1
|
Chen G, Zhang W, Chen Q, Dong M, Liu M, Liu G. Geniposide exerts the antidepressant effect by affecting inflammation and glucose metabolism in a mouse model of depression. Chem Biol Interact 2024; 400:111182. [PMID: 39098740 DOI: 10.1016/j.cbi.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Depression is a severe mental illness affecting patient's physical and mental health. However, long-term effects of existing therapeutic modalities for depression are not satisfactory. Geniposide is an iridoid compound highly expressed in gardenia jasminoides for removing annoyance. The activity of geniposide against depression has been widely studied while most studies concentrated on the expression levels of gene and protein. Herein, the aim of the present study was to employ non-target metabolomic platform of serum to investigate metabolic changes of depression mice and further verify in hippocampus for analyzing the antidepressant mechanism of geniposide. Then we discovered that 9 metabolites of serum were significantly increased in depressive group (prostaglandin E2, leukotriene C4, arachidonic acid, phosphatidylcholine (PC, 16:0/16:0), LysoPC (18:1 (9Z)/0:0), phosphatidylethanolamine (14:0/16:0), creatine, oleamide and aminomalonic acid) and 6 metabolites were decreased (indoxylsulfuric acid, testosterone, lactic acid, glucose 6-phosphate, leucine and valine). The levels of arachidonic acid, LysoPC, lactic acid and glucose 6-phosphate in hippocampus were consistent change with serum in depression mice. Most of them showed significant tendencies to be normal by geniposide treatment. Metabolic pathway analysis indicated that arachidonic acid metabolism and glucose metabolism were the main pathogenesis for the antidepressant effect of geniposide. In addition, the levels of serum tumor necrosis factor-α and interleukin-1 were increased in depressive mice and reversed after geniposide treatment. This study revealed that abnormal metabolism of inflammatory response and glucose metabolism of the serum and hippocampus involved in the occurrence of depressive disorder and antidepressant effect of geniposide.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China.
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Miao Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Fan X, Hu X, Cong P, Wang X, Song Y, Liu Y, Wang X, Meng N, Xue C, Xu J. Combined UPLC-QqQ-MS/MS and AP-MALDI Mass Spectrometry Imaging Method for Phospholipidomics in Obese Mouse Kidneys: Alleviation by Feeding Sea Cucumber Phospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16312-16322. [PMID: 38985073 DOI: 10.1021/acs.jafc.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid β-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.
Collapse
Affiliation(s)
- Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xinxin Hu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong 266073, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| |
Collapse
|
3
|
Wang Z, Liu Y, Wang X, Wang X, Wu Y, Song Y, Xu J, Xue C. Sea cucumber plasmalogen enhance lipophagy to alleviate abnormal lipid accumulation induced by high-fat diet. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159495. [PMID: 38609006 DOI: 10.1016/j.bbalip.2024.159495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Sea cucumber phospholipids, including the plasmalogen (PlsEtn) and plasmanylcholine (PakCho), have been shown to play a regulatory role in lipid metabolism disorders, but their mechanism of action remains unclear. Therefore, high-fat diet (HFD) and palmitic acid were used to establish lipid accumulation models in mice and HepG2 cells, respectively. Results showed that PlsEtn can reduce lipid deposition both in vivo and in vitro. HFD stimulation abnormally activated lipophagy through the phosphorylation of the AMPK/ULK1 pathway. The lipophagy flux monitor revealed abnormalities in the fusion stage of lipophagy. Of note, only PlsEtn stimulated the dynamic remodeling of the autophagosome membrane, which was indicated by the significantly decreased LC3 II/I ratio and p62 level. In all experiments, the effect of PlsEtn was significantly higher than that of PakCho. These findings elucidated the mechanism of PlsEtn in alleviating lipid accumulation, showed that it might be a lipophagy enhancer, and provided new insights into the high-value utilization of sea cucumber as an agricultural resource.
Collapse
Affiliation(s)
- Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China.
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China.
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China.
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China; Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China.
| | - Yuan Wu
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China.
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 1299, Sanshan Road, Qingdao, Shandong Province 266003, China; Qingdao Marine Science and Technology Center, Qingdao 266235, China.
| |
Collapse
|
4
|
Jie XL, Tong ZR, Xu XY, Wu JH, Jiang XL, Tao Y, Feng PS, Yu J, Lan JP, Wang P. Mechanic study based on untargeted metabolomics of Pi-pa-run-fei-tang on pepper combined with ammonia induced chronic cough model mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117905. [PMID: 38364934 DOI: 10.1016/j.jep.2024.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pi-pa-run-fei-tang (PPRFT), a traditional Chinese medicine formula with long-standing history, demonstrated beneficial effect on chronic cough. However, the mechanism underlying efficacy unclear. In current research, we explored the impact and molecular mechanism of chronic cough mouse stimulating with capsaicin combined with ammonia. AIM OF THE STUDY To investigate the metabolic modulating effects, and potential mechanisms underlying the therapeutic effect of PPRFT in chronic cough. MATERIALS AND METHODS Chronic cough mouse models were created by stimulating mice by capsaicin combined with ammonia. Number of coughs and cough latency within 2 min were recorded. With lung tissue and serum samples collected for histopathology, metabolomics, RT-qPCR, immunohistochemistry, and WB analysis. Lymphocytes were isolated and flow cytometric assays were conducted to evaluate the differentiation between Th17 and Treg cell among CD4+ cells. RESULTS Results indicated that PPRFT obviously reduced the number of coughs, prolonged cough latency, reduced inflammatory cell infiltration and lung tissues damage, and decreased the serum level of IL-6, IL-1β, TNF-α, and IL-17 while increasing IL-10 levels. Notably, PPRFT suppressed Th17 cell divergence and promoted Treg cell divergence. Furthermore, serum metabolomic assays showed that 46 metabolites differed significantly between group, with 35 pathways involved. Moreover, mRNA levels of IL-6, NF-κB, IL-17, RORγT, JAK2, STAT3, PI3K and AKT in lung tissues remarkably reduced and mRNA levels of IL-10 and FOXP3 were elevated after PPRFT pretreatment. Additionally, PPRFT treatments decreased the protein levels of IL-6, NF-κB, IL-17, RORγT, p-JAK2, p-STAT3, p-PI3K, and p-AKT and increased the protein levels of IL-10 and FOXP3, but no significantly effects to the levels on JAK2, STAT3, PI3K, and AKT in the lungs. CONCLUSION Conclusively, our result suggested the effect with PPRFT on chronic cough may be mediated through IL-6/JAK2/STAT3 and PI3K/AKT/NF-κB pathway, which regulate the differentiation between Th17 and Treg cell. This beneficial effect of PPRFT in capsaicin and ammonia-stimulated chronic cough mice indicates its potential application in treating chronic cough.
Collapse
Affiliation(s)
- Xiao-Lu Jie
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Zhe-Ren Tong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xin-Yue Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jia-Hui Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xing-Liang Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Pei-Shi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jin Yu
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., Hangzhou, China.
| | - Ji-Ping Lan
- School of Integrative Medicine Shanghai University of Traditional Chinese Medicine (SHUTCM), Shanghai 201203, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
5
|
Wang Z, Wang X, Liu Y, Wang X, Meng N, Cong P, Song Y, Xu J, Xue C. Sea Cucumber Plasmalogen Regulates the Lipid Profile in High-Fat Diet Mouse Liver via Lipophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9842-9855. [PMID: 38630981 DOI: 10.1021/acs.jafc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The sea cucumber plasmalogen PlsEtn has been shown to be associated with various chronic diseases related to lipid metabolism. However, the mechanism is unclear. Therefore, the present study used the sea cucumber plasmanylcholine PakCho as a structural contrast to PlsEtn and assessed its effect in 8 week high-fat diet (HFD)-fed mice. The lipidomic approach based on high-resolution mass spectrometry combined with molecular biology techniques was used to evaluate the mechanism of PlsEtn. The results showed that both PlsEtn and PakCho significantly inhibited an increase in mouse body weight and liver total triglyceride and total cholesterol levels caused by HFD. In addition, oil red O staining demonstrated that lipid droplets stored in the liver were degraded. Meanwhile, untargeted lipidomic experiments revealed that total lipids (increased by 42.8 mmol/mg prot; p < 0.05), triglycerides (increased by 38.9 mmol/mg prot; p < 0.01), sphingolipids (increased by 1.5 mmol/mg prot; p < 0.0001), and phospholipids (increased by 2.5 mmol/mg prot; p < 0.05) were all significantly elevated under HFD. PlsEtn resolved lipid metabolism disorders by alleviating the abnormal expression of lipid subclasses. In addition, five lipid molecular species, PE (18:1/20:4), PE (18:1/20:3), PE (18:1/18:3), TG (16:0/16:0/17:0), and TG (15:0/16:0/18:1), were identified as the biomarkers of HFD-induced lipid metabolism disorders. Finally, lipophagy-associated protein expression analysis showed that HFD abnormally activated lipophagy via ULK1 phosphorylation and PlsEtn alleviated lipophagy disorder through lysosomal function promotion. In addition, PlsEtn performed better than PakCho. Taken together, the current study results unraveled the mechanism of PlsEtn in alleviating lipid metabolism disorder and offered a new theoretical foundation for the high-value development of sea cucumber.
Collapse
Affiliation(s)
- Zhigao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266003, China
- Qingdao Marine Science and Technology Center, Qingdao 266235, China
| |
Collapse
|
6
|
Fang J, Jiang P, Wang X, Qi Z, He X, Chen L, Guo Y, Xu X, Liu R, Li D. Thinned young apple powder prevents obesity-induced neuronal apoptosis via improving mitochondrial function of cerebral cortex in mice. J Nutr Biochem 2024; 126:109588. [PMID: 38266689 DOI: 10.1016/j.jnutbio.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Mitochondrial dysfunction is one of the triggers for obesity-induced neuron apoptosis. Thinned young apple is getting more attention on account of the extensive biological activities because of rich polyphenols and polysaccharides. However, the neuroprotective effect of thinned young apple powder (YAP) is still unclear. The aim of the present study was to investigate the preventive effect of YAP on obesity-induced neuronal apoptosis. C57BL/6J male mice were divided into 5 groups, control (CON), high fat diet (HFD), HFD + orlistat (ORL), HFD + low-dose young apple powder (LYAP) and HFD + high-dose young apple powder (HYAP) groups and intervened for 12 weeks. It was found that the YAP effectively reduced body weight gain. Importantly, the levels of pro-apoptosis protein were lower in LYAP and HYAP groups than the HFD group, such as Bak/Bcl2 and cleaved caspase3/caspase3. Pathway analysis based on untargeted metabolomics suggested that YAP alleviated obesity-induced neuronal apoptosis by three main metabolic pathway including arginine metabolism, citrate cycle (TCA cycle) and glutathione metabolism. Meanwhile, YAP improved the protein expression of mitochondrial respiratory chain complex, maintained the homeostasis of TCA cycle intermediates, protected the balance of mitochondrial dynamics and alleviated lipid accumulation. In addition, the levels of several antioxidants in cerebral cortex were higher in HYAP group than the HFD group like superoxide dismutase (SOD) and catalase (CAT). In summary, YAP supplementation suppressed neuronal apoptosis in the cerebral cortex of HFD-induced obesity mice by improving mitochondrial function and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Peng Jiang
- Red Cross Maternity and Child Health Care Hospital of Jiaozhou, Qingdao, China
| | - Xincen Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public health and Emergency management, Southern University of Science and Technology, ShenZhen, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoyun Xu
- Red Cross Maternity and Child Health Care Hospital of Jiaozhou, Qingdao, China
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China; School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Wen H, Leong PM, Wang X, Li D. Isolation and Characterization of n-3 Polyunsaturated Fatty Acids in Enteromorpha prolifera Lipids and Their Preventive Effects on Ulcerative Colitis in C57BL/6J Mice. Foods 2023; 13:46. [PMID: 38201073 PMCID: PMC10778640 DOI: 10.3390/foods13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Enteromorpha prolifera (EP) is a green alga that causes green bloom worldwide. This study aimed to isolate and identify n-3 polyunsaturated fatty acids (PUFAs) from EP oil obtained via supercritical fluid extraction (SFE) and to explore its preventive effects against dextran sodium sulfate (DSS)-induced ulcerative colitis in C57BL/6J mice. In EP oil, we found the novel n-3 polyunsaturated fatty acid C16:4n-3 and two unusual fatty acids C18:4n-3 and C16:3n-3, using GC-MS. The administration of EP oil reduced histopathological of symptoms colitis and the shortening of the colon length. Pro-inflammatory cytokines of IL-6 and TNF-α in serum of EP oil treatment were lower than DSS treatment (by 37.63% and 83.52%), and IL-6 gene expression in the colon was lower in than DSS group by 48.28%, and IL-10 in serum was higher than DSS group by 2.88-fold. Furthermore, the protein expression of p-STAT3 by the EP oil treatment was significantly reduced compared with DSS treatment group by 73.61%. Lipidomics study suggested that phosphatidylcholine and phosphatidylethanolamine were positively associated with the anti-inflammatory cytokine IL-10, while cholesteryl ester and sphingomyelin were negatively related to inflammation cytokines in the EP oil group. The present results indicated that EP oil rich in n-3 PUFA contains a novel fatty acid C16:4n-3, as well as two uncommon fatty acids C18:4n-3 and C16:3n-3. EP oil could prevent DSS-induced ulcerative colitis by regulating the JAK/STAT pathway and lipid metabolism.
Collapse
Affiliation(s)
- Haichao Wen
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Pooi Mun Leong
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Xincen Wang
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| |
Collapse
|
8
|
Hu X, Cong P, Song Y, Wang X, Zhang H, Meng N, Fan X, Xu J, Xue C. Comprehensive Lipid Profile of Eight Echinoderm Species by RPLC-Triple TOF-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8230-8240. [PMID: 37196222 DOI: 10.1021/acs.jafc.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Echinoderms are of broad interest for abundant bioactive lipids. The comprehensive lipid profiles in eight echinoderm species were obtained by UPLC-Triple TOF-MS/MS with characterization and semi-quantitative analysis of 961 lipid molecular species in 14 subclasses of 4 classes. Phospholipids (38.78-76.83%) and glycerolipids (6.85-42.82%) were the main classes in all investigated echinoderm species, with abundant ether phospholipids, whereas the proportion of sphingolipids was higher in sea cucumbers. Two sulfated lipid subclasses were detected in echinoderms for the first time; sterol sulfate was rich in sea cucumbers, whereas sulfoquinovosyldiacylglycerol existed in the sea star and sea urchins. Furthermore, PC(18:1/24:2), PE(16:0/14:0), and TAG(50:1e) could be used as lipid markers to distinguish eight echinoderm species. In this study, the differentiation of eight echinoderms was achieved by lipidomics and revealed the uniqueness of the natural biochemical fingerprints of echinoderms. The findings will help evaluate the nutritional value in the future.
Collapse
Affiliation(s)
- Xinxin Hu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District, Qingdao, Shandong 266002, China
| | - Nan Meng
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaowei Fan
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Yang S, Wang X, Li H, Wang X, Song Y, Cong P, Xu J, Xue C. Sea Cucumber Phospholipids Regulate Cholesterol Metabolism in High-Fat Diet-induced ApoE -/- Mice. J Nutr 2023:S0022-3166(23)37560-6. [PMID: 37105382 DOI: 10.1016/j.tjnut.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Sea cucumber phospholipids, marine-derived lipids with high nutritional functions, have been proven to exhibit various biological activities. However, it is unclear how sea cucumber phospholipids regulate cholesterol (Chol) metabolism in atherosclerosis (AS). OBJECTIVE This study aimed to investigate the effects and mechanism of sea cucumber phospholipids on the metabolism of Chol and cholesterol esters (CE) in ApoE-/- mice, including plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O). METHODS Male ApoE-/- mice were fed with chow diet, high-fat diet (HFD), and high-fat diet supplemented with PC-O or PE-P, respectively. We integrated a targeted lipidomics strategy to classify and compare the cholesteryl esters according to their fatty acid types, then analyzed the individual cholesteryl ester molecular species in the liver and serum of mice. Furthermore, the Chol metabolism-related genes and pathways were analyzed in high-fat-induced ApoE-/- mice. RESULTS Biochemical analysis showed that sea cucumber phospholipids significantly inhibit the generation of arterial plaque in ApoE-/- mice. Compared with the HFD group, PE-P significantly reduced the contents of saturated fatty acid-cholesterol esters (SFA-CE) and monounsaturated fatty acid-cholesterol esters (MUFA-CE) in mice liver (P < 0.05), whereas PC-O particularly upregulated CE20:5 and CE22:6 in serum of mice (P < 0.001). Furthermore, PC-O and PE-P inhibited the Chol synthesis pathway (Cyp7A1 and Cyp27A1), as well as promoted the catabolism of Chol by upregulating gene expressions of bile acid synthesis (Abcb11) and lysosomal activity (Lamp1), respectively. CONCLUSIONS Sea cucumber phospholipids could ameliorate the AS symptoms by regulating Chol metabolism.
Collapse
Affiliation(s)
- Shuo Yang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - He Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Yu Song
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Wang Z, Wang X, Wang Y, Liu Y, Wang X, Song Y, Xu J, Xue C. Lipidomics approach in alcoholic liver disease mice with sphingolipid metabolism disorder: Alleviation using sea cucumber phospholipids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|