1
|
Mitchell S, Martín AJ, Guillén-Gosálbez G, Pérez-Ramírez J. The Future of Chemical Sciences is Sustainable. Angew Chem Int Ed Engl 2024; 63:e202318676. [PMID: 38570864 DOI: 10.1002/anie.202318676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/05/2024]
Abstract
Chemistry, a vital tool for sustainable development, faces a challenge due to the lack of clear guidance on actionable steps, hindering the optimal adoption of sustainability practices across its diverse facets from discovery to implementation. This Scientific Perspective explores established frameworks and principles, proposing a conciliated set of triple E priorities anchored on Environmental, Economic, and Equity pillars for research and decision making. We outline associated metrics, crucial for quantifying impacts, classifying them according to their focus areas and scales tackled. Emphasizing catalysis as a key driver of sustainable synthesis of chemicals and materials, we exemplify how triple E priorities can practically guide the development and implementation of processes from renewables conversions to complex customized products. We summarize by proposing a roadmap for the community aimed at raising awareness, fostering academia-industry collaboration, and stimulating further advances in sustainable chemical technologies across their broad scope.
Collapse
Affiliation(s)
- Sharon Mitchell
- Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Antonio J Martín
- Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Gonzalo Guillén-Gosálbez
- Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
2
|
Romans-Casas M, Feliu-Paradeda L, Tedesco M, Hamelers HV, Bañeras L, Balaguer MD, Puig S, Dessì P. Selective butyric acid production from CO 2 and its upgrade to butanol in microbial electrosynthesis cells. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100303. [PMID: 37635954 PMCID: PMC10457423 DOI: 10.1016/j.ese.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
Microbial electrosynthesis (MES) is a promising carbon utilization technology, but the low-value products (i.e., acetate or methane) and the high electric power demand hinder its industrial adoption. In this study, electrically efficient MES cells with a low ohmic resistance of 15.7 mΩ m2 were operated galvanostatically in fed-batch mode, alternating periods of high CO2 and H2 availability. This promoted acetic acid and ethanol production, ultimately triggering selective (78% on a carbon basis) butyric acid production via chain elongation. An average production rate of 14.5 g m-2 d-1 was obtained at an applied current of 1.0 or 1.5 mA cm-2, being Megasphaera sp. the key chain elongating player. Inoculating a second cell with the catholyte containing the enriched community resulted in butyric acid production at the same rate as the previous cell, but the lag phase was reduced by 82%. Furthermore, interrupting the CO2 feeding and setting a constant pH2 of 1.7-1.8 atm in the cathode compartment triggered solventogenic butanol production at a pH below 4.8. The efficient cell design resulted in average cell voltages of 2.6-2.8 V and a remarkably low electric energy requirement of 34.6 kWhel kg-1 of butyric acid produced, despite coulombic efficiencies being restricted to 45% due to the cross-over of O2 and H2 through the membrane. In conclusion, this study revealed the optimal operating conditions to achieve energy-efficient butyric acid production from CO2 and suggested a strategy to further upgrade it to valuable butanol.
Collapse
Affiliation(s)
- Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Laura Feliu-Paradeda
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - Michele Tedesco
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Hubertus V.M. Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Lluis Bañeras
- Molecular Microbial Ecology Group, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 40, 17003, Girona, Spain
| | - M. Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| | - Paolo Dessì
- LEQUiA, Institute of the Environment, University of Girona. Campus Montilivi, Carrer Maria Aurèlia Capmany 69, E-17003, Girona, Spain
| |
Collapse
|
3
|
D’Angelo S, Mache J, Guillén-Gosálbez G. Absolute Sustainability Assessment of Flue Gas Valorization to Ammonia and Synthetic Natural Gas. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:17718-17727. [PMID: 38130844 PMCID: PMC10731640 DOI: 10.1021/acssuschemeng.3c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Carbon capture and utilization has gained attention to potentially curb CO2 emissions while generating valuable chemicals. These technologies will coexist with fossil analogs, creating synergies to leverage circular economy principles. In this context, flue gas valorization from power plants can assist in the transition. Here, we assessed the absolute sustainability of a simulated integrated facility producing ammonia and synthetic natural gas from flue gas from a combined-cycle natural gas power plant based in Germany, using hydrogen from three water electrolysis technologies (proton exchange membrane, alkaline, and solid oxide cells), nitrogen, and CO2. For the first time, we applied the planetary boundaries (PBs) framework to a circular integrated system, evaluating its performance relative to the safe operating space. The PB-LCA assessment showed that the alternative technologies could significantly reduce, among others, the impact on climate change and biosphere integrity when compared to their fossil counterparts, which could be deemed unsustainable in climate change. Nevertheless, these alternative technologies could also lead to burden shifting and are not yet economically viable. Overall, the investigated process could smoothen the transition toward low-carbon technologies, but its potential collateral damages should be carefully considered. Furthermore, the application of the PBs provides an appealing framework to quantify the absolute sustainability level of integrated circular systems.
Collapse
Affiliation(s)
- Sebastiano
Carlo D’Angelo
- Department of Chemistry and
Applied Biosciences, Institute for Chemical
and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| | - Julian Mache
- Department of Chemistry and
Applied Biosciences, Institute for Chemical
and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| | - Gonzalo Guillén-Gosálbez
- Department of Chemistry and
Applied Biosciences, Institute for Chemical
and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| |
Collapse
|
4
|
Michailidou F. The Scent of Change: Sustainable Fragrances Through Industrial Biotechnology. Chembiochem 2023; 24:e202300309. [PMID: 37668275 DOI: 10.1002/cbic.202300309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 09/06/2023]
Abstract
Current environmental and safety considerations urge innovation to address the need for sustainable high-value chemicals that are embraced by consumers. This review discusses the concept of sustainable fragrances, as high-value, everyday and everywhere chemicals. Current and emerging technologies represent an opportunity to produce fragrances in an environmentally and socially responsible way. Biotechnology, including fermentation, biocatalysis, and genetic engineering, has the potential to reduce the environmental footprint of fragrance production while maintaining quality and consistency. Computational and in silico methods, including machine learning (ML), are also likely to augment the capabilities of sustainable fragrance production. Continued innovation and collaboration will be crucial to the future of sustainable fragrances, with a focus on developing novel sustainable ingredients, as well as ethical sourcing practices.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
5
|
Enevoldsen P, Baum CM, Low S, Sovacool BK. Examining the synergies and tradeoffs of net-zero climate protection with the Sustainable Development Goals. Sci Prog 2022; 105:368504221138443. [PMID: 36476205 PMCID: PMC10450479 DOI: 10.1177/00368504221138443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article discusses and illuminates the synergies and jeopardies or tradeoffs that exist between the 17 Sustainable Development Goals (SDGs) and net-zero or future climate protection options such as greenhouse gas removal (GGR) technologies and solar radiation management (SRM) deployment approaches, respectively. Through a large-scale expert-interview exercise (N = 125), the study finds firstly that numerous synergies and tradeoffs exist between GGR, SRM, and the SDGs. More specifically, we reveal that GGR deployment could enhance the attainment of 16 of the 17 SDGs, but this comes with possible tradeoffs with 12 of the SDGs. SRM deployment could not only enhance the attainment of 16 of the 17 SDGs, but also create possible tradeoffs with (a different) 12 SDGs. The findings further support the understanding of the complexity of SRM and GGR proposals and help policymakers and industrial pioneers understand, navigate, and benchmark between geoengineering approaches using sustainable development goals.
Collapse
Affiliation(s)
- Peter Enevoldsen
- Department of Business Development and Technology, Center for Energy Technologies, Aarhus University, Aarhus, Midtjylland, Denmark
| | - Chad M. Baum
- Department of Business Development and Technology, Center for Energy Technologies, Aarhus University, Aarhus, Midtjylland, Denmark
| | - Sean Low
- Department of Business Development and Technology, Center for Energy Technologies, Aarhus University, Aarhus, Midtjylland, Denmark
| | - Benjamin K. Sovacool
- Department of Business Development and Technology, Center for Energy Technologies, Aarhus University, Aarhus, Midtjylland, Denmark
- Science Policy Research Unit (SPRU), University of Sussex Business School, Brighton, UK
- Department of Earth and Environment, Boston University, Boston, MA, USA
| |
Collapse
|