1
|
Farazi M, Houghton MJ, Nicolotti L, Murray M, Cardoso BR, Williamson G. Inhibition of human starch digesting enzymes and intestinal glucose transport by walnut polyphenols. Food Res Int 2024; 189:114572. [PMID: 38876610 DOI: 10.1016/j.foodres.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-β-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.
Collapse
Affiliation(s)
- Mena Farazi
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Luca Nicolotti
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia; Metabolomics Australia, The Australian Wine Research Institute, Adelaide, SA 5064, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Department of Health Sciences and Biostatistics, Swinburne University of Technology, John St, Hawthorn, VIC 3122, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia.
| |
Collapse
|
2
|
Delgado-Osorio A, Navajas-Porras B, Pérez-Burillo S, Hinojosa-Nogueira D, Toledano-Marín Á, Pastoriza de la Cueva S, Paliy O, Rufián-Henares JÁ. Cultivar and Harvest Time of Almonds Affect Their Antioxidant and Nutritional Profile through Gut Microbiota Modifications. Antioxidants (Basel) 2024; 13:84. [PMID: 38247508 PMCID: PMC10812595 DOI: 10.3390/antiox13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Almonds are a rich source of beneficial compounds for human health. In this work, we assessed the influence of almond cultivars and harvest time on their morphological (length, width and thickness) and nutritional (ash, moisture, proteins) profiles. We also evaluated the impact of an in vitro digestion and fermentation process on almonds' antioxidant and phenolic content, as well as their support of gut microbiota community and functionality, including the production of short-chain fatty acids (SCFAs), lactic and succinic acids. The length, width, and thickness of almonds varied significantly among cultivars, with the latter two parameters also exhibiting significant changes over time. Moisture content decreased with maturity, while protein and ash increased significantly. Total antioxidant capacity released by almonds after digestion and fermentation had different trends depending on the antioxidant capacity method used. The fermentation step contributed more to the antioxidant capacity than the digestion step. Both cultivar and harvest time exerted a significant influence on the concentration of certain phenolic compounds, although the total content remained unaffected. Similarly, fecal microbiota modulation depended on the cultivar and maturity stage, with the Guara cultivar and late maturity showing the largest effects. Cultivar type also exerted a significant impact on the concentration of SCFAs, with the Guara cultivar displaying the highest total SCFAs concentration. Thus, we conclude that cultivar and harvest time are key factors in shaping the morphological and nutritional composition of almonds. In addition, taking into account all the results obtained, the Guara variety has the best nutritional profile.
Collapse
Affiliation(s)
- Adriana Delgado-Osorio
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Beatriz Navajas-Porras
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Ángela Toledano-Marín
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA;
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, Av. del Hospicio, s/n, 18012 Granada, Spain; (A.D.-O.); (B.N.-P.); (S.P.-B.); (D.H.-N.); (Á.T.-M.); (S.P.d.l.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Avda. de Madrid 15, 2a Planta, 18012 Granada, Spain
| |
Collapse
|
3
|
Simon G, Bujdosó G, Cvetkovic M, Tevfik Alp O, Kithi L, Oláh R, Ficzek G, Végvári G. Responses of Persian walnut on foliar applications of different biostimulants. FRONTIERS IN PLANT SCIENCE 2023; 14:1263396. [PMID: 37915506 PMCID: PMC10616974 DOI: 10.3389/fpls.2023.1263396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Biostimulants have different effects on plants. The aim of this paper is to determine responses of the 'Alsószentiváni 117' walnut cultivar on foliar applications of different biostimulants (Wuxal Ascofol, Kondisol, Alga K Plus). The nut traits (nut length, nut diameter, nut weight, kernel weight) and some phenolic compounds of the kernel were measured and detected. In 2020, during warmer early spring weather conditions under pistillate flowering receptivity, chlorogenic acid and quercetin content of kernels treated with Kondisol were higher than in control. All biostimulants influenced positive effects on catechin and rutin content, as well as treatments made with Wuxal Ascofol and Kondisol increased the juglon content of the kernel. In 2021, when the spring weather was typical for that period, only the Kondisol treatments had increasing effects on the catechin and chlorogenic acid content, than the control. The rutin and quercetin concentrations reached the highest value in this trial by Alga K Plus applications. The juglon content decreased in this year compared to the control. The pirocathecin, cinnamic acid, and gallic acid (except Wuxal Ascofol treatment in 2021) content decreased in all treatments in both observed years. Responses of woody fruit species on biostimulants applications depend on the weather conditions. Biostimulants had positive effects on the nut size characteristics in both observed years.
Collapse
Affiliation(s)
- Gergely Simon
- Department of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Géza Bujdosó
- Research Center of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Miljan Cvetkovic
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ozan Tevfik Alp
- Department of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Laurine Kithi
- Research Center of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Gitta Ficzek
- Department of Fruit Growing, Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - György Végvári
- Faculty of Natural Sciences, Institute of Viticulture and Oenology, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|