagay
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Okhla, New Delhi, 110025, India.
| |
Collapse
|
8
|
Huang L, Hu C, Wang Y. Chirality Sensing of Chiral Carboxylic Acids by a Ureido-Linked Zinc Bisporphyrinate. Chem Asian J 2024; 19:e202400359. [PMID: 38744672 DOI: 10.1002/asia.202400359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
We designed and synthesized a ureido-linked zinc bisporphyrinate [Zn2(UBis)]. CD spectra show that this zinc bisporphyrinate has the ability to sense the chirality of chiral carboxylic acids without derivatization. Our studies suggest that the phenyl ring in the linker forms π-π interactions with porphyrin planes and that the carboxylic acid is coordinated to the zinc in the host-guest complex. DFT calculations show that the bisporphyrin adopts a "Z"-shaped configuration, and that the ureido group forms hydrogen bonds with carboxylic acids. The combination of π-π interactions, coordination interactions and hydrogen bonding interactions leads to the chirality sensing ability of [Zn2(UBis)].
Collapse
Affiliation(s)
- Libing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuanjiang Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Takemori H, Kanzaki C, Nomura S, Maeda T, Numata M. Catalytic effect of microflow space for supramolecular block co-polymerization of water-soluble porphyrins. Chem Commun (Camb) 2024; 60:7303-7306. [PMID: 38904123 DOI: 10.1039/d4cc02003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Using microflow space, a catalytic effect was achieved for supramolecular polymerization. With increasing reactivity at the polymer end, the selective connection of active monomers formed new block domains, avoiding fast homo-assembly. Binding of less-reactive monomers at the polymer end overcame steric bulkiness, affording a stable supramolecular diblock copolymer (SdiBCP).
Collapse
Affiliation(s)
- Haruna Takemori
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Chisako Kanzaki
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Shota Nomura
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Takato Maeda
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| | - Munenori Numata
- Department of Biomolecular Chemistry, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan.
| |
Collapse
|
10
|
González-Santiago B, Vicente-Escobar JO, de la Luz-Tlapaya V, García-Gutiérrez P, García-Sánchez MÁ. Porphyrins Embedded in Translucent Polymeric Substrates: Fluorescence Preservation and Molecular Docking Studies. J Fluoresc 2024; 34:1707-1718. [PMID: 37597136 DOI: 10.1007/s10895-023-03396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
This research describes the functionalization of polymer-matrix-trapping porphyrins, considering that the transcendental properties of meso-substituted porphyrins, such as optical and chemical stability, combined with the strength of the polymers, can produce photoactive advanced polymeric networks. Polystyrene (PS) and O,O´-bis-(2-aminopropyl)-polyethyleneglycol-300 (2NH2peg300, APEG), or their combination, were used to confine the meso-substituted porphyrin species 5,10,15,20-tetrakis(4'-carboxy-1,1'-biphenyl-4-yl)porphyrin and 5,10,15,20-tetrakis((pyridin-4-yl)phenyl)porphyrin. The samples were characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and fluorescence spectroscopies. The absorption and emission properties of the materials were compared to those of their respective porphyrin solutions. The fluorescence was preserved in the obtained composite through a mixture of polymers, PS, and APEG, yielding translucent polymeric networks. Moreover, analysis of individual polymeric assemblies by molecular docking was performed to support the understanding of the experimental findings. This analysis corroborates that the stronger the estimated binding energies, the stronger the interactions that occur between porphyrin and the polymer via non-polar covalent bonds.
Collapse
Affiliation(s)
- Berenice González-Santiago
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, Calzada Legaria 694, Alcaldía Miguel Hidalgo, Ciudad de México, 11500, México
| | - Jonathan Osiris Vicente-Escobar
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México
| | - Verónica de la Luz-Tlapaya
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México
| | - Ponciano García-Gutiérrez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México
| | - Miguel Ángel García-Sánchez
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col.Vicentina, Ciudad de México, 09340, México.
| |
Collapse
|
11
|
Zhang X, Liu B, Xu F, Ning L, Zhou Q, Zhang Q, Mai Y, Gong Q, Huang Y. pH-Modulated 1D Hierarchical Self-Assembly of a Brush-Like Poly-Para-Phenylene Homopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400220. [PMID: 38366315 DOI: 10.1002/smll.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The controllable self-assembly of conjugated homopolymers, especially homopolymers without other segments (a prerequisite for phase separation), which can afford chances to achieve tunable optical/electronic properties, remains a great challenge due to their poor solubility and has remained rarely documented. Herein, a conjugated homopolymer (DPPP-COOH) is synthesized, which has a unique brush-like structure with a conjugated dendritic poly-para-phenylene (DPPP) backbone and alkyl-carboxyl side chains at both edges of the backbone. The introduction of carboxyl makes the brush-like homopolymer exhibit pH-modulated 1D hierarchical self-assembly behavior in dilute solution, and allows for flexible morphological regulation of the assemblies, forming some uncommon superstructures including ultralong nanowires (at pH 7), superhelices (at pH 10) and "single-wall" nanotubes (at pH 13), respectively. Furthermore, the good aqueous dispersibility and 1D feature endow the superstructures formed in a high-concentration neutral solution with high broad-spectrum antibacterial performance superior to that of many conventional 1D materials.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bohao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Mizuno H, Nakazawa H, Miyagawa A, Yakiyama Y, Sakurai H, Fukuhara G. Amplification sensing manipulated by a sumanene-based supramolecular polymer as a dynamic allosteric effector. Sci Rep 2024; 14:12534. [PMID: 38822045 PMCID: PMC11143208 DOI: 10.1038/s41598-024-63304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
The synthesis of signal-amplifying chemosensors induced by various triggers is a major challenge for multidisciplinary sciences. In this study, a signal-amplification system that was flexibly manipulated by a dynamic allosteric effector (trigger) was developed. Herein, the focus was on using the behavior of supramolecular polymerization to control the degree of polymerization by changing the concentration of a functional monomer. It was assumed that this control was facilitated by a gradually changing/dynamic allosteric effector. A curved-π buckybowl sumanene and a sumanene-based chemosensor (SC) were employed as the allosteric effector and the molecular binder, respectively. The hetero-supramolecular polymer, (SC·(sumanene)n), facilitated the manipulation of the degree of signal-amplification; this was accomplished by changing the sumanene monomer concentration, which resulted in up to a 62.5-fold amplification of a steroid. The current results and the concept proposed herein provide an alternate method to conventional chemosensors and signal-amplification systems.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8551, Japan
| | - Hironobu Nakazawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
13
|
Chen EX, He L, Qiu M, Zhang Y, Sun Y, Li WH, Xiao JZ, Chen J, Xu G, Lin Q. Regulating electron transfer and orbital interaction within metalloporphyrin-MOFs for highly sensitive NO 2 sensing. Chem Sci 2024; 15:6833-6841. [PMID: 38725503 PMCID: PMC11077542 DOI: 10.1039/d3sc06909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
The understanding of electron transfer pathways and orbital interactions between analytes and adsorption sites in gas-sensitive studies, especially at the atomic level, is currently limited. Herein, we have designed eight isoreticular catechol-metalloporphyrin scaffolds, FeTCP-M and InTCP-M (TCP = 5,10,15,20-tetrakis-catechol-porphyrin, M = Fe, Co, Ni and Zn) with adjustable charge transfer schemes in the coordination microenvironment and precise tuning of orbital interactions between analytes and adsorption sites, which can be used as models for exploring the influence of these factors on gas sensing. Our experimental findings indicate that the sensitivity and selectivity can be modulated using the type of metals in the metal-catechol chains (which regulate the electron transfer routes) and the metalloporphyrin rings (which fine-tune the orbital interactions between analytes and adsorption sites). Among the isostructures, InTCP-Co demonstrates the highest response and selectivity to NO2 under visible light irradiation, which could be attributed to the more favorable transfer pathway of charge carriers in the coordination microenvironment under visible light illumination, as well as the better electron spin state compatibility, higher orbital overlap and orbital symmetry matching between the N-2s2pz hybrid orbital of NO2 and the Co-3dz2 orbital of InTCP-Co.
Collapse
Affiliation(s)
- Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Liang He
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Mei Qiu
- College of Chemistry and Materials, Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350116 China
| | - Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Wen-Hua Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian-Ze Xiao
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jie Chen
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
14
|
Xu Z, Dong W, Cui X, Duan Q. Three-dimensional donor-acceptor conjugated porous polymers based on metal-porphyrin and triazine for highly effective photodegradation of organic pollutants in water. CHEMOSPHERE 2024; 355:141801. [PMID: 38552804 DOI: 10.1016/j.chemosphere.2024.141801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Three-dimensional donor-acceptor (D-A) type conjugated porous polymers (CPPs) was designed and synthesized via imine condensation of copper tetraaminoporphyrin (CuTAPP) as donor and 1,3,5-tris-(4-formyl phenyl) triazine (TFPT) as acceptor, named as CuPT-CPP. The CuPT-CPP possesses a high specific surface area (73.7 m2/g) and excellent photophysical properties. The simultaneous introduction of the organometallic molecules and D-A structures in CuPT-CPP could be broadened the visible-light response range (400-800 nm) and facilitated efficient photogenerated carrier separation and transportation. As heterogeneous photocatalysts, CuPT-CPP has excellent photocatalytic performances under visible light irradiation, leading to excellent model pollutant rhodamine B degradation efficiency up to about 100% in 3 h, it has superb stability and reusability during the photocatalytic processes, and CuPT-CPP also exhibited broad substrate adaptability, which could photocatalytic degradation of methylene blue (MB), methyl orange (MO), and tetracycline hydrochloride (TC). This work indicates that three-dimensional D-A type porphyrin- and triazine-based CuPT-CPP has great potential in the practical application of photocatalysis.
Collapse
Affiliation(s)
- Zhilin Xu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xu Cui
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China.
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China; Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun, 130022, China.
| |
Collapse
|
15
|
He X, Yu J, Yin R, Zhang P, Xiao C, Chen X. A Nanoscale Trans-Platinum(II)-Based Supramolecular Coordination Self-Assembly with a Distinct Anticancer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312488. [PMID: 38301714 DOI: 10.1002/adma.202312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
17
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
18
|
Orzeł Ł, Drzewiecka-Matuszek A, Rutkowska-Zbik D, Krasowska A, Fiedor L, van Eldik R, Stochel G. Copper(II)-Assisted Degradation of Pheophytin a by Reactive Oxygen Species. Int J Mol Sci 2024; 25:1831. [PMID: 38339109 PMCID: PMC10855625 DOI: 10.3390/ijms25031831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The central ion Mg2+ is responsible for the differences between chlorophyll a and its free base in their reactivity toward metal ions and thus their resistance to oxidation. We present here the results of spectroscopic (electronic absorption and emission, circular dichroism, and electron paramagnetic resonance), spectroelectrochemical, and computational (based on density functional theory) investigations into the mechanism of pheophytin, a degradation that occurs in the presence of Cu ions and O2. The processes leading to the formation of the linear form of tetrapyrrole are very complex and involve the weakening of the methine bridge due to an electron withdrawal by Cu(II) and the activation of O2, which provides protection to the free ends of the opening macrocycle. These mechanistic insights are related to the naturally occurring damage to the photosynthetic apparatus of plants growing on metal-contaminated soils.
Collapse
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| | - Agnieszka Drzewiecka-Matuszek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland; (A.D.-M.); (D.R.-Z.)
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Cracow, Poland; (A.D.-M.); (D.R.-Z.)
| | - Aneta Krasowska
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland;
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
- Department of Inorganic and Coordination Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Chemistry add Pharmacy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Cracow, Poland; (A.K.); (R.v.E.); (G.S.)
| |
Collapse
|
19
|
Hu X, Zhu C, Sun F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Strategy toward Potentiated NIR-II Fluorescence Bioimaging of Molecular Fluorophores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304848. [PMID: 37526997 DOI: 10.1002/adma.202304848] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Fengwei Sun
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
20
|
Zhu W, Huang L, Wu C, Liu L, Li H. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics. LUMINESCENCE 2023. [PMID: 38148620 DOI: 10.1002/bio.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT) represents an emerging noninvasive treatment technique for cancers and various nonmalignant diseases, including infections. During the process of PDT, the physical and chemical properties of photosensitizers (PSs) critically determine the effectiveness of PDT. Traditional PSs have made great progress in clinical applications. One of the challenges is that traditional PSs suffer from aggregation-caused quenching (ACQ) due to their discotic structures. Recently, aggregation-induced emission PSs (AIE-PSs) with a twisted propeller-shaped conformation have been widely concerned because of high reactive oxygen species (ROS) generation efficiency, strong fluorescence efficiency, and resistance to photobleaching. However, AIE-PSs also have some disadvantages, such as short absorption wavelengths and insufficient molar absorption coefficient. When the advantages and disadvantages of AIE-PSs and ACQ-PSs are complementary, combining ACQ-PSs and AIE-PSs is a "win-to-win" strategy. As far as we know, the conversion of traditional representative ACQ-PSs to AIE-PSs for phototheranostics has not been reviewed. In the review, we summarize the recent progress on the ACQ-to-AIE transformation of PSs and the strategies to achieve desirable theranostic applications. The review would be helpful to design more efficient ACQ-AIE-PSs in the future and to accelerate the development and clinical application of PDT.
Collapse
Affiliation(s)
- Wei Zhu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Shengfa Textiles Printing and Dyeing Co., Ltd., Huzhou, China
| | - Lin Huang
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Wu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Liu
- Transfar Zhilian Co. Ltd., Hangzhou, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Zhang Q, Kuang G, Wang H, Zhao Y, Wei J, Shang L. Multi-Bioinspired MOF Delivery Systems from Microfluidics for Tumor Multimodal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303818. [PMID: 37852943 PMCID: PMC10667824 DOI: 10.1002/advs.202303818] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/28/2023] [Indexed: 10/20/2023]
Abstract
Metal-organic framework (MOF)-based drug delivery systems have demonstrated values in oncotherapy. Current research endeavors are centralized on the functionality enrichment of featured MOF materials with designed versatility for synergistic multimodal treatments. Here, inspired by the multifarious biological functions including ferroptosis pattern, porphyrins, and cancer cell membrane (CCM) camouflage technique, novel multi-biomimetic MOF nanocarriers from microfluidics are prepared. The Fe3+ , meso-tetra(4-carboxyphenyl)porphine and oxaliplatin prodrug are incorporated into one MOF nano-system (named FeTPt), which is further cloaked by CCM to obtain a "Trojan Horse"-like vehicle (FeTPt@CCM). Owing to the functionalization with CCM, FeTPt@CCM can target and accumulate at the tumor site via homologous binding. After being internalized by cancer cells, FeTPt@CCM can be activated by a Fenton-like reaction as well as a redox reaction between Fe3+ and glutathione and hydrogen peroxide to generate hydroxyl radical and oxygen. Thus, the nano-platform effectively initiates ferroptosis and improves photodynamic therapy performance. Along with the Pt-drug chemotherapy, the nano-platform exhibits synergistic multimodal actions for inhibiting cancer cell proliferation in vitro and suppressing tumor growth in vivo. These features indicate that such a versatile biomimetic MOF delivery system from microfluidics has great potential for synergistic cancer treatment.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Gaizhen Kuang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Hanbing Wang
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalThe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Jia Wei
- The Comprehensive Cancer CentreNanjing Drum Tower HospitalThe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Luoran Shang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
22
|
Haketa Y, Yamasumi K, Maeda H. π-Electronic ion pairs: building blocks for supramolecular nanoarchitectonics viaiπ- iπ interactions. Chem Soc Rev 2023; 52:7170-7196. [PMID: 37795542 DOI: 10.1039/d3cs00581j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pairing of charged π-electronic systems and their ordered arrangement have been achieved by iπ-iπ interactions that are derived from synergetically worked electrostatic and dispersion forces. Charged π-electronic systems that provide ion pairs as building blocks for assemblies have been prepared by diverse strategies for introducing charge in the core π-electronic systems. One method to prepare charged π-electronic systems is the use of covalent bonding that makes π-electronic ions and valence-mismatched metal complexes as well as protonated and deprotonated states. Noncovalent ion complexation is another method used to create π-electronic ions, particularly for anion binding, producing negatively charged π-electronic systems. Charged π-electronic systems afford various ion pairs, consisting of both cationic and anionic π-systems, depending on their combinations. Geometries and electronic states of the constituents in π-electronic ion pairs affect the photophysical properties and assembling modes. Recent progress in π-electronic ion pairs has revealed intriguing characteristics, including the transformation into radical pairs through electron transfer and the magnetic properties influenced by the countercations. Furthermore, the assembly states exhibit diversity as observed in crystals and soft materials including liquid-crystal mesophases. While the chemistry of ion pairs (salts) is well-established, the field of π-electronic ion pairs is relatively new; however, it holds great promise for future applications in novel materials and devices.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| |
Collapse
|
23
|
Inoue R, Yokoyama M, Maruyama I, Morisaki Y. Direct Synthesis of ABCD-Porphyrin Platinum(II) Complexes via Dehydrative Aromatization. Chemistry 2023; 29:e202301717. [PMID: 37401251 DOI: 10.1002/chem.202301717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Since the development of the first method for porphyrin synthesis by Rothemund in 1935, porphyrin derivatives have been widely investigated and have played an essential role in chemical sciences. Most synthetic routes of porphyrins involve oxidative aromatization. Herein, we present a synthetic method to produce ABCD-porphyrins, including chiral ones, through a one-pot reaction involving "coordination, cyclization, and dehydrative aromatization" using a mono-dipyrrinatoPt(II)Cl(COE) (COE=cyclooctene) complex as a platinum template.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Momoka Yokoyama
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Itsuki Maruyama
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yasuhiro Morisaki
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
24
|
Xie M, Liu J, Dai L, Peng H, Xie Y. Advances and prospects of porphyrin derivatives in the energy field. RSC Adv 2023; 13:24699-24730. [PMID: 37601600 PMCID: PMC10436694 DOI: 10.1039/d3ra04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
At present, porphyrin is developing rapidly in the fields of medicine, energy, catalysts, etc. More and more reports on its application are being published. This paper mainly takes the ingenious utilization of porphyrin derivatives in perovskite solar cells, dye-sensitized solar cells, and lithium batteries as the background to review the design idea of functional materials based on the porphyrin structural unit in the energy sector. In addition, the modification and improvement strategies of porphyrin are presented by visually showing the molecular structures or the design synthesis routes of its functional materials. Finally, we provide some insights into the development of novel energy storage materials based on porphyrin frameworks.
Collapse
Affiliation(s)
- Mingfa Xie
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jinyuan Liu
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Lianghong Dai
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Hongjian Peng
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Youqing Xie
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|