1
|
Liu YJ, Kyne M, Kang C, Wang C. Raman spectroscopy in extracellular vesicles analysis: Techniques, applications and advancements. Biosens Bioelectron 2025; 270:116970. [PMID: 39603214 DOI: 10.1016/j.bios.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Raman spectroscopy provides a robust approach for detailed analysis of the chemical and molecular profiles of extracellular vesicles (EVs). Recent advancements in Raman techniques have significantly enhanced the sensitivity and accuracy of EV characterization, enabling precise detection and profiling of molecular components within EV samples. This review introduces and compares various Raman-based techniques for EV characterization. These include Raman spectroscopy (RS), which provides fundamental molecular information; Raman trapping analysis (RTA), which combines optical trapping with Raman scattering for the manipulation and analysis of individual EVs; surface-enhanced Raman spectroscopy (SERS), which enhances the Raman signal through the use of metallic nanostructures, significantly improving sensitivity; and microfluidic SERS, which integrates SERS with microfluidic platforms to allow high-throughput, label-free analysis of EVs in biological fluids. In addition to comparing various Raman techniques, this review provides a comprehensive analysis that includes comparisons of machine learning methods, EV isolation techniques, and characterization strategies. By integrating these approaches, the review presents a holistic perspective on Raman-based EV analysis, covering profiling, purity, heterogeneity and size analysis as well as imaging. The combined assessment of Raman technologies with advanced computational and experimental methodologies supports the development of more robust diagnostic and therapeutic applications involving EVs.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Michelle Kyne
- School of Chemistry, National University of Ireland, Galway, Galway, H91 CF50, Ireland
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Cheng Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
3
|
Sun DS, Chang HH. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med J 2024; 36:251-259. [PMID: 38993825 PMCID: PMC11236075 DOI: 10.4103/tcmj.tcmj_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, disease pathology, and therapeutic innovation. Initially overlooked as cellular debris, EVs are now recognized as vital mediators of cell-to-cell communication, ferrying a cargo of proteins, nucleic acids, and lipids, providing cellular resilience in response to stresses. This review provides a comprehensive overview of EVs, focusing on their role as biomarkers in disease diagnosis, their functional significance in physiological and pathological processes, and the potential of bioengineering for therapeutic applications. EVs offer a promising avenue for noninvasive disease diagnosis and monitoring, reflecting the physiological state of originating cells. Their diagnostic potential spans a spectrum of diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, and infectious diseases. Moreover, their presence in bodily fluids such as blood, urine, and cerebrospinal fluid enhances their diagnostic utility, presenting advantages over traditional methods. Beyond diagnostics, EVs mediate crucial roles in intercellular communication, facilitating the transfer of bioactive molecules between cells. This communication modulates various physiological processes such as tissue regeneration, immune modulation, and neuronal communication. Dysregulation of EV-mediated communication is implicated in diseases such as cancer, immune disorders, and neurodegenerative diseases, highlighting their therapeutic potential. Bioengineering techniques offer avenues for manipulating EVs for therapeutic applications, from isolation and purification to engineering cargo and targeted delivery systems. These approaches hold promise for developing novel therapeutics tailored to specific diseases, revolutionizing personalized medicine. However, challenges such as standardization, scalability, and regulatory approval need addressing for successful clinical translation. Overall, EVs represent a dynamic frontier in biomedical research with vast potential for diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Bu Y, Wang J, Ni S, Lu Z, Guo Y, Yobas L. High-Performance Gel-Free and Label-Free Size Fractionation of Extracellular Vesicles with Two-Dimensional Electrophoresis in a Microfluidic Artificial Sieve. Anal Chem 2024; 96:3508-3516. [PMID: 38364051 DOI: 10.1021/acs.analchem.3c05290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived particles that exhibit diverse sizes, molecular contents, and clinical implications for various diseases depending on their specific subpopulations. However, fractionation of EV subpopulations with high resolution, efficiency, purity, and yield remains an elusive goal due to their diminutive sizes. In this study, we introduce a novel strategy that effectively separates EV subpopulations in a gel-free and label-free manner, using two-dimensional (2D) electrophoresis in a microfluidic artificial sieve. The microfabricated artificial sieve consists of periodically arranged micro-slit-well structures in a 2D array and generates an anisotropic electric field pattern to size fractionate EVs into discrete streams and steer the subpopulations into designated outlets for collection within a minute. Along with fractionating EV subpopulations, contaminants such as free proteins and short nucleic acids can be simultaneously directed to waste outlets, thus accomplishing both size fractionation and purification of EVs with high performance. Our platform offers a simple, rapid, and versatile solution for EV subpopulation isolation, which can potentially facilitate the discovery of biomarkers for specific EV subtypes and the development of EV-based therapeutics.
Collapse
Affiliation(s)
- Yang Bu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Jinhui Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Zechen Lu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| | - Levent Yobas
- Department of Electronic and Computer Engineering, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
5
|
Hettiarachchi S, Ouyang L, Cha H, Hansen HHWB, An H, Nguyen NT, Zhang J. Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles. NANOSCALE 2024; 16:3560-3570. [PMID: 38289397 DOI: 10.1039/d3nr05410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Manipulation, focusing, and separation of submicron- and nanoparticles such as extracellular vesicles (EVs), viruses and bacteria have broad applications in disease diagnostics and therapeutics. Viscoelastic microfluidic technology emerges as a promising technique, and it shows an unparalleled capacity to manipulate and separate submicron particles in a high resolution based on the elastic effects of non-Newtonian mediums. The maximum particle separation resolution for the reported state-of-the-art viscoelastic microfluidics is around 200 nm. To further enhance the reseparation resolution, this work develops a viscoelastic microfluidic device that can achieve a finer separation resolution up to 100 nm, by optimising the operating conditions such as flow rate, flow rate ratio and polyethylene oxide (PEO) concentration. With these optimised conditions, we separated a ternary mixture of 100 nm, 200 nm and 500 nm polystyrene particles, with purities above 90%, 70% and 82%, respectively. Furthermore, we also applied the developed viscoelastic microfluidic device for the separation of cancer cell-secreted extracellular vesicles (EVs) into three different size groups. After single processing, the separation efficiencies for small EVs (sEVs, <150 nm), medium EVs (mEVs, 150-300 nm), and large EVs (>300 nm) were 86%, 80% and 50%, respectively. The enrichment factors for the three EV groups were 2.4, 1.1 and 1.3, respectively. Moreover, we observed an unexpected effect of high PEO concentrations (2000-5000 ppm) on the lateral migration of nanoparticles where nanoparticles of up to 50 nm surprisingly can migrate and concentrate at the middle of the microchannel. This simple and label-free viscoelastic microfluidic device possesses excellent potential for sorting submicron particles for various chemical, biological, medical and environmental applications.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Helena H W B Hansen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Honjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
6
|
Arduino I, Di Fonte R, Tiboni M, Porcelli L, Serratì S, Fondaj D, Rafaschieri T, Cutrignelli A, Guida G, Casettari L, Azzariti A, Lopedota AA, Denora N, Iacobazzi RM. Microfluidic development and biological evaluation of targeted therapy-loaded biomimetic nano system to improve the metastatic melanoma treatment. Int J Pharm 2024; 650:123697. [PMID: 38081557 DOI: 10.1016/j.ijpharm.2023.123697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Optimizing current therapies is among next steps in metastatic melanoma (MM) treatment landscape. The innovation of this study is the design of production process by microfluidics of cell membrane (CM)-modified nanoparticles (NPs), as an emerging biomimetic platform that allows for reduced immune clearance, long blood circulation time and improved specific tumor targeting. To achieve melanoma selectivity, direct membrane fusion between synthetic liposomes and CMs extracted from MM cell line was performed by microfluidic sonication approach, then the hybrid liposomes were loaded with cobimetinib (Cob) or lenvatinib (Lenva) targeting agents and challenged against MM cell lines and liver cancer cell line to evaluate homotypic targeting and antitumor efficacy. Characterization studies demonstrated the effective fusion of CM with liposome and the high encapsulation efficiency of both drugs, showing the proficiency of microfluidic-based production. By studying the targeting of melanoma cells by hybrid liposomes versus liposomes, we found that both NPs entered cells through endocytosis, whereas the former showed higher selectivity for MM cells from which CM was extracted, with 8-fold higher cellular uptake than liposomes. Hybrid liposome formulation of Cob and Lenva reduced melanoma cells viability to a greater extent than liposomes and free drug and, notably, showed negligible toxicity as demonstrated by bona fide haemolysis test. The CM-modified NPs presented here have the potential to broaden the choice of therapeutic options in MM treatment.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | | | - Simona Serratì
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Dafina Fondaj
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | | | - Annalisa Cutrignelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Gabriella Guida
- Department of Traslational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy.
| | | | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70125 Bari, Italy.
| |
Collapse
|
7
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
8
|
Chernyshev VS, Yashchenok A, Ivanov M, Silachev DN. Filtration-based technologies for isolation, purification and analysis of extracellular vesicles. Phys Chem Chem Phys 2023; 25:23344-23357. [PMID: 37646109 DOI: 10.1039/d3cp03129b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The involvement of extracellular vesicles (EVs) in cellular communication with multifactorial and multifaceted biological activity has generated significant interest, highlighting their potential diagnostic and therapeutic applications. EVs are found in nearly all biological fluids creating a broad spectrum of where potential disease markers can be found for liquid biopsy development and what subtypes can be used for treatment of diseases. Complexity of biological fluids has generated a variety of different approaches for EV isolation and identification that may in one way or another be most optimal for research studies or clinical use. Each approach has its own advantages and disadvantages, significance of which can be evaluated depending on the end goal of the study. One of the methods is based on filtration which has received attention in the past years due its versatility, low cost and other advantages. Introduction of different approaches for EV capture and analysis that are based on filtration gave rise to new subcategories of filtration techniques which are presented in this overview. Miniaturization and combination of filtration-based approaches with microfluidics is also highlighted due its future prospects in healthcare, especially point-of-need technologies.
Collapse
Affiliation(s)
- Vasiliy S Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, 117997, Moscow, Russia.
| | - Alexey Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205, Moscow, Russia
| | - Mikhail Ivanov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, 117997, Moscow, Russia.
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
9
|
Su P, Wu Y, Xie F, Zheng Q, Chen L, Liu Z, Meng X, Zhou F, Zhang L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206095. [PMID: 37144543 PMCID: PMC10323633 DOI: 10.1002/advs.202206095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is ongoing, and has necessitated scientific efforts in disease diagnosis, treatment, and prevention. Interestingly, extracellular vesicles (EVs) have been crucial in these developments. EVs are a collection of various nanovesicles which are delimited by a lipid bilayer. They are enriched in proteins, nucleic acids, lipids, and metabolites, and naturally released from different cells. Their natural material transport properties, inherent long-term recycling ability, excellent biocompatibility, editable targeting, and inheritance of parental cell properties make EVs one of the most promising next-generation drug delivery nanocarriers and active biologics. During the COVID-19 pandemic, many efforts have been made to exploit the payload of natural EVs for the treatment of COVID-19. Furthermore, strategies that use engineered EVs to manufacture vaccines and neutralization traps have produced excellent efficacy in animal experiments and clinical trials. Here, the recent literature on the application of EVs in COVID-19 diagnosis, treatment, damage repair, and prevention is reviewed. And the therapeutic value, application strategies, safety, and biotoxicity in the production and clinical applications of EV agents for COVID-19 treatment, as well as inspiration for using EVs to block and eliminate novel viruses are discussed.
Collapse
Affiliation(s)
- Peng Su
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yuchen Wu
- Department of Clinical MedicineThe First School of MedicineWenzhou Medical UniversityWenzhouZhejiang325035P. R. China
| | - Feng Xie
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Qinghui Zheng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Long Chen
- Center for Translational MedicineThe Affiliated Zhangjiagang Hospital of Soochow UniversityZhangjiagangJiangsu215600China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhouJiangsu215123China
| | - Xuli Meng
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhou310014P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
10
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Ngo L, Pham LQA, Tukova A, Hassanzadeh-Barforoushi A, Zhang W, Wang Y. Emerging integrated SERS-microfluidic devices for analysis of cancer-derived small extracellular vesicles. LAB ON A CHIP 2023. [PMID: 37314042 DOI: 10.1039/d3lc00156c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer-derived small extracellular vesicles (sEVs) are specific subgroups of lipid bilayer vesicles secreted from cancer cells to the extracellular environment. They carry distinct biomolecules (e.g., proteins, lipids and nucleic acids) from their parent cancer cells. Therefore, the analysis of cancer-derived sEVs can provide valuable information for cancer diagnosis. However, the use of cancer-derived sEVs in clinics is still limited due to their small size, low amounts in circulating fluids, and heterogeneous molecular features, making their isolation and analysis challenging. Recently, microfluidic technology has gained great attention for its ability to isolate sEVs in minimal volume. In addition, microfluidics allows the isolation and detection of sEVs to be integrated into a single device, offering new opportunities for clinical application. Among various detection techniques, surface-enhanced Raman scattering (SERS) has emerged as a promising candidate for integrating with microfluidic devices due to its ultra-sensitivity, stability, rapid readout, and multiplexing capability. In this tutorial review, we start with the design of microfluidics devices for isolation of sEVs and introduce the key factors to be considered for the design, and then discuss the integration of SERS and microfluidic devices by providing descriptive examples of the currently developed platforms. Lastly, we discuss the current limitations and provide our insights for utilising integrated SERS-microfluidics to isolate and analyse cancer-derived sEVs in clinical settings.
Collapse
Affiliation(s)
- Long Ngo
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Le Que Anh Pham
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | | | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
12
|
Bu Y, Wang J, Ni S, Guo Y, Yobas L. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device. LAB ON A CHIP 2023; 23:2421-2433. [PMID: 36951129 DOI: 10.1039/d2lc01193j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived bioparticles that play significant roles in various biological processes including cell-to-cell communication and intercellular delivery. Additionally, they hold great potential as liquid biopsy biomarkers for pre-diagnostic applications. However, the isolation of EV subpopulations, especially exosomes from a biological fluid remains a challenge due to their submicron range. Here, we demonstrate continuous-flow label-free size fractionation of EVs for the first time through a synergistic combination of electrothermal fluid rolls and dielectrophoresis in a microfluidic device. The device features three dimensional microelectrodes with unique sidewall contours that give rise to effective electrothermal fluid rolls in cooperation with dielectrophoretic forces for the electrokinetic manipulation and size separation of submicron particles. We first validate the device functionality by separating submicron polystyrene particles from binary mixtures with a cut-off size of ∼200 nm and then isolate intact exosomes from cell culture medium or blood serum with a high recovery rate and purity (∼80%). The device operation in a high-conductivity medium renders the method ideal for the purification of target bioparticles directly from physiological fluids, and may offer a robust and versatile platform for EV related diagnostic applications.
Collapse
Affiliation(s)
- Yang Bu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Jinhui Wang
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Yusong Guo
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Levent Yobas
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| |
Collapse
|
13
|
Zhu Q, Luo J, Li HP, Ye W, Pan R, Shi KQ, Yang R, Xu H, Li H, Lee LP, Liu F. Robust Acute Pancreatitis Identification and Diagnosis: RAPIDx. ACS NANO 2023; 17:8564-8574. [PMID: 36988967 DOI: 10.1021/acsnano.3c00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The occurrence of acute pancreatitis (AP) is increasing significantly worldwide. However, current diagnostic methods of AP do not provide a clear clinical stratification of severity, and the prediction of complications in AP is still limited. Here, we present a robust AP identification and diagnosis (RAPIDx) method by the proteomic fingerprinting of intact nanoscale extracellular vesicles (EVs) from clinical samples. By tracking analysis of circulating biological nanoparticles released by cells (i.e., EVs) via bottom-up proteomics, we obtain close phenotype connections between EVs, cell types, and multiple tissues based on their specific proteomes and identify the serum amyloid A (SAA) proteins on EVs as potential biomarkers that are differentially expressed from AP patients significantly. We accomplish the quantitative analysis of EVs fingerprints using MALDI-TOF MS and find the SAA proteins (SAA1-1, desR-SAA1-2, SAA2, SAA1-2) with areas under the curve (AUCs) from 0.92 to 0.97, which allows us to detect AP within 30 min. We further realize that SAA1-1 and SAA2, combined with two protein peaks (5290.19, 14032.33 m/z), can achieve an AUC of 0.83 for classifying the severity of AP. The RAPIDx platform will facilitate timely diagnosis and treatment of AP before severity development and persistent organ failure and promote precision diagnostics and the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaxin Luo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui-Ping Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wen Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Reguang Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ke-Qing Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Rui Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hengrui Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luke P Lee
- Harvard Medical School, Department of Medicine, Brigham Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Fei Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
14
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
15
|
Lee SH, Cha B, Ko J, Afzal M, Park J. Acoustofluidic separation of proteins from platelets in human blood plasma using aptamer-functionalized microparticles. BIOMICROFLUIDICS 2023; 17:024105. [PMID: 37153865 PMCID: PMC10162022 DOI: 10.1063/5.0140096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Microfluidic liquid biopsy has emerged as a promising clinical assay for early diagnosis. Herein, we propose acoustofluidic separation of biomarker proteins from platelets in plasma using aptamer-functionalized microparticles. As model proteins, C-reactive protein and thrombin were spiked in human platelet-rich plasma. The target proteins were selectively conjugated with their corresponding aptamer-functionalized microparticles of different sizes, and the particle complexes served as a mobile carrier for the conjugated proteins. The proposed acoustofluidic device was composed of an interdigital transducer (IDT) patterned on a piezoelectric substrate and a disposable polydimethylsiloxane (PDMS) microfluidic chip. The PDMS chip was placed in a tilted arrangement with the IDT to utilize both vertical and horizontal components of surface acoustic wave-induced acoustic radiation force (ARF) for multiplexed assay at high-throughput. The two different-sized particles experienced the ARF at different magnitudes and were separated from platelets in plasma. The IDT on the piezoelectric substrate could be reusable, while the microfluidic chip can be replaceable for repeated assays. The sample processing throughput with the separation efficiency >95% has been improved such that the volumetric flow rate and flow velocity were 1.6 ml/h and 37 mm/s, respectively. For the prevention of platelet activation and protein adsorption to the microchannel, polyethylene oxide solution was introduced as sheath flows and coating on to the walls. We conducted scanning electron microscopy, x-ray photoemission spectroscopy , and sodium dodecyl sulfate- analysis before and after the separation to confirm the protein capture and separation. We expect that the proposed approach will provide new prospects for particle-based liquid biopsy using blood.
Collapse
Affiliation(s)
- Song Ha Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Beomseok Cha
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jeongu Ko
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Muhammad Afzal
- Center of Immunology Marseille-Luminy, Aix-Marseille University, 171 Av, De Luminy, 13009 Marseille, France
| | - Jinsoo Park
- Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
16
|
Lee S, Gonzalez-Suarez AM, Huang X, Calvo-Lozano O, Suvakov S, Lechuga LM, Garovic VD, Stybayeva G, Revzin A. Using Electrochemical Immunoassay in a Novel Microtiter Plate to Detect Surface Markers of Preeclampsia on Urinary Extracellular Vesicles. ACS Sens 2023; 8:207-217. [PMID: 36548998 DOI: 10.1021/acssensors.2c02077] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted by cells. EVs contain biological information related to parental cells and provide biomarkers for disease diagnosis. We have previously shown that the levels of podocin and nephrin expression on urinary EVs may be used to diagnose renal injury associated with preeclampsia. This paper describes a nanoparticle-enabled immunoassay integrated with an electrochemical plate for quantifying podocin and nephrin expression in urinary EVs. The strategy entailed capturing EVs on an electrode surface and then labeling EVs with gold nanoparticles that are both functionalized with antibodies for target specificity and impregnated with redox-active metal ions for electrochemical detection. These immunoprobes produced an electrochemical redox signal proportional to the expression level of EV surface markers. Electrochemical immunoassays were carried out in a novel microtiter plate that contained 16 wells with working electrodes connected to onboard counter/reference electrodes via capillary valves. Upon validation with recombinant proteins, a microtiter plate was used for analysis of urinary EVs from healthy and preeclamptic pregnant women. This analysis revealed a higher podocin to nephrin ratio for preeclamptic women compared to healthy controls (4.31 vs 1.69) suggesting that this ratio may be used for disease diagnosis.
Collapse
Affiliation(s)
- Seonhwa Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Alan M Gonzalez-Suarez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - XuHai Huang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBERBBN and BIST, Barcelona 08193, Spain
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBERBBN and BIST, Barcelona 08193, Spain
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States.,Sersense Inc., Rochester, Minnesota 55905, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
17
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
18
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
19
|
Single-cell extracellular vesicle analysis by microfluidics and beyond. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Kumar K, Kim E, Alhammadi M, Umapathi R, Aliya S, Tiwari JN, Park HS, Choi JH, Son CY, Vilian AE, Han YK, Bu J, Huh YS. Recent advances in microfluidic approaches for the isolation and detection of exosomes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Matsuzaka Y, Yashiro R. Advances in Purification, Modification, and Application of Extracellular Vesicles for Novel Clinical Treatments. MEMBRANES 2022; 12:membranes12121244. [PMID: 36557150 PMCID: PMC9787595 DOI: 10.3390/membranes12121244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EV) are membrane vesicles surrounded by a lipid bilayer membrane and include microvesicles, apoptotic bodies, exosomes, and exomeres. Exosome-encapsulated microRNAs (miRNAs) released from cancer cells are involved in the proliferation and metastasis of tumor cells via angiogenesis. On the other hand, mesenchymal stem cell (MSC) therapy, which is being employed in regenerative medicine owing to the ability of MSCs to differentiate into various cells, is due to humoral factors, including messenger RNA (mRNA), miRNAs, proteins, and lipids, which are encapsulated in exosomes derived from transplanted cells. New treatments that advocate cell-free therapy using MSC-derived exosomes will significantly improve clinical practice. Therefore, using highly purified exosomes that perform their original functions is desirable. In this review, we summarized advances in the purification, modification, and application of EVs as novel strategies to treat some diseases.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-0031, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-0004, Japan
| |
Collapse
|
22
|
Emerging application of hydrocyclone in biotechnology and food processing. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Yong T, Wei Z, Gan L, Yang X. Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201054. [PMID: 35726204 DOI: 10.1002/adma.202201054] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although immunotherapy harnessing activity of the immune system against tumors has made great progress, the treatment efficacy remains limited in most cancers. Current anticancer immunotherapy is primarily based on T-cell-mediated cellular immunity, which highly relies on efficiency of triggering the cancer-immunity cycle, namely, tumor antigen release, antigen presentation by antigen presenting cells, T cell activation, recruitment and infiltration of T cells into tumors, and recognition and killing of tumor cells by T cells. Unfortunately, these immunotherapies are restricted by inefficient drug delivery and acting on only a single step of the cancer-immunity cycle. Due to high biocompatibility, low immunogenicity, intrinsic cell targeting, and easy chemical and genetic manipulation, extracellular vesicle (EV)-based drug delivery systems are widely used to amplify anticancer immune responses by serving as an integrated platform for multiple drugs or therapeutic strategies to synergistically activate several steps of cancer-immunity cycle. This review summarizes various mechanisms related to affecting cancer-immunity cycle disorders. Meanwhile, preparation and application of EV-based drug delivery systems in modulating cancer-immunity cycle are introduced, especially in the improvement of T cell recruitment and infiltration into tumors. Finally, opportunities and challenges of EV-based drug delivery systems in translational clinical applications are briefly discussed.
Collapse
Affiliation(s)
- Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
24
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
25
|
Jiang Q, Xiao Y, Hong AN, Gao Z, Shen Y, Fan Q, Feng P, Zhong W. Bimetallic Metal-Organic Framework Fe/Co-MIL-88(NH 2) Exhibiting High Peroxidase-like Activity and Its Application in Detection of Extracellular Vesicles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41800-41808. [PMID: 36083615 DOI: 10.1021/acsami.2c12115] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) have many attractive features, including tunable composition, rigid structure, controllable pore size, and large specific surface area, and thus are highly applicable in molecular analysis. Depending on the MOF structure, a high number of unsaturated metal sites can be exposed to catalyze chemical reactions. In the present work, we report that using both Co(II) and Fe(III) to prepare the MIL-88(NH2) MOF, we can produce the bimetallic MOF that can catalyze the conversion of 3,3',5,5″-tetramethylbenzidine (TMB) to a color product through a reaction with H2O2 at a higher reaction rate than the monometallic Fe-MIL-88(NH2). The Michaelis constants (Km) of the catalytic reaction for TMB and H2O2 are 3-5 times smaller, and the catalytic constants (kcat) are 5-10 times higher than those of the horseradish peroxidase (HRP), supporting ultrahigh peroxidase-like activity. These values are also much more superior to those of the HRP-mimicking MOFs reported previously. Interestingly, the bimetallic MOF can be coupled with glucose oxidase (GOx) to trigger the cascade enzymatic reaction for highly sensitive detection of extracellular vesicles (EVs), a family of important biomarkers. Through conjugation to the aptamer that recognizes the marker protein on EV surface, the MOF can help isolate the EVs from biological matrices, which are subsequently labeled by GOx via antibody recognition. The cascade enzymatic reaction between MOF and GOx enables the detection of EVs at a concentration as low as 7.8 × 104 particles/mL. The assay can be applied to monitor EV secretion by cultured cells and also can successfully detect the different EV quantities in the sera samples collected from cancer patients and healthy controls. Overall, we prove that the bimetallic Fe/Co-MIL-88(NH2) MOF, with its high peroxidase activity and high biocompatibility, is a valuable tool deployable in clinical assays to facilitate disease diagnosis and prognosis.
Collapse
|
26
|
Majood M, Rawat S, Mohanty S. Delineating the role of extracellular vesicles in cancer metastasis: A comprehensive review. Front Immunol 2022; 13:966661. [PMID: 36059497 PMCID: PMC9439583 DOI: 10.3389/fimmu.2022.966661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are subcellular messengers that aid in the formation and spread of cancer by enabling tumor-stroma communication. EVs develop from the very porous structure of late endosomes and hold information on both the intrinsic “status” of the cell and the extracellular signals absorbed by the cells from their surroundings. These EVs contain physiologically useful components, including as nucleic acids, lipids, and proteins, which have been found to activate important signaling pathways in tumor and tumor microenvironment (TME) cells, aggravating tumor growth. We highlight critical cell biology mechanisms that link EVS formation to cargo sorting in cancer cells in this review.Sorting out the signals that control EVs creation, cargo, and delivery will aid our understanding of carcinogenesis. Furthermore, we reviewed how cancer development and spreading behaviors are affected by coordinated communication between malignant and non-malignant cells. Herein, we studied the reciprocal exchanges via EVs in various cancer types. Further research into the pathophysiological functions of various EVs in tumor growth is likely to lead to the discovery of new biomarkers in liquid biopsy and the development of tumor-specific therapies.
Collapse
|
27
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
28
|
Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review. MICROMACHINES 2022; 13:mi13050730. [PMID: 35630197 PMCID: PMC9147043 DOI: 10.3390/mi13050730] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. Exosomes (30 to 100 nm) are a subset of EVs, and their importance in future medicine is beyond any doubt. However, the lack of efficient isolation and detection techniques hinders their practical applications as biomarkers. Versatile and cutting-edge platforms are required to detect and isolate exosomes selectively for further clinical analysis. This review paper focuses on lab-on-chip devices for capturing, detecting, and isolating extracellular vesicles. The first part of the paper discusses the main characteristics of different cell-derived vesicles, EV functions, and their clinical applications. In the second part, various microfluidic platforms suitable for the isolation and detection of exosomes are described, and their performance in terms of yield, sensitivity, and time of analysis is discussed.
Collapse
|